Derivative/Gradient info of a Stochastic Process: stationary case
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Video presentation: http://personales.upv.es/asala/YT/V/gradgpstEN.html

Objective: we may have observations of the gradient of a stochastic process (measurements of, say,
position and speed) so we can improve position measurements, or we might wish to estimate such
gradient from position measurements.
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Preliminaries

Let us consider a stochastic process where f(x) is a random variable, for x € R", and consider that

we have a "mean function” ]_‘(x), plus a cross-covariance (kernel) function k(x,x) : R" X R" > R.

This makes possible for us to write the conditional mean and variance of the process given
observations of fat a given set of points (Kriging, best linear prediction, Kernel regression; these
ideas are developed in other materials in this collection).

Under some "technical" conditions f(x) may be differentiable...

Mean (expected value) of the derivatives
In the sequel e; will denote the canonical vector in the /~th direction, i = 1, ..., n, i.e., the one with all

components equal to zero except its /~th component, being that one equal to 1.

Gradient "mean" is just the gradient of the mean function:

E [g—fi(x)] = E[}li_f)l(l)%(f(x+ hei) — f(0))] = }}_{%%(E[f(x + he)] — E[f(0)]) = aixiE[f(x)]

Variance and covariance of the estimated derivatives


http://personales.upv.es/asala/YT/V/gradgpstEN.html

Let us consider a stochastic process with covariance kernel k(x, x').

9 ()

e Let us consider covariance between the stochastic process f(x) and its partial derivatives p
Xi

at an arbitrary different point x'.

ok(x, x')

cov(f (), 9L (1)) = KL

ak(x x)

i

cov(—f ), f(xX)) =

e Let us now consider covariance between partial derivatives

cov[ L, af( )] Tk ()
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Particularisation to stationary processes: statistical properties of its
(partial) derivatives

e regarding covariance of a stationary process and its first derivatives, if k(x, x') = k(x' — x),
being (&) a given autocovariance function (necessary, it must be an even function, i.e.,

k(x, x") = k(h) = x(=h) = k(x, x)), depending only on the "difference" between points 4 = x" — x.

Then
con(£(0, 5L 00 = con 0, 9L () = :‘) Rad ) ok
cov(S- 9/ - () f(x))—cov(—f(x) f(x+h))—c0v(—f(x _h), fxy) = KX)ok —hx) Ok g

0x,~ ah,- ahi

*Note that there is no problem with signs, because if «(h) = x(—h) then 37’((}1) = —%(—h). Hence,
k k

the second formula can be continued saying that



COV(ST]; (), f(x) = ——(h) Kk (=h) = cov(f (X’),%C(X' —h))

where the first formula has been applied at the last equality, so both formulae are basically the same

for even k(-) and, of course, covariances are symmetric.

In summary

cwuuﬁ%u+mr~"—<m ﬁm

cov(f(x+ h), af( ) = ah (h)

e Regarding covariance between partial derivatives, we have

2 2 (' — 2
cov[ f -(x), 3 ()f (x )] = COV[ A -(x), 3~ 0f ( + h)] )(c),aljcj (x,x) = J I;Egax’jx) - 62,0Khj (h)

In simpler terms:
Prc
" Oh 0Oh j

ov [% (x), % (x+ h)] )
i j

Stationary SISO time series (partial derivatives not needed then)
If x € R and we change it to (usual choice for "time"), partial derivatives get converted to plain

ordinary derivatives, and /7is understood as a time difference. We would then have:

con( £, L 1) = = L1y~ 1) = K 1y - 1)

2,
cov(cé—]; (tﬂ,%(@) Z (t1 — 1)



In frequency domain (stationary)

We'll consider SISO case, for simplicity, otherwise we would have a "vector" of spatial frequencies.
Filtering by an ideal differentiator with transfer function "s" amounts to multiplying the power spectral
density by jo - (— jo) = »*

So, for instance, the autocovariance of the derivative of a real GP will be:

ifourier (w"2*fourier (kappa))

and the covariance with the function that enters the differentiator would be
ifourier (jw*fourier (kappa))

*Of course, some "existence" conditions should hold: the covariance «(h) = ¢ "l has an spectral
factor G(s) = \/5 /(s + 1), i.e., it's generated by white noise filtered by G(s).
G=Q (s) sqgrt(2)/(s+1);
sSyms w
simplify(ifourier (simplify (G (-1j*w)*G(1lj*w))))
ans = e M
its derivative has not finite variance:
simplify(ifourier (simplify (G (-1j*w) *G(1lj*w)*w"2)))

ans = 26(x) —e M

We might have guessed that from the fact that «(4) is not differentiable at zero, so not twice
differentiable... unless, yes, "impulsional” elements are allowed in derivatives.



