
Solving Linear Ordinary Differential Equations with Matlab's
symbolic toolbox: spring-mass-damping example

© 2022, Antonio Sala Piqueras, Universitat Politècnica de València. All rights reserved.

This code executed in Matlab R2022a

Video-presentations:

http://personales.upv.es/asala/YT/V/masmusym1EN.html , http://personales.upv.es/asala/YT/V/

masmusym2EN.html

Objectives: analyzing the solution of linear ODEs provided by Matlab (symbolic toolbox),

understanding its meaning, and representing it graphically in a spring-damper (free response) model,

and understanding a very simple animation code.

Table of Contents

EDO in non-normalized (second derivatives) form.. 1
General solution...2
Particular solution for given intial conditions (position and speed)...3

ODE in normalised form (dx/dt=Ax)...4
General solution x=[pos; vel];...4
Particular solution for given initial conditions... 5

EDO in non-normalized (second derivatives) form
Consider the following spring (with some damping, too, by friction with walls and spring losses):

Let us solve the equation of a mass-spring-damper system (linearized, zero equilibrium; linear viscous

friction assumed), starting at initial conditions out of equilibrium, written as:

1

http://personales.upv.es/asala/YT/V/masmusym1EN.html
http://personales.upv.es/asala/YT/V/masmusym2EN.html
http://personales.upv.es/asala/YT/V/masmusym2EN.html

syms y(t) %symbolic function of time
syms M k b real %constant parameters
vel=diff(y); % notation for velocity
accel=diff(y,2); % notation for acceleration

ODE_SYM= M*accel==-k*y-b*vel

ODE_SYM(t) =

%if it were a nonlinear ODE, a solution could not, in general, be found in the form of a symbolic expression
M_num=0.5;k_num=1;b_num=0.2; %numerical values for constant parameters
%let's replace symbols by actual numbers
ODE_mass_spring=subs(ODE_SYM, {M,k,b}, {M_num,k_num,b_num})

ODE_mass_spring(t) =

General solution

With no fixed initial conditions, there are infinitely many solutions, formally related to two integration

constants:

sol=simplify(dsolve(ODE_mass_spring))

sol =

This is the so-called general solution, where and influence initial conditions.

Decay rate: 1/5 , free oscillation frequency: 7/5 .

sol_velocity=simplify(diff(sol))

sol_velocity =

Let's test that it verifies the ODE:

2

simplify(M_num*diff(sol,2) == -k_num*sol-b_num*diff(sol))

ans =

subs(sol,t,0)%initial position

ans =

subs(sol_velocity,t,0)%initial velocity

ans =

Particular solution for given intial conditions (position and speed)

position=dsolve(ODE_mass_spring, y(0)==3, vel(0)==2)

position =

Let's check that the prescribed initial conditions are indeed met:

subs(position,t,0)

ans =

vel=simplify(diff(position))

vel =

subs(vel,t,0)

ans =

If we draw position (thick blue) and speed (dashed red), we get:

Tf=25; %the final time at which we wish to stop plotting
fplot(position,[0 Tf],LineWidth=3), hold on
fplot(vel,[0 Tf],LineStyle='-.'), hold off, grid on,
legend(["Position","Velocity"], location='best')

3

ODE in normalised form (dx/dt=Ax)

We pursue a model in the form (no input, so no need of for the moment

being).

We check that we get coincident results.

syms pos(t) vel(t) %position and velocity

We express the mass-spring-damping model as a pair of first-order differential equations:

ODE_SYM= [diff(pos) == vel; diff(vel) == -k/M*pos-b/M*vel]

ODE_SYM(t) =

We can express the same thing in matrix form (because the equations are linear):

x=[pos; vel]; %state fector
A=[0 1;-k/M -b/M];
ODE_SYM= diff(x) == A*x %normalised matrix form representation of the ODE

ODE_SYM(t) =

Matrix form is convenient for subsequent theoretical analysis (not in the scope of this material).

General solution x=[pos; vel];

We will solve with dsolve command, once the numerical values of the constant parameters have

been replaced:

4

ODE_mass_spring=subs(ODE_SYM, {M,k,b}, {M_num,k_num,b_num})

ODE_mass_spring(t) =

A_numeric=subs(A, {M,k,b}, {M_num,k_num,b_num}) %this is the matrix A whose eigenvalues, etc. are theoretically important

A_numeric =

sol=dsolve(ODE_mass_spring)

sol = struct with fields:
 vel: C1*cos((7*t)/5)*exp(-t/5) - C2*sin((7*t)/5)*exp(-t/5)
 pos: C2*((7*cos((7*t)/5)*exp(-t/5))/10 + (sin((7*t)/5)*exp(-t/5))/10) - C1*((cos((7*t)/5)*exp(-t/5))/10 - (7*sin((7*t)/5)*exp(-t/5))/10)

simplify(sol.pos)

ans =

simplify(sol.vel)

ans =

It's the general solution. Initial conditions would be

subs(sol,t,0)

ans = struct with fields:
 vel: C1
 pos: (7*C2)/10 - C1/10

Particular solution for given initial conditions

spring_state=dsolve(ODE_mass_spring, pos(0)==3, vel(0)==2);
simplify(spring_state.pos)

ans =

5

simplify(spring_state.vel)

ans =

Prescribed initial conditions do hold:

subs(spring_state,t,0)

ans = struct with fields:
 vel: 2
 pos: 3

Let us plot the resulting time response (of course, identical to the one at first section):

fplot(spring_state.pos,[0 Tf],LineWidth=3), hold on
fplot(spring_state.vel,[0 Tf],LineStyle='-.'), hold off, grid on, legend(["Position","Velocity"], location='best')

6

