
Conditional uncorrelation (normal distribution), chained linear 
predictions: examples
© 2022, Antonio Sala Piqueras. All rights reserved.

Video-presentation: http://personales.upv.es/asala/YT/V/condnocoEN.html 

This code ran without errors in Matlab R2022a

Table of Contents

Conditional Independence (revision)......................................................................................................... 1
Condicionally uncorrelated Variables (normal case)................................................................................. 2
Example 1: sum of two random variables..................................................................................................3
Example 2..................................................................................................................................................3

2.1: Incorrelated, but "condicionally" correlated..................................................................................... 4
2.2: correlated but condicionally uncorrelated........................................................................................4

Bayesian network representation....................................................................................................... 5

Conditional Independence (revision)

Suppose we have three random variables a, b, c.

 b and c are said to be "conditionally independent when  " if

 

or

.

Equivalently, if .

 If b and c and are conditionally independent given any possible observation of a, then we say that 

they are "conditionally independent given a".

This relationship allows expressing probabilistic models in graphical diagrams such as:
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which are called "Bayesian networks" in a general case.

Condicionally uncorrelated Variables (normal case)
Statistical independence is harder to prove than incorrelation (at least, approximately, given a sufficient 

amount of data). No correlation is equivalent to inability to set up any useful "linear" predictor.

If we have a symmetric covariance matrix:

then, the best (minimum error variance) linear prediction of  given a is:

with a prediction error variance given by:

Hence, if , i.e., , then  is diagonal, so extra 

information about  is of no use to predict (linearly) b with greater precision than the 

already available , and likewise happens with predictions of c with additional info on b. They are 

conditionally incorrelated.

In the case of normal distribution, this would serve to "exactly"  determine the conditional distribution 

in mean and variance, so we will call them "conditionally uncorrelated", but, obviously, it is only true 

in certain cases, for example with the extra assumption of normality. Otherwise, the true "conditional" 

probability distribution may not have the mean and variance from the best linear prediction formulae.
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In fact, in the multivariate normal distribution case, uncorrelation implies independence, so these 

variables would also be conditionally independent. So, the focus on "uncorrelation" in this material is 

just for numerical/illustrative reasons.

Example 1: sum of two random variables
The "sum"  assuming variance of b=2, variance of c=1, b y c independent, has a covariance 

matrix:

,

,

VCabc=[3 2 1;2 2 0;1 0 1]

VCabc = 3×3
     3     2     1
     2     2     0
     1     0     1

Resid=VCabc(2:3,2:3)-VCabc(2:3,1)*inv(VCabc(1,1))*VCabc(1,2:3)

Resid = 2×2
    0.6667   -0.6667
   -0.6667    0.6667

[V,D]=eig(Resid)

V = 2×2
   -0.7071   -0.7071
   -0.7071    0.7071
D = 2×2
    0.0000         0
         0    1.3333

The null eigenvalue indicates that there is a "deterministic" relationship in there (clearly, if I know the 

sum and one of the variables, the remaining one can be deterministically obtained).

Example 2
Sigma=@(s_bc) [2 3 4;3 10 s_bc;4 s_bc 20]; %cov(b,c) adjustable parameter
S0=Sigma(0) %b and c are uncorrelated.

S0 = 3×3
     2     3     4
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     3    10     0
     4     0    20

eig(Sigma(0)) %must be positive def.

ans = 3×1
    0.2648
   10.8492
   20.8860

2.1: Incorrelated, but "condicionally" correlated

S0(2:3,2:3)% diagonal

ans = 2×2
    10     0
     0    20

vzaerrbc=S0(2:3,2:3)-S0(2:3,1)*inv(S0(1,1))*S0(1,2:3) %NOT diagonal

vzaerrbc = 2×2
    5.5000   -6.0000
   -6.0000   12.0000

eig(vzaerrbc)% some randomness remains, not like in the "sum" example.

ans = 2×1
    1.9263
   15.5737

Given the conditional correlation, the best prediction of "c", given "a" and "b", will have a residual 

prediction error variance given by:

S0(3,3)-S0(3,1:2)*inv(S0(1:2,1:2))*S0(1:2,3) 

ans = 5.4545

which is better than "20" (equal to the marginal) with only the knowledge of "b", and better than the 

variance of the best prediction knowing only "a", which is:

S0(3,3)-S0(3,1)*inv(S0(1,1))*S0(1,3) 

ans = 12

*Note that the result is the same if I used the information on "b" with the residual covariance arising 

from a previous use of "a":

vzaerrbc(2,2)-vzaerrbc(2,1)*inv(vzaerrbc(1,1))*vzaerrbc(1,2)

ans = 5.4545

2.2: correlated but condicionally uncorrelated

bc_ci=S0(2,1)*inv(S0(1,1))*S0(1,3)

4



bc_ci = 6

Sci=Sigma(bc_ci)

Sci = 3×3
     2     3     4
     3    10     6
     4     6    20

eig(Sci) %es def+

ans = 3×1
    0.7521
    7.3408
   23.9070

Resid_given_a=Sci(2:3,2:3)-Sci(2:3,1)*inv(Sci(1,1))*Sci(1,2:3) %sale diagonal, cond. incorrelada

Resid_given_a = 2×2
    5.5000         0
         0   12.0000

Bayesian network representation

Option 1:

bestpred_given_a=Sci(2:3,1)*inv(Sci(1,1))

bestpred_given_a = 2×1
    1.5000
    2.0000

Option 2:

bestpred_given_b=Sci([1 3],2)*inv(Sci(2,2))

bestpred_given_b = 2×1
    0.3000
    0.6000

Resid_given_b=Sci([1 3],[1 3])-Sci([1 3],2)*inv(Sci(2,2))*Sci(2,[1 3]) 

Resid_given_b = 2×2
    1.1000    2.2000
    2.2000   16.4000
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Option 3:

bestpred_given_c=Sci([1 2],3)*inv(Sci(3,3))

bestpred_given_c = 2×1
    0.2000
    0.3000

Resid_given_c=Sci([1 2],[1 2])-Sci([1 2],3)*inv(Sci(3,3))*Sci(3,[1 2]) 

Resid_given_c = 2×2
    1.2000    1.8000
    1.8000    8.2000
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