Solving Linear Ordinary Differential Equations with Matlab's
symbolic toolbox: spring-mass-damping example (forced response)

© 2022, Antonio Sala Pigueras, Universitat Politecnica de Valéncia. All rights reserved.

This code executed in Matlab R2022a

Video-presentation: http://personales.upv.es/asala/YT/V/masmusymForzEN.html

Objectives: analyzing the solution of linear ODEs provided by Matlab (symbolic toolbox dsolve),

understanding its meaning, and graphically representing it in a spring-damper model, in this case with
a forced response.

Table of Contents

EDO in non-normalized (second derivatiVes) fOrmM........ccuuuiiiiiiiiiiii e e e e e
(CT=T o [T = T STo] [0] (o] o TP UPUPPPPPTTTPPTTRRR
Particular solution for given initial conditions (position and speed) and INPUL.............ccccveiiiieieeiiiiieeneens

EDO in non-normalized (second derivatives) form
Consider the following spring (with some damping, too, by friction with walls and spring losses):

1 1 1 1 |
-6 -4 -2 0 2 4 6

Let us solve the equation of a mass-spring-damper system (linearized, zero equilibrium; linear viscous
friction assumed), starting at initial conditions out of equilibrium, written as:

Py _ o dy
MES=—ky—b G+ F ()

syms y(t) F(t) %$symbolic function of time
syms M k b real %constant parameters
vel=diff(y); % notation for velocity
accel=diff(y,2); % notation for acceleration

ODE SYM = M*accel == -k*y-b*vel+F (t)

http://personales.upv.es/asala/YT/V/masmusymForzEN.html

ODE_SYM(t) =

i 0
M— y@) =-b= y®) + F@) — k y(t)
ot ot

%1if it were a nonlinear ODE, a solution could not, in general, be found in the form of
M num=0.5;k num=2;b num=0.2; %numerical values for constant parameters

%let's replace symbols by actual numbers

ODE mass_ spring=subs (ODE SYM, {M,k,b}, {M num,k num,b num})

ODE mass_spring(t) =

02
Rl % ()
;=3 + F(t) -2 y(t)

General solution

With no fixed initial conditions, there are infinitely many solutions, formally related to two integration
constants and some integrals (convolutions) of force input:

sol=simplify(dsolve (ODE mass_spring))

sol =
_t _t
t ot 10 V11 e o / eP o F(Hdr 10 /11 e ° oy / e ¢, F(2)dt
5 5
Cie "op—Cre o0 33 + 33
where

o] = Sin(3 \/SH t)

_ 34/11¢
0> = COS 3

Particular solution for given initial conditions (position and speed) and input

ODE mass spring=subs (ODE mass spring,F(t),-2.5+6*sin(3*t));
position=simplify (dsolve (ODE mass spring, y(0)==3, vel (0)==0))

position =

t t
- T L 3/t
12677 ¢ (3 ! 102677 /11 ¢ 5sin< -)

> cos)
5 _1500sin(3#) 360 cos(3 1) n _
2644 661 661 87252

SNV

Let's check that the prescribed initial conditions are indeed met:

subs (position, t,0)

ans = 3
vel=simplify (diff (position))

vel =

t

1080shﬁ3t)__450000ﬁ3t)+ > _

5

I3
1 - Vi1
4500 € ° cos <:> 67885 /11 e 53in<:

)

661 661 661 21813

subs (vel, t,0)

ans = ()

test

. 5
Transients take more or less ¢ ~ 0.02, so:

t est=1log(0.02)* (-5)
t est = 19.5601

The system's proper oscillation frequency is:

omega p=3*sqrt (11)/5
omega p = 1.9900

If we draw position (thick blue) and speed (dashed red), we get:

Tf=30; %the final time at which we wish to stop plotting
fplot (position, [0 Tf],LineWidth=3), hold on

fplot (vel, [0 Tf],LineStyle="'-."), hold off, grid on,
xline(t _est, 'g")

legend (["Position","Velocity"], location='best')

Position
— - — - Velocity

10

