
Case study: actuator (manipulated variables) and controlled variable
selection, polyhedra vs SVD tools
© 2024, Antonio Sala Piqueras, Universitat Politecnica de Valencia, SPAIN. All rights reserved.

Presentations in video:

http://personales.upv.es/asala/YT/V/sacerf1EN.html

http://personales.upv.es/asala/YT/V/sacerf2EN.html

http://personales.upv.es/asala/YT/V/sacerf3EN.html

http://personales.upv.es/asala/YT/V/sacerf4EN.html

http://personales.upv.es/asala/YT/V/sacerf5EN.html

http://personales.upv.es/asala/YT/V/sacerf6EN.html

http://personales.upv.es/asala/YT/V/sacerf7EN.html

This code runs in Matlab R2023a (Linux)

Objectives: understand SVD and polyhedron geometry and manipulations to asses wheter given

setpoint increments or worst-case disturbance rejection are feasible without saturation.

Table of Contents

Model and constraints..1
A) Reference tracking in steady state without saturation, SVD geometry... 2

Basic computations.. 2
Further discussion..4

B) Steady state reference tracking, Polyhedron geometry.. 5
Basic computations.. 5
Further discussion..7

C) Total disturbance rejection without saturation (steady state).. 8
SVD geometry.. 8
Polyhedron geometry, total cancellation (steady state).. 10

D) partial disturbance rejection (steady state)... 12
D.1) Polyhedron geometry... 12
D.2) SVD (ellipse) geometry.. 15

E) Transient analysis (bandwith), setpoint and disturbance...18
Combined setpoint + disturbances (simultaneously, but norm 1)... 20

Model and constraints
Consider a linearised model with an operating point given by:

1

http://personales.upv.es/asala/YT/V/sacerf1EN.html
http://personales.upv.es/asala/YT/V/sacerf2EN.html
http://personales.upv.es/asala/YT/V/sacerf3EN.html
http://personales.upv.es/asala/YT/V/sacerf4EN.html
http://personales.upv.es/asala/YT/V/sacerf5EN.html
http://personales.upv.es/asala/YT/V/sacerf6EN.html
http://personales.upv.es/asala/YT/V/sacerf7EN.html

y_eq=[9 1.45]; u_eq=[2 0.5 1.7]; d_eq=[3 2];

where G and H are the transfer function matrices:

s=tf('s');
G=[3/(s+2) 0.15/(2*s+1) -9/(0.3*s+1);
 0.15/(0.5*s+1) -0.2/(s+1) 1.9/(0.3*s+1)];
H=[1.8/(s+1)^2 2/(s+3); 2.4/(s+12) 0.6/(s+1)/(s+3)];

Later on, we'll see that we can achieve all that we are required to... Hence, if we wish to test "actuator

selection", using just two of them, we may make some columns of G equal to zero and execute the

code again:

G=G*diag([1 1 1]); %set to zero position of actuator to disable.

Of course, "elliminating" one actuator should be, in rigor, "deleting" the column, but that would change

the size of matrices so code would give errors. Setting column to zero is a quick workaround.

Manipulated variables u have the following saturation limits:

lim_u_abs=[4 1.5 2; 0 0 1]; %1st row max, 2nd row min

In incremental units, the limits of manipulated variables are:

inc_u_admissible=lim_u_abs-u_eq

inc_u_admissible = 2×3
 2.0000 1.0000 0.3000
 -2.0000 -0.5000 -0.7000

A) Reference tracking in steady state without saturation, SVD geometry
Basic computations

We wish to be able to move the outputs (via setpoint changes to be tracked by controllers) in the

ranges:

lim_y_abs=[11.6 1.6; 8.5 1.35]; %1st row max, 2nd row min

2

So, in incremental units, these desired increments are:

inc_y_desired=lim_y_abs-y_eq

inc_y_desired = 2×2
 2.6000 0.1500
 -0.5000 -0.1000

Static DC gain matrix is:

Gain=dcgain(G)

Gain = 2×3
 1.5000 0.1500 -9.0000
 0.1500 -0.2000 1.9000

Scaling step: ,

Ey=diag(max(abs(inc_y_desired))) %worst case is maximum desired output increment

Ey = 2×2
 2.6000 0
 0 0.1500

Eu=diag(min(abs(inc_u_admissible))) %worst case is minimum available input increment

Eu = 3×3
 2.0000 0 0
 0 0.5000 0
 0 0 0.3000

The scaled gain matrix is given by:

Gain_scaled=inv(Ey)*Gain*Eu %Scaling for unit increments desired/available.

Gain_scaled = 2×3
 1.1538 0.0288 -1.0385
 2.0000 -0.6667 3.8000

svd(Gain_scaled)

ans = 2×1
 4.3646
 1.4985

Minimum gain is almost 1.5, above 1: satisfactory. Condition number is:

cond(Gain_scaled)

ans = 2.9127

The value of around 3 is quite sensible, lower than 5.

3

Hence, the answer is YES: we can move the outputs to the required amplitudes (steady state)

with available inputs, when considering the geometry of ellipses, i.e., achieving any such that

 with , norm is the Euclidean norm.

In a "pen-and-paper plus basic calculator" examination for my M.Sc. students this would finish the

required answer.

Further discussion

We will now examine singular vectors (principal directions) for further insight:

[U,S,V]=svd(Gain_scaled)

U = 2×2
 -0.0991 0.9951
 0.9951 0.0991
S = 2×3
 4.3646 0 0
 0 1.4985 0
V = 3×3
 0.4298 0.8985 0.0891
 -0.1526 -0.0249 0.9880
 0.8899 -0.4382 0.1264

Intuitively, the "hard" manoeuver is, roughly, increase 1 unit output 1 and increase 0.1 units output 2

(grosso modo, keep it where it was), being manipulated variable 1 the most critical.

Also, as minimum gain is above , then the "unit sphere in u" will be able to achieve all output

manoeuvers in the sphere of radius in y space, which of course will include the "unit square

in y, vertices at "; thus, the validity in the polyhedron geometry can be asserted without any

polyhedron-specific code. This would not occur if the minimum gain were lower than .

Let us graphically represent the above ideas.

If we draw the output ellipse swept by inputs when multiplied by , we have:

M=Gain_scaled*Gain_scaled'

M = 2×2
 2.4106 -1.6577
 -1.6577 18.8844

syms y1 y2 real
y=[y1;y2];
fill([-1 -1 1 1],[-1 1 1 -1],[.55 0.95 .8]), hold on %unit square
fimplicit(y'*inv(M)*y-1, LineWidth=3), grid on %feasible ellipse
fimplicit(y'*y-1, '-.',LineWidth=2) %unit circle
fimplicit(y'*y-S(2,2)^2, '-.',LineWidth=2) %mingain circle

4

plot([0 U(1,1)*S(1,1)],[0 U(2,1)*S(1,1)],LineWidth=2.5) %output direction 1, scaled
plot([0 U(1,2)*S(2,2)],[0 U(2,2)*S(2,2)],LineWidth=1.25) %output direction 2, scaled
for i=1:3
 quiver(0,0,Gain_scaled(1,i),Gain_scaled(2,i),0,Color=[.9 .6 .5],LineWidth=1.5);
end
hold off, axis equal
xlabel("y1esc"),ylabel("y2esc")
legend("Square \pm 1","Feasible outputs for ||u||<1 (incr. sc.)","Desired outputs (incr. sc)","Minumum gain","High gain princ. manoeuver","Low gain princ. manoeuver","Individual MV manoeuver", Location="best")

B) Steady state reference tracking, Polyhedron geometry
Basic computations

With polyhedron code, there is no need for "scaled" units, and in fact as ranges are quite asymmetric,

even in scaled units the desired increments will not be "unity".

So, we'll work in original non-scaled units, but of course in INCREMENTAL ones, as we are working

with a linear system. We have:

Vertices_incy=[8.5 8.5 11.6 11.6;1.35 1.6 1.6 1.35]-[9;1.45] %desired extreme points

Vertices_incy = 2×4
 -0.5000 -0.5000 2.6000 2.6000
 -0.1000 0.1500 0.1500 -0.1000

Vertices_incy=Vertices_incy; %scaling to check for extra margin
Min_incU=inc_u_admissible(2,:) %Lower Bound

Min_incU = 1×3
 -2.0000 -0.5000 -0.7000

Max_incU=inc_u_admissible(1,:) %Upper Bound

Max_incU = 1×3
 2.0000 1.0000 0.3000

5

We must check if there is a feasible u for each of the four extreme vertices of desired output.

The code below minimises subject to Gan·u=vertex , and subject to u being inside the maximum

and minimum increment bounds.

quadprog(inv(Eu)^2,zeros(1,3),[],[],Gain,Vertices_incy(:,1),Min_incU,Max_incU) %factible

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
ans = 3×1
 -0.4356
 0.0134
 -0.0168

quadprog(inv(Eu)^2,zeros(1,3),[],[],Gain,Vertices_incy(:,2),Min_incU,Max_incU) % NO factible

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
ans = 3×1
 0.0891
 -0.0170
 0.0701

quadprog(inv(Eu)^2,zeros(1,3),[],[],Gain,Vertices_incy(:,3),Min_incU,Max_incU) % NO factible

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
ans = 3×1
 1.4887
 -0.0248
 -0.0412

quadprog(inv(Eu)^2,zeros(1,3),[],[],Gain,Vertices_incy(:,4),Min_incU,Max_incU) %factible

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
ans = 3×1
 0.9639
 0.0056

6

 -0.1281

As all vertices are feasible, we have proven that the requested steady state setpoint tracking problem

is feasible without MV saturation, and we can achieve any point in the desired "output box". We knew it

from the minimum-gain SVD computations, anyway.

Further discussion

Let us graphically represent the result of the above computations.

inc_u_admissible

inc_u_admissible = 2×3
 2.0000 1.0000 0.3000
 -2.0000 -0.5000 -0.7000

VerticesIncU=[2 1 .3;2 1 -.7;2 -.5 -.7;2 -.5 .3;-2 1 .3;-2 1 -.7;-2 -.5 -.7;-2 -.5 .3]'

VerticesIncU = 3×8
 2.0000 2.0000 2.0000 2.0000 -2.0000 -2.0000 -2.0000 -2.0000
 1.0000 1.0000 -0.5000 -0.5000 1.0000 1.0000 -0.5000 -0.5000
 0.3000 -0.7000 -0.7000 0.3000 0.3000 -0.7000 -0.7000 0.3000

ImageVerticesU=Gain*VerticesIncU

ImageVerticesU = 2×8
 0.4500 9.4500 9.2250 0.2250 -5.5500 3.4500 3.2250 -5.7750
 0.6700 -1.2300 -0.9300 0.9700 0.0700 -1.8300 -1.5300 0.3700

k=convhull(ImageVerticesU(1,:),ImageVerticesU(2,:)); %Order is important for "fill"
fill(ImageVerticesU(1,k),ImageVerticesU(2,k),'g') %feasible polyhedron
hold on
fill(Vertices_incy(1,:),Vertices_incy(2,:),'c')
hold off, grid on, axis equal
xlabel("y1"),ylabel("y2")
xline(0,'r'),yline(0,'r'), legend("Feasible Output Polyhedron","Desired Output Polyhedron")

7

Even if it is not strictly needed, we can plot in "scaled" units, to compare with the ellipses, etc:

VerticesIncU_SquareWorstCase=[2 .5 .3;2 .5 -.3;2 -.5 -.3;2 -.5 .3;-2 .5 .3;-2 .5 -.3;-2 -.5 -.3;-2 -.5 .3]';
ImageVerticesUWC=Gain*VerticesIncU_SquareWorstCase;
fill(1/Ey(1,1)*ImageVerticesU(1,k),1/Ey(2,2)*ImageVerticesU(2,k),'g'),
hold on
fill(1/Ey(1,1)*ImageVerticesUWC(1,k),1/Ey(2,2)*ImageVerticesUWC(2,k),[0.45 0.95 0.45],LineStyle=':') %feasible polyhedron "Worst Case"
fill([-1 -1 1 1],[-1 1 1 -1],[0.55 0.95 0.85],LineStyle=':'), hold on %unit square
fill(1/Ey(1,1)*Vertices_incy(1,:),1/Ey(2,2)*Vertices_incy(2,:),'c'),
fimplicit(y'*inv(M)*y-1, LineWidth=3), grid on %feasible ellipse
fimplicit(y'*y-1, '-.',LineWidth=2) %unit circle
hold off, axis equal, xline(0,'r'),yline(0,'r')
xlabel("y1esc"),ylabel("y2esc")
legend("Feasible polyhedron (scaled)","Feas. with Worst-case Input","Worst-Case Unit square","Desired box (esc)","Feasible ellipse ||u||<1","Circle 1",Location="best")

On scaling and relation to predictive control or LQR cost index

If we wished to achieve a given setpoint minimising in "online" operation, we would end up doing

something VERY similar to the above quadprog. MPC would use not just the DC gain, but the whole

step response (DMC). In a general case, if each element of u has its own units and range, we should

actually minimise so that all increments are "comparable". We may switch to and scale

output accordingly, or we may keep original units and minimise , from the fact

that, by definition, . This would just require to change the first argument to quadprog from

"eye(3)" to "inv(E_u)^2".

C) Total disturbance rejection without saturation (steady state)
SVD geometry

8

With a model , input to fully cancel the effect of disturbance is disturbance multiplied by

the "feedforward gain matrix" o; in the case G is not square, we need pseudoinverse (scaled):

interv_d=[3.8 2.4;2.4 1.35]; %range (absolute units) of the two disturbances.
operatingpoint_d=[3 2];
incr_d=interv_d-operatingpoint_d %incremental units

incr_d = 2×2
 0.8000 0.4000
 -0.6000 -0.6500

Ed=diag(max(abs(incr_d))) %worst case is maximum disturbance

Ed = 2×2
 0.8000 0
 0 0.6500

Hgesc=inv(Ey)*dcgain(H)*Ed;
%Actually, Ey is not relevant for total cancellation. Only Eu and Ed matter.
FeedForward=-pinv(Gain_scaled)*Hgesc

FeedForward = 3×2
 -0.4930 -0.2343
 0.0461 0.0338
 -0.0131 -0.0989

u_sv=svd(FeedForward)

u_sv = 2×1
 0.5515
 0.0838

Maximum gain <1 means that scaled disturbances can be cancelled with

.

Graphical representation

Md=Hgesc*Hgesc';
fimplicit(y'*inv(M)*y-1, LineWidth=2.5), grid on %feasible ellipse
hold on
%elipsoide que las entradas pueden mover
fimplicit(y'*inv(M)*y-u_sv(1)^2, '-.',LineWidth=1.5), grid on %feasible ellipse
fimplicit(y'*inv(Md)*y-1, LineWidth=2) %output ellipse in open loop due to disturbances
xlabel("y1esc"),ylabel("y2esc")
hold off, axis equal, legend("Reachable ellipse with ||u||=1","Reachable ellip. with ||u||=0.55","Reachable ellipse ||d||=1",Location="bestoutside")

9

Indeed, we can see that the effect of u is larger than that of d, so u has no problems to counteract the

"yellow" ellipsoid producing an output contrary to it inside the "red" ellipsoid.

Polyhedron geometry, total cancellation (steady state)

%zoomfactor=1;
zoomfactor=2.08 %for partial rejection, later on

zoomfactor = 2.0800

%zoomfactor=1.78 %max. feasible for total rejection below
Vertices_incD=[0.8 0.8 -0.6 -.6; 0.4 -0.65 0.4 -0.65]*zoomfactor

Vertices_incD = 2×4
 1.6640 1.6640 -1.2480 -1.2480
 0.8320 -1.3520 0.8320 -1.3520

1/zoomfactor

ans = 0.4808

*Minimising would make pseudo-inverse results coincident with quadprog

ones (if pseudo-inverse were feasible). Note, however, that actual "implementation" would need

a feedforward (measurable disturbance) component, both here and in the pseudo-inverse SVD

computations.

for i=1:4
 i
 quadprog(inv(Eu^2),zeros(1,3),[],[],Gain,-dcgain(H)*Vertices_incD(:,i),Min_incU,Max_incU); %set equality Gu=-Hd_i
end

i = 1
No feasible solution found.

quadprog stopped because it was unable to find a point that satisfies

10

the constraints within the value of the constraint tolerance.

<stopping criteria details>
i = 2
Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
i = 3
Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
i = 4
No feasible solution found.

quadprog stopped because it was unable to find a point that satisfies
the constraints within the value of the constraint tolerance.

<stopping criteria details>

So, we may plot the relevant polyhedra to check the meaning of the above. In Non-scaled coordinates:

ImageVerticesd=-dcgain(H)*Vertices_incD; %Change sign, because "u" must counteract the effect.
kd=convhull(ImageVerticesd(1,:),ImageVerticesd(2,:)); %Order is important for "fill"

fill(ImageVerticesU(1,k),ImageVerticesU(2,k),'g') %feasible polyhedron
hold on
fill(ImageVerticesd(1,kd),ImageVerticesd(2,kd),'c')
hold off, grid on, axis equal
xlabel("y1"),ylabel("y2")
xline(0,'r'),yline(0,'r'), legend("Reachable Output Polyhedron 'u'","- Reachable Polyhedron 'd'")

11

Even if it is not strictly needed, we can plot in "scaled" output units, to compare with the ellipses, etc:

fill(1/Ey(1,1)*ImageVerticesU(1,k),1/Ey(2,2)*ImageVerticesU(2,k),'g'), %Reachable with u
hold on
%reachable with worst-case U in scaling: cube of vertices +/-1.
fill(1/Ey(1,1)*ImageVerticesUWC(1,k),1/Ey(2,2)*ImageVerticesUWC(2,k),[0.45 0.95 0.45],LineStyle=':') %feasible polyhedron "Worst Case"

%reachable with 'd' in worst-case unit scaled square
Vertices_incDSquare=[0.8 0.8 -0.8 -.8;0.65 -0.65 0.65 -0.65]; %worst-case "square" of disturbances
ImageVerticesdSquare=-dcgain(H)*Vertices_incDSquare; %Change sign, because "u" must counteract the effect.

fill(1/Ey(1,1)*ImageVerticesdSquare(1,kd),1/Ey(2,2)*ImageVerticesdSquare(2,kd),[0.45 0.95 0.85],LineStyle=':')
%reachable with non-symmetric rectangle in d
fill(1/Ey(1,1)*ImageVerticesd(1,kd),1/Ey(2,2)*ImageVerticesd(2,kd),'c'),

fimplicit(y'*inv(M)*y-1, LineWidth=2.5), grid on %reachable ellipse 'u'
fimplicit(y'*inv(Md)*y-1, LineWidth=2) %output ellipse in open loop due to disturbances
hold off, axis equal, xline(0,'r'),yline(0,'r')
xlabel("y1esc"),ylabel("y2esc")
legend("Reachable polyhedron 'u'","Reachable polyhedron with cube |u|<1","- Reachable polyhedron square |d|<1","- Reachable polyh. 'd'","Reachable ellipse ||u||<1","Reachable ||d||<1",Location="best")

D) partial disturbance rejection (steady state)

D.1) Polyhedron geometry

Now, we change to or, well, the bound we wish...

Rewrite first inequality as , and second one as .

Even the bound may be "vertex dependent" (left to the reader/viewer).

For instance, if we want residual error in in and in , for all vertex

disturbances, we will check the feasibility of the inequalities with "quadprog".

12

As quadprog is an "optimization" algorithm minimising , we might think on what to

minimise; we have several options:

• minimising so that we exert the "minimum control effort" to keep the errors within

bounds. In this case, , .

• minimising , so that we achieve zero output deviation, if feasible; otherwise, we

minimise the residual deviation (weighted least squares with a technologically relevant output

scaling). In this case:

so, as d is not a decision variable, we would have

 , .

• Something in between, say, minimising , so weight is used to

balance control effort usage versus output residual error magnitude.

However, as the cost index (in second and third cases) and constraints in quadprog depend on d,

in principle, this would require a "feedforward" (measurable d) control structure: this would not be an

issue in (known) setpoint tracking, but it is in rejection of unmeasurables disturbances. As we are just

interested in "feasibility", not actual "predictive control implementation", we'll just use the first (simplest)

option.

lim_elow=[.1;.15]; lim_ehigh=[+.2;+.25]; %we set whatever limits we wish...
for i=1:4
 i
 Aineq=[-Gain;
 Gain];
 Bineq=[lim_elow+dcgain(H)*Vertices_incD(:,i);
 lim_ehigh-dcgain(H)*Vertices_incD(:,i)];
 quadprog(inv(Eu^2),zeros(1,3),Aineq,Bineq,[],[],Min_incU,Max_incU);
end

i = 1
Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
i = 2

13

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
i = 3
Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
i = 4
Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

Of course, as perfect cancellation was feasible, so it is imperfect cancellation, this is just to learn how

to do it.

We can zoom out disturbance vertices, and draw some "extended output range" given the error limits.

VertErr=-[lim_ehigh [-lim_elow(1);lim_ehigh(2)] -lim_elow [lim_ehigh(1);-lim_elow(2)]]

VertErr = 2×4
 -0.2000 0.1000 0.1000 -0.2000
 -0.2500 -0.2500 0.1500 0.1500

ExtendedImageU=[ImageVerticesU+VertErr(:,1) ImageVerticesU+VertErr(:,2) ...
 ImageVerticesU+VertErr(:,3) ImageVerticesU+VertErr(:,4)];
keu=convhull(ExtendedImageU(1,:),ExtendedImageU(2,:));
fill(ExtendedImageU(1,keu),ExtendedImageU(2,keu),[1 .4 .5]) %feasible polyhedron + error bounds
hold on
fill(ImageVerticesU(1,k),ImageVerticesU(2,k),'g') %feasible polyhedron
fill(ImageVerticesd(1,kd),ImageVerticesd(2,kd),'c')
fill(VertErr(1,:)*.95+ImageVerticesU(1,2),VertErr(2,:)*.95+ImageVerticesU(2,2),[.75 0.5 1])
hold off, grid on, axis equal
xlabel("y1"),ylabel("y2")
xline(0,'r'),yline(0,'r'),
legend("Extended reachable polyhedron (with error)","Reachable Output Polyhedron 'u'","- Reachable Polyhedron 'd'")

14

D.2) SVD (ellipse) geometry

SVD/pseudo-inverse solutions are reworking of ordinary least squares... and ordinary least squares

have no "constraints" (that would be quadprog). To stay within the underlying assumptions of the

methodology, the only thing we may have is "weighted" least squares.

We'll scale things and weight the "residual error" and the "control effort" jointly, as follows.

WorstCaseLim=[0.1 0.15]; %smallest error bound for each variable
E_residual=diag(WorstCaseLim)

E_residual = 2×2
 0.1000 0
 0 0.1500

So, with scaling , , , where is the residual output error

... when, later on, we do know what should be.

The scaled version of the above would be:

Note that the matrix is an OUTPUT scaling matrix. For "total" disturbance rejection this scaling was

not relevant (results would be identical irrespective of the chosen scaling), but this is no longer the

case and the scaling is of course important here, to guide the weighted least squares optimization.

Our goal will be achieving , because in that case we can guarantee that both

 and are below 1.

If we denote , then our goal is achieving when .

15

The equations for are:

so the least-squares fit seeking , i.e., minimising , will involve the pseudo-

inverse of the matrix T multiplying ,

and, as a result, the minimum-norm (optimal solution) would be:

so a sufficient condition for our goal to be feasible is that the maximum singular value (maximum gain)

of is less than one.

Let's do it:

G2esc=inv(E_residual)*Gain*Eu;
H2esc=inv(E_residual)*dcgain(H)*Ed;
T=[G2esc;eye(3)]

T = 5×3
 30.0000 0.7500 -27.0000
 2.0000 -0.6667 3.8000
 1.0000 0 0
 0 1.0000 0
 0 0 1.0000

Q=[H2esc;zeros(3,2)]

Q = 5×2
 14.4000 4.3333
 1.0667 0.8667
 0 0
 0 0
 0 0

FeedForward2=-pinv(T)*Q %input to FeedForward2 are scaled disturbances, outputs are scaled inputs.

FeedForward2 = 3×2
 -0.4806 -0.2259
 0.0433 0.0319
 0.0002 -0.0898

ThingLessThan1=(eye(5)-T*pinv(T))*Q

16

ThingLessThan1 = 5×2
 0.0109 0.0040
 0.0772 0.0523
 -0.4806 -0.2259
 0.0433 0.0319
 0.0002 -0.0898

wcgnu=svd(ThingLessThan1) %Feasible if max gain < 1

wcgnu = 2×1
 0.5431
 0.0828

1/wcgnu(1) %disturbances could be larger by this factor while keeping feasibility

ans = 1.8413

NOTE: the extension of these ideas to the frequency domain, even with different frequency-dependent

maximum residual error and manipulated variable sizes, gives rise to control.

*Optional discussion: If we separately analyse error and control action size, we may have a slightly

finer picture:

wcerr=max(svd(ThingLessThan1(1:2,:)))

wcerr = 0.0940

wcu=max(svd(ThingLessThan1(3:5,:)))

wcu = 0.5351

1/wcu %so we have this larger disturbance size margin

ans = 1.8690

Indeed, if we could minimise "max(wcerr,wcu)" with a different FeedForward2 matrix, that would

be a better solution, closer to the "exact" polyhedron manipulations... but such option is, in principle,

out of reach for basic SVD/pseudo-inverse techniques.

In fact, as we want element-by-element less-than-1 results, we could do SVD row by row (which is the

same as the Euclidean norm of the row, by the way):

for i=1:5
 svd(ThingLessThan1(i,:))
end

ans = 0.0116
ans = 0.0933
ans = 0.5310
ans = 0.0538

17

ans = 0.0898

This would be the largest margin, in which would have size 1 for some disturbance in the unit

sphere:

1/0.5310

ans = 1.8832

E) Transient analysis (bandwith), setpoint and disturbance
We need the "sigma" singular value plot in frequency, with suitable scalings:

Gesc=ss(inv(Ey)*G*Eu); %dynamic system object, not just gain as in earlier sections
Hesc=ss(inv(Ey)*H*Ed); %dynamic system object

 Setpoint tracking, check frequencies above 0dB:

sigma(Gesc,tf(1)), grid on %el eje vert. tiene unidades logarítmicas de "salidas escaladas"

We can track arbitrary setpoints up to 2.4 rad/s bandwith (with the maximum amplitudes implied in the

scaling, of course).

Is the manoeuvre at 2.4 rad/s the same as in steady state?

Gbw=evalfr(Gesc, 2.374*1j)

Gbw = 2×3 complex

18

 0.4790 - 0.5685i 0.0012 - 0.0058i -0.6890 + 0.4907i
 0.8302 - 0.9855i -0.1005 + 0.2385i 2.5212 - 1.7956i

[Ubw,Sbw,Vbw]=svd(Gbw) %yes, it is... Ubw is close to original U.

Ubw = 2×2 complex
 0.1592 + 0.0000i 0.9873 + 0.0000i
 -0.9873 - 0.0002i 0.1592 + 0.0000i
Sbw = 2×3
 3.4023 0 0
 0 1.0002 0
Vbw = 3×3 complex
 -0.2185 - 0.2594i 0.6049 + 0.7181i 0.0348 - 0.0477i
 0.0292 + 0.0695i -0.0148 - 0.0322i 0.7896 - 0.6079i
 -0.7637 - 0.5441i -0.2790 - 0.1986i 0.0204 - 0.0551i

 TOTAL Disturbance rejection, check frequencies below 0dB in:

FF=minreal(-Gesc'*inv(Gesc*Gesc')*Hesc); %pseudoinverse is not made by control systems toolbox

12 states removed.

size(FF) %two "d" enter, three MV outputs

State-space model with 3 outputs, 2 inputs, and 8 states.

dcgain(FF)

ans = 3×2
 -0.4930 -0.2343
 0.0461 0.0338
 -0.0131 -0.0989

sigma(FF, tf(1)), grid on %vertical axis has logarithmic units of "scaled input".

We have power to cancel the disturbance effect at any frequency below 15 rad/s... in an ideal situation

where disturbances were measurable, we had no modelling errors, etc... and we are not limited by

measurement noise, delay or whatever: it's an optimistic estimate.

19

Combined setpoint + disturbances (simultaneously, but norm 1)

If we assume , (in scaled units), we can plot the required input amplitude at each

frequency, as follows:

PinvG=(Gesc'*inv(Gesc*Gesc')); %pseudoinverse is not made by control systems toolbox
Preal2=(Gesc'*inv(Gesc*Gesc')*[-Hesc eye(2)]); %pseudoinverse is not made by control systems toolbox
size(Preal2) %two "d" and two "r" enter, three MV outputs

State-space model with 3 outputs, 4 inputs, and 20 states.

%sigma(Preal2), grid on
sigma(Preal2, tf(1),'-.',FF,PinvG), grid on %vertical axis has logarithmic units of "scaled input".
ylim([-30 40]), legend("ref+d","0dB","only d","only r")

20

