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Objectives: understanding the relationship between formulae from "best linear prediction" (minimum 

variance of prediction error) based on the covariance matrix of a couple of random variables (a, b) and 

the linear models with additive noise    which we can identify from such formulae. Actually, 

the concrete goal of this material is obtaining the "inverse" model  in an example; inverse 

will be understood in an "statistical" sense (minimum variance of the prediction error).

Table of Contents

Preliminaries and background concepts....................................................................................................1
Identified models from a covariance matrix............................................................................................... 2
Example: inversion of a linear model (static)............................................................................................. 3
Conclusions............................................................................................................................................... 4

Preliminaries and background concepts

Best linear prediction 

Consider two random variables a and b, assuming zero mean (otherwise, we would change to 

increments around the mean, with no loss of generality).

If the covariance matrix is:

, with  (in the multivariate case), then the best linear prediction of a given 

b is:

, with a prediction error  having a variance given by: .

En the case of a normally distributed joint distribution, as once mean and variance are known 

we can build the whole probability density, we can asser that the conditional probability  is 

.

We can recreate that estimated conditional distribution with , being , 

regardless of whether it is "physically true" or not (most likely not).
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Covariance matrix associated to a linear model with additive noise

Given a model , with ,  , being  statistically independent of b, 

then:

So the joint covariance matrix of a y b, associated to such a model, would be:

Identified models from a covariance matrix

Consider .

If we denote ,then the best linear prediction of a given b is , with a prediction 

error variance .

if we assume a model:

, with   independent of b, and  b a zero-mean random variable with 

variance 

then we would have  returning expressions already seen 

above.

Also  would give the correct covariance.

So, the linear model with additive noise , with variance of b being  and variance of  

being  "explains" the whole joint covariance matrix between a and b.
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Example: inversion of a linear model (static)
Let us assume we have , with an a priori variance of a equal to 4, variance of   equal 

to 1.75. The statistically optimal "inverse" model is NOT  , understanding "inverse" as 

the linear prediction " " of "a" with lowest variance of the error  .

vz_a=4; vzaeps=1.75;

Thus, covariance between a and b is

coef=0.8;
covab=coef*vz_a

covab = 3.2000

and the variance of b that the model predicts is

vza_b=vzaeps+coef*vz_a*coef

vza_b = 4.3100

MatrizVC_Sigma=[vz_a covab;covab vza_b]

MatrizVC_Sigma = 2×2
    4.0000    3.2000
    3.2000    4.3100

 Best prediction of b given a is, obviously, the model we were starting from:

covab/vz_a % = coef

ans = 0.8000

vzaerrb=vza_b-covab^2/vz_a % = vza eps

vzaerrb = 1.7500

 The best linear prediction of a given b is NOT  :

eta=covab/vza_b

eta = 0.7425

1/coef

ans = 1.2500

vzaerra=vz_a-covab^2/vza_b

vzaerra = 1.6241
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Another way to obtain the variance of the error of "a given b", arises from the fact that 

, so we can evaluate

[1 -eta]*MatrizVC_Sigma*[1;-eta] 

ans = 1.6241

 Indeed if I now test the variance of , I get:

[1 -1/coef]*MatrizVC_Sigma*[1;-1/coef] 

ans = 2.7344

which is larger than vzaerra, so the "algebraic inverse" model is not the one with "least prediction 

error variance".

Conclusions
Inverting a model in statistics is more "involved" than solving for an unknown in an algebraic equation: 

adding noise makes the original data non-recoverable.

In a  "time series" , this expression (or variations thereof) is named as the "forward" 

equation, and the "backwards" equation for optimal estimation of the past given the present is 

, where  and neither variance of  and  are coincident with what the 

algebraic inversion  would suggest.
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