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Objective: we may have observations of the partial derivatives of a stochastic process (measurements 

of, say, position and speed) so we can improve position measurements, or we might wish to estimate 

such gradient from position measurements. Covariance between a stochastic process and its partial 

derivatives is needed to carry out such tasks.
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Preliminaries

Let us consider a stochastic process where  is a random variable, for , and we have 

a cross-covariance (kernel) function . This makes possible for us to write 

the conditional mean and variance of the process given observations of f at a given set of points 

(Kriging, best linear prediction, Kernel regression; these ideas are developed in other materials in this 

collection).

Under some conditions  may be differentiable... Of course, we need to operate with some sort of 

caution on what that derivative means in a random process (derivative of a function is a limit, derivative 

of a stochastic process must be understood in probabilistic terms, if  converges 

with probability one to something). We will NOT discuss such things here and we'll assume existance 

of these derivatives if the formulae below can be evaluated... you know, we engineers do understand 

what "velocity" of a "randomly moving thing" is, don't we?

In summary, the partial derivative  will be another stochastic process, under certain existence 

conditions, related (not statistically independent) to .

We may have several ways of computing properties of the "derivative".
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1. If the process is described by a SDE , or, well, an stochastic partial 

differential equation, we might use the solutions of them... (for one-dimensional processes we 

may denote  them as  and name them time-series... position, velocity, acceleration come to 

mind)

2. In Laplace/Frequency domain, via, say, manipulations of a power spectral density.

3. Directly from the properties of the covariance function .

We will concentrate on the third approach, as usual in kernel regression, kriging, etc. However, signal 

processing and control applications might prefer the first two ones (Kalman filter, transfer functions, ...).

Problem statement: as  will have n input arguments, we wish to compute the expected value 

of  as well as the covariance between  and , , as well as the covariance 

between  and  for , .

Mean (expected value) of the gradient
In the sequel  will denote the canonical vector in the i-th direction, , i.e., the one with all 

components equal to zero except its i-th component, being that one equal to 1.

Gradient "mean" is just the gradient of the mean function:

Variance and covariance of the estimated gradient
Let us consider a stochastic process with covariance kernel .

In the sequel, we will "abuse the notation", in the sense that, rigorously, , 

i.e., covariances are the mean of the products of "increments with respect to the mean". So, when I 

say , I should say , but, well, if you are familiar with variance computations, 

everything related with the mean ultimately vanishes so carrying out the variance computations 

assuming "zero mean" ends up giving the correct results.
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With the above abuse of notation, we'll understand .

 Let us consider covariance between the stochastic process  and its partial derivatives  

at an arbitrary different point .

We'll use finite increments and take limits afterwards:

So, letting  we get

Likewise, with analogous developments:

 

*Due to symmetry of the covariance , the two above expressions ultimately mean 

exactly the same thing.

 Let us now consider covariance between partial derivatives 

First, let us write covariance between finite increments:

=

=

taking expectations , we get an expression with the covariances
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taking limits when , we have:

Finally, taking limits when  we get the main result:

*The particular case  will give the covariance function of the i-th partial derivative considered as 

an standalone (marginal) stochastic process.
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