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This code executed in Matlab R2022a

Video-presentations:

http://personales.upv.es/asala/YT/V/masmusym1EN.html , http://personales.upv.es/asala/YT/V/

masmusym2EN.html 

Objectives: analyzing the solution of linear ODEs provided by Matlab (symbolic toolbox), 

understanding its meaning, and representing it graphically in a spring-damper (free response) model, 

and understanding a very simple animation code.
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EDO in non-normalized (second derivatives) form
Consider the following spring (with some damping, too, by friction with walls and spring losses):

Let us solve the equation of a mass-spring-damper system (linearized, zero equilibrium; linear viscous 

friction assumed), starting at initial conditions out of equilibrium, written as:
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syms y(t) %symbolic function of time
syms M k b real %constant parameters
vel=diff(y); % notation for velocity
accel=diff(y,2); % notation for acceleration

ODE_SYM= M*accel==-k*y-b*vel

ODE_SYM(t) = 

%if it were a nonlinear ODE, a solution could not, in general, be found in the form of a symbolic expression
M_num=0.5;k_num=1;b_num=0.2; %numerical values for constant parameters
%let's replace symbols by actual numbers
ODE_mass_spring=subs(ODE_SYM, {M,k,b}, {M_num,k_num,b_num})

ODE_mass_spring(t) = 

General solution

With no fixed initial conditions, there are infinitely many solutions, formally related to two integration 

constants:

sol=simplify(dsolve(ODE_mass_spring))

sol = 

This is the so-called general solution, where  and  influence initial conditions.

Decay rate: 1/5 , free oscillation frequency: 7/5 .

sol_velocity=simplify(diff(sol))

sol_velocity = 

Let's test that it verifies the ODE:
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simplify( M_num*diff(sol,2) == -k_num*sol-b_num*diff(sol) )

ans = 

subs(sol,t,0)%initial position

ans = 

subs(sol_velocity,t,0)%initial velocity

ans = 

Particular solution for given intial conditions (position and speed)

position=dsolve(ODE_mass_spring, y(0)==3, vel(0)==2)

position = 

Let's check that the prescribed initial conditions are indeed met:

subs(position,t,0)

ans = 

vel=simplify(diff(position))

vel = 

subs(vel,t,0)

ans = 

If we draw position (thick blue) and speed (dashed red), we get:

Tf=25; %the final time at which we wish to stop plotting
fplot(position,[0 Tf],LineWidth=3), hold on
fplot(vel,[0 Tf],LineStyle='-.'), hold off, grid on,
legend(["Position","Velocity"], location='best')
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ODE in normalised form (dx/dt=Ax)

We pursue a model in the form  (no input, so no need of  for the moment 

being).

We check that we get coincident results.

syms pos(t) vel(t) %position and velocity

We express the mass-spring-damping model as a pair of first-order differential equations:

ODE_SYM= [ diff(pos) == vel;   diff(vel) == -k/M*pos-b/M*vel ]

ODE_SYM(t) = 

We can express the same thing in matrix form (because the equations are linear):

x=[pos; vel]; %state fector
A=[0 1;-k/M -b/M];
ODE_SYM=    diff(x) == A*x %normalised matrix form representation of the ODE

ODE_SYM(t) = 

Matrix form is convenient for subsequent theoretical analysis (not in the scope of this material). 

General solution x=[pos; vel];

We will solve with dsolve command, once the numerical values of the constant parameters have 

been replaced:
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ODE_mass_spring=subs(ODE_SYM, {M,k,b}, {M_num,k_num,b_num})

ODE_mass_spring(t) = 

A_numeric=subs(A, {M,k,b}, {M_num,k_num,b_num}) %this is the matrix A whose eigenvalues, etc. are theoretically important

A_numeric = 

sol=dsolve(ODE_mass_spring)

sol = struct with fields:
    vel: C1*cos((7*t)/5)*exp(-t/5) - C2*sin((7*t)/5)*exp(-t/5)
    pos: C2*((7*cos((7*t)/5)*exp(-t/5))/10 + (sin((7*t)/5)*exp(-t/5))/10) - C1*((cos((7*t)/5)*exp(-t/5))/10 - (7*sin((7*t)/5)*exp(-t/5))/10)

simplify(sol.pos)

ans = 

simplify(sol.vel)

ans = 

It's the general solution. Initial conditions would be

subs(sol,t,0)

ans = struct with fields:
    vel: C1
    pos: (7*C2)/10 - C1/10

Particular solution for given initial conditions

spring_state=dsolve(ODE_mass_spring, pos(0)==3, vel(0)==2);
simplify(spring_state.pos)

ans = 
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simplify(spring_state.vel)

ans = 

Prescribed initial conditions do hold:

subs(spring_state,t,0)

ans = struct with fields:
    vel: 2
    pos: 3

Let us plot the resulting time response (of course, identical to the one at first section):

fplot(spring_state.pos,[0 Tf],LineWidth=3), hold on
fplot(spring_state.vel,[0 Tf],LineStyle='-.'), hold off, grid on, legend(["Position","Velocity"], location='best')
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