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Objective: we may have observations of the gradient of a stochastic process (measurements of, say, 

position and speed) so we can improve position measurements, or we might wish to estimate such 

gradient from position measurements.
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Preliminaries

Let us consider a stochastic process where  is a random variable, for , and consider that 

we have a "mean function" , plus a cross-covariance (kernel) function .

This makes possible for us to write the conditional mean and variance of the process given 

observations of f at a given set of points (Kriging, best linear prediction, Kernel regression; these 

ideas are developed in other materials in this collection).

Under some "technical" conditions  may be differentiable...

Mean (expected value) of the derivatives

In the sequel  will denote the canonical vector in the i-th direction, , i.e., the one with all 

components equal to zero except its i-th component, being that one equal to 1.

Gradient "mean" is just the gradient of the mean function:

Variance and covariance of the estimated derivatives
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Let us consider a stochastic process with covariance kernel .

 Let us consider covariance between the stochastic process  and its partial derivatives  

at an arbitrary different point .

 

 Let us now consider covariance between partial derivatives 

Particularisation to stationary processes: statistical properties of its 
(partial) derivatives

 regarding covariance of a stationary process and its first derivatives, if , 

being  a given autocovariance function (necessary, it must be an even function, i.e., 

), depending only on the "difference" between points .

Then

 

*Note that there is no problem with signs, because if   then . Hence, 

the second formula can be continued saying that 
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where the first formula has been applied at the last equality, so both formulae are basically the same 

for even  and, of course, covariances are symmetric.

In summary

 

 

 Regarding covariance between partial derivatives, we have

In simpler terms:

 

Stationary SISO time series (partial derivatives not needed then)

If  and we change it to t (usual choice for "time"), partial derivatives get converted to plain 

ordinary derivatives, and h is understood as a time difference. We would then have:
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In frequency domain (stationary)

We'll consider SISO case, for simplicity, otherwise we would have a "vector" of spatial frequencies.

Filtering by an ideal differentiator with transfer function "s" amounts to multiplying the power spectral 

density by 

So, for instance, the autocovariance of the derivative of a real GP will be:  
ifourier(w^2*fourier(kappa))

and the covariance with the function that enters the differentiator would be 
ifourier(jw*fourier(kappa))

*Of course, some "existence" conditions should hold: the covariance  has an spectral 

factor , i.e., it's generated by white noise filtered by . 

G=@(s) sqrt(2)/(s+1);
syms w
simplify(ifourier(simplify(G(-1j*w)*G(1j*w))))

ans = 

its derivative has not finite variance:

simplify(ifourier(simplify(G(-1j*w)*G(1j*w)*w^2)))

ans = 

We might have guessed that from the fact that  is not differentiable at zero, so not twice 

differentiable... unless, yes, "impulsional" elements are allowed in derivatives.
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