
Case study: actuator (manipulated variables) and controlled variable
selection, polyhedra vs SVD tools
© 2023, Antonio Sala Piqueras, Universitat Politecnica de Valencia, SPAIN. All rights reserved.

Presentations in video:

http://personales.upv.es/asala/YT/V/sacerf1EN.html

http://personales.upv.es/asala/YT/V/sacerf2EN.html

http://personales.upv.es/asala/YT/V/sacerf3EN.html

http://personales.upv.es/asala/YT/V/sacerf4EN.html

This code runs in Matlab R2023a (Linux)

Objectives: understand SVD and polyhedron geometry and manipulations to asses wheter given

setpoint increments or worst-case disturbance rejection are feasible without saturation.

Table of Contents

Model and constraints..1
A) Reference tracking in steady state without saturation, SVD geometry... 2

Basic computations..2
Further discussion..4

B) Steady state reference tracking, Polyhedron geometry.. 5
Basic computations..5
Further discussion..6

C) Total disturbance rejection without saturation (steady state).. 8
SVD geometry..8
Polyhedron geometry, total cancellation (steady state)..10

Model and constraints
Consider a linearised model with an operating point given by:

y_eq=[9 1.45]; u_eq=[2 0.5 1.7]; d_eq=[3 2];

where G and H are the transfer function matrices:

s=tf('s');
G=[3/(s+2) 0.15/(2*s+1) -9/(0.3*s+1);
 0.15/(0.5*s+1) -0.2/(s+1) 1.9/(0.3*s+1)];
H=[1.8/(s+1)^2 2/(s+3); 2.4/(s+12) 0.6/(s+1)/(s+3)];

1

http://personales.upv.es/asala/YT/V/sacerf1EN.html
http://personales.upv.es/asala/YT/V/sacerf2EN.html
http://personales.upv.es/asala/YT/V/sacerf3EN.html
http://personales.upv.es/asala/YT/V/sacerf4EN.html

Later on, we'll see that we can achieve all that we are required to... Hence, if we wish to test "actuator

selection", using just two of them, we may make some columns of G equal to zero and execute the

code again:

G=G*diag([1 1 1]); %set to zero position of actuator to disable.

Of course, "elliminating" one actuator should be, in rigor, "deleting" the column, but that would change

the size of matrices so code would give errors. Setting column to zero is a quick workaround.

Manipulated variables u have the following saturation limits:

lim_u_abs=[4 1.5 2; 0 0 1]; %1st row max, 2nd row min

In incremental units, the limits of manipulated variables are:

inc_u_admissible=lim_u_abs-u_eq

inc_u_admissible = 2×3
 2.0000 1.0000 0.3000
 -2.0000 -0.5000 -0.7000

A) Reference tracking in steady state without saturation, SVD geometry
Basic computations

We wish to be able to move the outputs (via setpoint changes to be tracked by controllers) in the

ranges:

lim_y_abs=[11.6 1.6; 8.5 1.35]; %1st row max, 2nd row min

So, in incremental units, these desired increments are:

inc_y_desired=lim_y_abs-y_eq

inc_y_desired = 2×2
 2.6000 0.1500
 -0.5000 -0.1000

Static DC gain matrix is:

2

Gain=dcgain(G)

Gain = 2×3
 1.5000 0.1500 -9.0000
 0.1500 -0.2000 1.9000

Scaling step: ,

Ey=diag(max(abs(inc_y_desired))) %worst case is maximum desired output increment

Ey = 2×2
 2.6000 0
 0 0.1500

Eu=diag(min(abs(inc_u_admissible))) %worst case is minimum available input increment

Eu = 3×3
 2.0000 0 0
 0 0.5000 0
 0 0 0.3000

The scaled gain matrix is given by:

Gain_scaled=inv(Ey)*Gain*Eu %Scaling for unit increments desired/available.

Gain_scaled = 2×3
 1.1538 0.0288 -1.0385
 2.0000 -0.6667 3.8000

svd(Gain_scaled)

ans = 2×1
 4.3646
 1.4985

Minimum gain is almost 1.5, above 1: satisfactory. Condition number is:

cond(Gain_scaled)

ans = 2.9127

The value of around 3 is quite sensible, lower than 5.

Hence, the answer is YES: we can move the outputs to the required amplitudes (steady state)

with available inputs, when considering the geometry of ellipses, i.e., achieving any such that

 with , norm is the Euclidean norm.

In a "pen-and-paper plus basic calculator" examination for my M.Sc. students this would finish the

required answer.

3

Further discussion

We will now examine singular vectors (principal directions) for further insight:

[U,S,V]=svd(Gain_scaled)

U = 2×2
 -0.0991 0.9951
 0.9951 0.0991
S = 2×3
 4.3646 0 0
 0 1.4985 0
V = 3×3
 0.4298 0.8985 0.0891
 -0.1526 -0.0249 0.9880
 0.8899 -0.4382 0.1264

Intuitively, the "hard" manoeuver is, roughly, increase 1 unit output 1 and increase 0.1 units output 2

(grosso modo, keep it where it was), being manipulated variable 1 the most critical.

Also, as minimum gain is above , then the "unit sphere in u" will be able to achieve all output

manoeuvers in the sphere of radius in y space, which of course will include the "unit square

in y, vertices at "; thus, the validity in the polyhedron geometry can be asserted without any

polyhedron-specific code. This would not occur if the minimum gain were lower than .

Let us graphically represent the above ideas.

If we draw the output ellipse swept by inputs when multiplied by , we have:

M=Gain_scaled*Gain_scaled'

M = 2×2
 2.4106 -1.6577
 -1.6577 18.8844

syms y1 y2 real
y=[y1;y2];
fill([-1 -1 1 1],[-1 1 1 -1],[.55 0.95 .8]), hold on %unit square
fimplicit(y'*inv(M)*y-1, LineWidth=3), grid on %feasible ellipse
fimplicit(y'*y-1, '-.',LineWidth=2) %unit circle
fimplicit(y'*y-S(2,2)^2, '-.',LineWidth=2) %mingain circle
plot([0 U(1,1)*S(1,1)],[0 U(2,1)*S(1,1)],LineWidth=2.5) %output direction 1, scaled
plot([0 U(1,2)*S(2,2)],[0 U(2,2)*S(2,2)],LineWidth=1.25) %output direction 2, scaled
for i=1:3
 quiver(0,0,Gain_scaled(1,i),Gain_scaled(2,i),0,Color=[.9 .6 .5],LineWidth=1.5);
end
hold off, axis equal
xlabel("y1esc"),ylabel("y2esc")
legend("Square \pm 1","Feasible outputs for ||u||<1 (incr. sc.)","Desired outputs (incr. sc)","Minumum gain","High gain princ. manoeuver","Low gain princ. manoeuver","Individual MV manoeuver", Location="best")

4

B) Steady state reference tracking, Polyhedron geometry
Basic computations

With polyhedron code, there is no need for "scaled" units, and in fact as ranges are quite asymmetric,

even in scaled units the desired increments will not be "unity".

So, we'll work in original non-scaled units, but of course in INCREMENTAL ones, as we are working

with a linear system. We have:

Vertices_incy=[8.5 8.5 11.6 11.6;1.35 1.6 1.6 1.35]-[9;1.45] %desired extreme points

Vertices_incy = 2×4
 -0.5000 -0.5000 2.6000 2.6000
 -0.1000 0.1500 0.1500 -0.1000

Vertices_incy=Vertices_incy; %scaling to check for extra margin
Min_incU=inc_u_admissible(2,:) %Lower Bound

Min_incU = 1×3
 -2.0000 -0.5000 -0.7000

Max_incU=inc_u_admissible(1,:) %Upper Bound

Max_incU = 1×3
 2.0000 1.0000 0.3000

We must check if there is a feasible u for each of the four extreme vertices of desired output.

The code below minimises subject to Gan·u=vertex , and subject to u being inside the maximum

and minimum increment bounds.

quadprog(inv(Eu)^2,zeros(1,3),[],[],Gain,Vertices_incy(:,1),Min_incU,Max_incU) %factible

5

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
ans = 3×1
 -0.4356
 0.0134
 -0.0168

quadprog(inv(Eu)^2,zeros(1,3),[],[],Gain,Vertices_incy(:,2),Min_incU,Max_incU) % NO factible

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
ans = 3×1
 0.0891
 -0.0170
 0.0701

quadprog(inv(Eu)^2,zeros(1,3),[],[],Gain,Vertices_incy(:,3),Min_incU,Max_incU) % NO factible

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
ans = 3×1
 1.4887
 -0.0248
 -0.0412

quadprog(inv(Eu)^2,zeros(1,3),[],[],Gain,Vertices_incy(:,4),Min_incU,Max_incU) %factible

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
ans = 3×1
 0.9639
 0.0056
 -0.1281

As all vertices are feasible, we have proven that the requested steady state setpoint tracking problem

is feasible without MV saturation, and we can achieve any point in the desired "output box". We knew it

from the minimum-gain SVD computations, anyway.

Further discussion

6

Let us graphically represent the result of the above computations.

inc_u_admissible

inc_u_admissible = 2×3
 2.0000 1.0000 0.3000
 -2.0000 -0.5000 -0.7000

VerticesIncU=[2 1 .3;2 1 -.7;2 -.5 -.7;2 -.5 .3;-2 1 .3;-2 1 -.7;-2 -.5 -.7;-2 -.5 .3]'

VerticesIncU = 3×8
 2.0000 2.0000 2.0000 2.0000 -2.0000 -2.0000 -2.0000 -2.0000
 1.0000 1.0000 -0.5000 -0.5000 1.0000 1.0000 -0.5000 -0.5000
 0.3000 -0.7000 -0.7000 0.3000 0.3000 -0.7000 -0.7000 0.3000

ImageVerticesU=Gain*VerticesIncU

ImageVerticesU = 2×8
 0.4500 9.4500 9.2250 0.2250 -5.5500 3.4500 3.2250 -5.7750
 0.6700 -1.2300 -0.9300 0.9700 0.0700 -1.8300 -1.5300 0.3700

k=convhull(ImageVerticesU(1,:),ImageVerticesU(2,:)); %Order is important for "fill"
fill(ImageVerticesU(1,k),ImageVerticesU(2,k),'g') %feasible polyhedron
hold on
fill(Vertices_incy(1,:),Vertices_incy(2,:),'c')
hold off, grid on, axis equal
xlabel("y1"),ylabel("y2")
xline(0,'r'),yline(0,'r'), legend("Feasible Output Polyhedron","Desired Output Polyhedron")

Even if it is not strictly needed, we can plot in "scaled" units, to compare with the ellipses, etc:

VerticesIncU_SquareWorstCase=[2 .5 .3;2 .5 -.3;2 -.5 -.3;2 -.5 .3;-2 .5 .3;-2 .5 -.3;-2 -.5 -.3;-2 -.5 .3]';
ImageVerticesUWC=Gain*VerticesIncU_SquareWorstCase;
fill(1/Ey(1,1)*ImageVerticesU(1,k),1/Ey(2,2)*ImageVerticesU(2,k),'g'),
hold on
fill(1/Ey(1,1)*ImageVerticesUWC(1,k),1/Ey(2,2)*ImageVerticesUWC(2,k),[0.45 0.95 0.45],LineStyle=':') %feasible polyhedron "Worst Case"
fill([-1 -1 1 1],[-1 1 1 -1],[0.55 0.95 0.85],LineStyle=':'), hold on %unit square

7

fill(1/Ey(1,1)*Vertices_incy(1,:),1/Ey(2,2)*Vertices_incy(2,:),'c'),
fimplicit(y'*inv(M)*y-1, LineWidth=3), grid on %feasible ellipse
fimplicit(y'*y-1, '-.',LineWidth=2) %unit circle
hold off, axis equal, xline(0,'r'),yline(0,'r')
xlabel("y1esc"),ylabel("y2esc")
legend("Feasible polyhedron (scaled)","Feas. with Worst-case Input","Worst-Case Unit square","Desired box (esc)","Feasible ellipse ||u||<1","Circle 1",Location="best")

On scaling and relation to predictive control or LQR cost index

If we wished to achieve a given setpoint minimising in "online" operation, we would end up doing

something VERY similar to the above quadprog. MPC would use not just the DC gain, but the whole

step response (DMC). In a general case, if each element of u has its own units and range, we should

actually minimise so that all increments are "comparable". We may switch to and scale

output accordingly, or we may keep original units and minimise , from the fact

that, by definition, . This would just require to change the first argument to quadprog from

"eye(3)" to "inv(E_u)^2".

C) Total disturbance rejection without saturation (steady state)
SVD geometry

With a model , input to fully cancel the effect of disturbance is disturbance multiplied by

the "feedforward gain matrix" o; in the case G is not square, we need pseudoinverse (scaled):

interv_d=[3.8 2.4;2.4 1.35]; %range (absolute units) of the two disturbances.
operatingpoint_d=[3 2];
incr_d=interv_d-operatingpoint_d %incremental units

incr_d = 2×2
 0.8000 0.4000

8

 -0.6000 -0.6500

Ed=diag(max(abs(incr_d))) %worst case is maximum disturbance

Ed = 2×2
 0.8000 0
 0 0.6500

Hgesc=inv(Ey)*dcgain(H)*Ed;
%Actually, Ey is not relevant for total cancellation. Only Eu and Ed matter.
FeedForward=-pinv(Gain_scaled)*Hgesc

FeedForward = 3×2
 -0.4930 -0.2343
 0.0461 0.0338
 -0.0131 -0.0989

u_sv=svd(FeedForward)

u_sv = 2×1
 0.5515
 0.0838

Maximum gain <1 means that scaled disturbances can be cancelled with

.

Graphical representation

Md=Hgesc*Hgesc';
fimplicit(y'*inv(M)*y-1, LineWidth=2.5), grid on %feasible ellipse
hold on
%elipsoide que las entradas pueden mover
fimplicit(y'*inv(M)*y-u_sv(1)^2, '-.',LineWidth=1.5), grid on %feasible ellipse
fimplicit(y'*inv(Md)*y-1, LineWidth=2) %output ellipse in open loop due to disturbances
xlabel("y1esc"),ylabel("y2esc")
hold off, axis equal, legend("Reachable ellipse with ||u||=1","Reachable ellip. with ||u||=0.55","Reachable ellipse ||d||=1",Location="bestoutside")

9

Indeed, we can see that the effect of u is larger than that of d, so u has no problems to counteract the

"yellow" ellipsoid producing an output contrary to it inside the "red" ellipsoid.

Polyhedron geometry, total cancellation (steady state)

%zoomfactor=1;
zoomfactor=2.08 %for partial rejection, later on

zoomfactor = 2.0800

%zoomfactor=1.78 %max. feasible for total rejection below
Vertices_incD=[0.8 0.8 -0.6 -.6; 0.4 -0.65 0.4 -0.65]*zoomfactor

Vertices_incD = 2×4
 1.6640 1.6640 -1.2480 -1.2480
 0.8320 -1.3520 0.8320 -1.3520

1/zoomfactor

ans = 0.4808

*Minimising would make pseudo-inverse results coincident with quadprog

ones (if pseudo-inverse were feasible). Note, however, that actual "implementation" would need

a feedforward (measurable disturbance) component, both here and in the pseudo-inverse SVD

computations.

for i=1:4
 i
 quadprog(inv(Eu^2),zeros(1,3),[],[],Gain,-dcgain(H)*Vertices_incD(:,i),Min_incU,Max_incU); %set equality Gu=-Hd_i
end

i = 1
No feasible solution found.

quadprog stopped because it was unable to find a point that satisfies
the constraints within the value of the constraint tolerance.

<stopping criteria details>
i = 2
Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
i = 3
Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
i = 4

10

No feasible solution found.

quadprog stopped because it was unable to find a point that satisfies
the constraints within the value of the constraint tolerance.

<stopping criteria details>

So, we may plot the relevant polyhedra to check the meaning of the above. In Non-scaled coordinates:

ImageVerticesd=-dcgain(H)*Vertices_incD; %Change sign, because "u" must counteract the effect.
kd=convhull(ImageVerticesd(1,:),ImageVerticesd(2,:)); %Order is important for "fill"

fill(ImageVerticesU(1,k),ImageVerticesU(2,k),'g') %feasible polyhedron
hold on
fill(ImageVerticesd(1,kd),ImageVerticesd(2,kd),'c')
hold off, grid on, axis equal
xlabel("y1"),ylabel("y2")
xline(0,'r'),yline(0,'r'), legend("Reachable Output Polyhedron 'u'","- Reachable Polyhedron 'd'")

Even if it is not strictly needed, we can plot in "scaled" output units, to compare with the ellipses, etc:

fill(1/Ey(1,1)*ImageVerticesU(1,k),1/Ey(2,2)*ImageVerticesU(2,k),'g'), %Reachable with u
hold on
%reachable with worst-case U in scaling: cube of vertices +/-1.
fill(1/Ey(1,1)*ImageVerticesUWC(1,k),1/Ey(2,2)*ImageVerticesUWC(2,k),[0.45 0.95 0.45],LineStyle=':') %feasible polyhedron "Worst Case"

%reachable with 'd' in worst-case unit scaled square
Vertices_incDSquare=[0.8 0.8 -0.8 -.8;0.65 -0.65 0.65 -0.65]; %worst-case "square" of disturbances
ImageVerticesdSquare=-dcgain(H)*Vertices_incDSquare; %Change sign, because "u" must counteract the effect.

fill(1/Ey(1,1)*ImageVerticesdSquare(1,kd),1/Ey(2,2)*ImageVerticesdSquare(2,kd),[0.45 0.95 0.85],LineStyle=':')
%reachable with non-symmetric rectangle in d
fill(1/Ey(1,1)*ImageVerticesd(1,kd),1/Ey(2,2)*ImageVerticesd(2,kd),'c'),

11

fimplicit(y'*inv(M)*y-1, LineWidth=2.5), grid on %reachable ellipse 'u'
fimplicit(y'*inv(Md)*y-1, LineWidth=2) %output ellipse in open loop due to disturbances
hold off, axis equal, xline(0,'r'),yline(0,'r')
xlabel("y1esc"),ylabel("y2esc")
legend("Reachable polyhedron 'u'","Reachable polyhedron with cube |u|<1","- Reachable polyhedron square |d|<1","- Reachable polyh. 'd'","Reachable ellipse ||u||<1","Reachable ||d||<1",Location="best")

12

