Introduction to Projection Matrices

Antonio Sala Piqueras

Dept. Ing. Sistemas y Automatica (DISA)

Universitat Politècnica de València (UPV)

Video-presentación disponible en:

 $personales.upv.es/asala/videos/{\color{red}maprEN}.html$

Outline

Motivation:

Projection in 2D or 3D have a clear geometric interpretation. We can extend such interpretation to arbitrary dimensions, to use in modelling, statistics (least squares fit, subspace ID, ...).

Objectives:

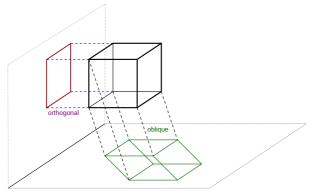
Understand projection matrices and their basic properties.

Contents:

2D and 3D projection. Projection matrix definition. Properties. Examples (particularly, pseudo-inverse). Conclusions.

2D/3D graphical interpretation of projection

Projections: orthogonal and oblique



Picture is derivative work of https://commons.wikimedia.org/wiki/File:Projection_oblique.svg

How to generalise to higher-dimensionality setups?

Preliminaries

A matrix $A_{n\times m}$ transforms a vector $x\in\mathbb{R}^m$ in another one $y=Ax\in\mathbb{R}^n$.

The column space of $A_{n \times m}$ is the subspace generated by the linear combination of its columns $col(A) := \{y : \exists \xi \text{ such that } y = A\xi \}.$

Scalar (inner) product of two vectors $\langle x, y \rangle := x^T y$.

Two (nonzero) vectors are orthogonal iff $x^T y = 0$.

The Euclidean norm of a vector (2-norm) is $||x|| := \sqrt{x^T x}$.

Basic Idea: A projection P over a subspace S leaves unchanged the vectors that are already on S, i.e., $P\xi = \xi \ \forall \xi \in S$, and transforms vectors x not lying in S to vectors $\xi = Px \in S$. Hence, P(Px) = Px.

Note: We will study projections onto vector subspaces $(0 \in S)$ not onto "affine" constructs (lines, hyperplanes,

etc. not containing the origin).

Projections

A matrix $P_{n \times n}$ is said to be a **projection** one if $P^2 = P$. [P(Px) = Px]The complement $P^c := I - P$ is also a projection matrix $(I - P)(I - P) = I - 2P + P^2 = I - P$.

Trivially, every $x \in \mathbb{R}^n$ can be expressed as its projection Px plus its complement P^cx ; indeed $x = Px + P^cx$.

A projection is **orthogonal** if Px and P^cx are orthogonal for all x, i.e., $x^T P^T P^c x = 0$, which entails $P^T P_c = P^T (I - P) = 0$.

A non-orthogonal projection is said to be an **oblique** projection.

Projections: properties

Eigenvalues and eigenvectors: Any projection (be it orthogonal or oblique), if $Pv = \lambda v$ then $P^2v = P\lambda v = \lambda^2 v$. As $Pv = P^2v$, $\lambda v = \lambda^2 v$. With $v \neq 0$, it can only occur with $\lambda = 0$ or $\lambda = 1$.

Symmetry: A projection matrix is orthogonal if and only if it is symmetric:

[Orth
$$\Rightarrow$$
 Sym] $0 = P^T(I - P) = P^T - P^TP = P - P^TP$, con lo que $P^TP = P = P^T$.
[Sym \Rightarrow Orth] $P^T(I - P) = P(I - P) = P - P^2 = P - P = 0$.

If P is an orthogonal projection, $||x||^2 = ||Px||^2 + ||P^cx||^2$. Indeed,

$$(Px + P^{c}x)^{T}(Px + P^{c}x) = x^{T}P^{T}Px + x^{T}\underbrace{(P^{T}P^{c} + (P^{c})^{T}P)}_{0}x + x^{T}(P^{c})^{T}P^{c}x$$

Example 1

Consider:

$$P = \begin{pmatrix} 1.0000 & 0 & 0 \\ 0.4000 & -0.6000 & -1.2000 \\ -0.2000 & 0.8000 & 1.6000 \end{pmatrix}$$

It's a projection:

$$P^2 = \begin{pmatrix} 1.0000 & 0 & 0 \\ 0.4000 & -0.6000 & -1.2000 \\ -0.2000 & 0.8000 & 1.6000 \end{pmatrix} = P$$

But it is not an orthogonal one, i.e., it's oblique; indeed, P is not symmetric and

$$P^{T} \cdot (I_{3 \times 3} - P) = \begin{pmatrix} -0.2000 & 0.8000 & 0.6000 \\ 0.4000 & -1.6000 & -1.2000 \\ 0.8000 & -3.2000 & -2.4000 \end{pmatrix} \neq 0$$

Projection of $x = (1, 2, 3)^T$ is $\xi = Px = (1, -4.4, 6.2)^T$. Projection of ξ is $P\xi = P^2x = \xi$. But the complement $x - \xi$ and ξ are not orthogonal vectors.

Example 2

The **pseudoinverse** matrix of $A_{n\times m}$, $m \le n$, rank(A) = m, is $A_{m \times n}^{\dagger} := (A^{T}A)^{-1}A^{T}$.

Matrix $P_{n\times n}:=A_{n\times m}A_{m\times n}^{\dagger}=A(A^TA)^{-1}A^T$ has rank m, and it is a projection.

Indeed
$$P^2 = A(A^T A)^{-1} A^T A(A^T A)^{-1} A^T = A(A^T A)^{-1} A^T = P$$
.

It is an **orthogonal** projection, because P is a symmetric matrix. It projects (orthogonally) over the column space of A: if $x = A\mu$, $Px = A(A^{T}A)^{-1}A^{T}A\mu = A\mu = x.$

Matlab:

Exercise (proposed): Check that, given $A_{n\times m}$ and $B_{n\times(n-m)}$, such that [A B] is invertible, then matrix

$$P := [A \ B] \cdot \begin{pmatrix} I_{m \times m} & 0 \\ 0 & 0 \end{pmatrix} \cdot [A \ B]^{-1}$$

is a projection. P is denoted as the projection (oblique if $B^TA \neq A$ 0) over column space of A in the direction of columns of B. 4□ > 4個 > 4 = > 4 = > = 9 < 0</p>

Conclusions

- Projection matrices generalise the "intuition" in 2D and 3D to any dimension.
- P is a projection iff $P^2 = P$.
- Orthogonal projection, iff $P^2 = P$ and $P^T(I P) = 0$; it implies symmetry of P.
- Eigenvalues in $\{0,1\}$.
 - The subspace over which we are projecting is the one given by linear combinations of eigenvectors associated to unity eigenvalues, which render unaltered.

