Aircraft Longitudinal Dynamics: "Phugoid" mode (simplified equations)

Antonio Sala

Modeling, Identification and Control of Complex Systems

Universitat Politècnica de València

Link to materials, comments, etc. in description and personal website. Video presentation at: http://personales.upv.es/asala/YT/V/fugoid1EN.html

Outline

Motivation:

Gliders "glide" around a certain angle. Fixed-wing drones too. An airplane model is "complicated" (6 DoF, aerodynamics, aeroelasticity, control surfaces)... Sometimes, a "simple" model that "comprehensibly" explains something, even if it's crude approximation, can serve to learn/draw conclusions.

Objectives:

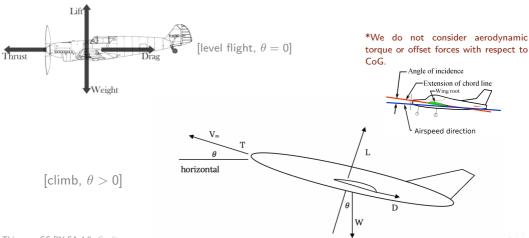
Model, in a "very simplified" way, the glide of an aircraft ("phugoid" mode in the literature).

Contents:

Approximate assumptions. Intrinsic coordinates. Balance of forces. State equations. Conclusions.

◆□▶◆問▶◆団▶◆団▶ ■ 釣Q@

"Longitudinal" forces in an aircraft



This page CC-BY-SA-4.0. Credits:

https://commons.wikimedia.org/wiki/File:Steady_flight.png#/media/File:Steady_flight.png Narkulome CC-BY-SA-4.0 https://eng.libretexts.org/Bookshelves/Aerospace_Engineering/Aerodynamics_and_Aircraft_Performance_%28Marchman%23A Altitude Change-Climb and Guide CC-BY-4.0 James F. Marchman.

Why intrinsic coordinates?

- Lift (L) and drag (D) are by definition "normal" and "tangential" respectively. Propulsion is roughly tangential.
- The pilot "feels" the plane's forward speed, pitch, and changes in the plane's orientation, $\frac{d\theta}{dt}$ (the angular velocity that a gyroscope would measure).
- ullet It therefore seems recommendable to work in "tangent/normal" so that only the weight has trigonometric formulas, and try to make the angle θ itself a state variable.

Problem 1: as the frame of reference is not "inertial", one must be careful. **Problem 2:** "body" frame \neq "path" frame; we'll assume they are the same, smooth maneuver, constant angle of incidence.

Longitudinal phugoid mode assumptions

- Planar (x, y) movement, longitudinal displacement vs. elevation.
- Negligible effect of Moment of Inertia. The aerodynamics aligns it "infinitely fast" at a fixed angle α to the airspeed (the plane behaves like a weathervane).
- Negligible aircraft length with respect to trajectory curvature radius. In other words, a 2GL dynamic is assumed, where the angle depends on the trajectory (x, y), order 4 in positions, order 2 in speeds.
- *Formulae from Zhukovski (1891)-Lanchester (1908). https://en.wikipedia.org/wiki/Nikolay_Zhukovsky_(scientist)

The angle of incidence α is assumed to be constant (it would depend on control surfaces, thrust... but they will NOT do so in the simplified eqs.). The plane is instantly aligned with the "airspeed" vector; it behaves like a "weathervane", at the angle that makes the "resultant torque" zero.

Kinematics in intrinsic coordinates (tangent/normal)

Tangent Vector:

$$ec{v}(t) :=
u(t) \cdot ec{T}(t),$$
 $ec{T}(t) = (\cos heta(t), \sin heta(t)),$

- we define \vec{T} as the direction of speed vector (\vec{T} is a unit vector).
- Linear velocity ν will be the "airspeed" of the plane's center of gravity.

Left normal vector: (counterclocwise rotation from direction of movement)

$$\frac{d\vec{T}}{dt} = (-\sin\theta, \cos\theta) \cdot \frac{d\theta}{dt} := \frac{d\theta}{dt} \vec{N}_L$$
, perp. to \vec{T} .

Dynamics in tangential/normal coordinates

Acceleration in intrinsic coordinates:

$$rac{dec{v}}{dt}=rac{d
u}{dt}ec{T}+
urac{dec{T}}{dt}$$
, Hence, $rac{dec{v}}{dt}=rac{d
u}{dt}ec{T}+
urac{d heta}{dt}ec{N}_L$

We define normal and tangential acceleration:

$$a_T = \frac{d\nu}{dt}, \qquad a_{N_L} = \nu \frac{d\theta}{dt}$$

Incorporating forces (constant mass assumed):

$$m \cdot \frac{d\nu}{dt} = F_T, \qquad m \cdot \nu \cdot \frac{d\theta}{dt} = F_{N_L}$$

*from now on, we forget about \vec{v} , and we'll use v instead of ν for the scalar "airspeed".

Phugoid mode equations of an aircraft

Tangential dynamics:

$$\frac{dv}{dt} = \frac{1}{m}F_{res,T} = \frac{1}{m}(-mg\sin\theta - Drag + Thrust)$$

Normal dynamics:

$$v\frac{d\theta}{dt} = \frac{1}{m}F_{res,T} = \frac{1}{m}(-mg\cos\theta + Lift)$$

*If thrust did not have an exactly tangential resultant (by construction or because guidance is done with *thrust vectoring*, changing γ below), it would be:

$$\frac{dv}{dt} = \frac{1}{m}(-mg\sin\theta - Drag + Thrust \cdot \cos\gamma)$$
$$v\frac{d\theta}{dt} = \frac{1}{m}(-mg\cos\theta + Lift + Thrust \cdot \sin\gamma)$$

Phugoid mode equations (normalized internal repr.)

Replacing $Lift = l \cdot v^2$ and $Drag = d \cdot v^2$ with expressions that, for simplicity, we only make dependent on v^2 (actually, also dependent on the orientation of the aircraft with respect to airspeed velocity vector, ...), we have:

$$\frac{dv}{dt} = -g\sin\theta - \frac{d}{m} \cdot v^2 + \frac{1}{m}u$$

$$\frac{d\theta}{dt} = -g\frac{\cos\theta}{v} + \frac{l}{m} \cdot v$$

$$\frac{dx}{dt} = v \cdot \cos\theta$$

$$\frac{dy}{dt} = v \cdot \sin\theta$$

With this state equation, we can now carry out simulations, e.g. with Matlab ode45.

*If v approaches 0, we would have a singularity.

Conclusions

- Longitudinal flight "if moment of inertia is small" or/and "if the corrective torque against angular deviation is large" can approximate to 2DoF, order 4 model or order 2 model in speeds. The plane as a "point mass".
- In intrinsic coordinates (tangential and normal), we have obtained a model with linear (tangential) and angular velocities as state variables (apart from positions, of course).
- Angular velocity is that of the aircraft's CoG path, under certain assumptions... incorporating "body frame" requires moment of inertia, resultant torque, and the variation of thrust/drag with angle of incidence ("body" orientation- "COD trajectory" orientation). Not discussed here for brevity.