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ν-gap metric: generalisation from real to complex/MIMO case (no proofs)

Introduction

Motivation: Given a controller, ncfmargin(P,K) returns the robustness
margin against normalised coprime factor uncertainty
P = (N +∆n)(D +∆d)

−1. Given two plants, P1(jω) and P2(jω), the
concept might be difficult to understand and compute.

Objectives: Understand how to translate ncf robustness to bounds in the
uncertain plant’s frequency response. Understand how to assert if P2 will
be stabilised by a given controller that achieves a given margin with P1

(sufficient cond.). Understand the geometric interpretation of
Vinnicombe’s ν-gap.

(no proofs, informal)

Vinnicombe, G.; Uncertainty and Feedback, H∞ Loop-shaping and the ν-gap Metric, Imperial College Press (2000)
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Real-valued geometrical interpretation (1)
We will represent p = n/d , d ̸= 0, as (d , n) ∈ R2.

Equivalent fractions (da, na) ≡ (db, nb) iff na/da = nb/db.

Normalized factorisation iff n2 + d2 = 1.
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Any p1 ∈ R, interpreted as p1/1, can be “pro-
jected” (normalized) to the circumference with
center 0 radius 1, denoted as B.

p1/1 verifies (1, p1) ≡ (

d1︷ ︸︸ ︷
1√

1 + p21
,

n1︷ ︸︸ ︷
p1√
1 + p21

)

Given (d1, n1) ∈ B, the smallest (δd , δn) such
that (d1+δd , n1+δn) ≡ (d2, n2) ∈ B is the dif-
ference between (d1, n1) and its orth. projection
onto line (γd2, γn2), γ ∈ R. We will denote:

ν-gap
(
(d1, n1), (d2, n2)

)
:= ∥(δd , δn)∥ = | sin(α)|
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Normalised/unnormalised expressions of ν-gap
Scalar product of two norm-1 vectors is the cosine of the angle between
them. Considering the perpendicular to (d2, n2), i.e., (−n2, d2), then,
assuming normalised (n2

1 + d2
1 = n2

2 + d2
2 = 1), we have:

| sin(α)| = | cos(90o − α)| = |(d1, n1) · (−n2, d2)| = | − n2d1 + d2n1|

If we normalise (1, p1) ≡
(

1√
1+p2

1

, p1√
1+p2

1

)
and

(1, p2) ≡
(

1√
1+p2

2

, p2√
1+p2

2

)
, the result, in direct unnormalised terms is:

| sinα| = |ψ(p1, p2)| =
|p1 − p2|√

1 + p21 ·
√
1 + p22
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Geometric interpretation (2): chordal distance

p1 p20

α

(0,1)

2α 0.5

d

(0,0.5)

• The circumference here (diameter=1) is half the

radius that the one in earlier slides (it had radius=1).

• This geometric construction is named
stereographic projection.
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Geometric intrepretation (2) complex case (SISO)

Unit diameter circumference gets converted to spherical surface
(Riemann Sphere)

Horizontal line gets converted to complex plane, P1(jω), P2(jω).

*There is also a ‘sine’ interpretation, omitted for brevity.
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Generalization to MIMO

We can define:

Ψ(P1(s),P2(s)) =
∥∥∥(I + P∼

1 P1)
1/2(P1 − P2)(I + P∼

2 P2)
1/2

∥∥∥
∞

where P∼(s) = PT (−s)... This is a common construct to extend to transfer function matrices the

“conjugate transpose” concept over the imaginary axis (freq. response): P∼(jω) = PH (jω) = PT (−jω).

From the normalised coprime factor representations P1 = N1D
−1
1 y

P2 = D̃−1
2 Ñ2:

Ψ(P1,P2) = ∥ − D̃2N1 + Ñ2D1∥∞

[7] ©2022 A. Sala AI2-DISA. Universitat Politecnica de Valencia



ν-gap metric: generalisation from real to complex/MIMO case (no proofs)

Main result: ν-gap (Vinnicombe)

• Given two plants P1 y P2, we will define the ν-gap as:

ν-gap =

{
Ψ(P1,P2) if certain technical conditions over unstable poles/zeros of P1, P2 hold∗,

1 otherwise.

• If ncfmargin(P1,K )>ν-gap(P1,P2) then K stabilises P2.

*Indeed, for robust stability via small gain (∆N ,∆D) must be stable (well, it can be relaxed), so not only distance
between frequency responses (determined by Ψ) is requiered, but extra stability requirements or, in the most general
case, some Nyquist-related conditions in the original reference.

*Not too intuitive/important in robust control practice.
*But key for mathematical correctness, of course, see orig. references.
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Conclusions

The minimum distance between two plants understood as
(d1 + δd , n1 + δn) = q · (d2, n2), minimum ∥(δd , δn)∥2 can be
interpreted as a sine of the angle between the lines if ∥(d1, n1)∥ = 1,
and as a chordal distance in stereographic projection.

That “distance” between plants can be computed with the frequency
response, jointly with formal conditions over unstable poles/zeros of
p1(s), p2(s), δn, δd . This can be applied to MIMO H∞ ncfsyn

designs.

It can also be computed from internal representation ss(A,B,C,D)

(see the original Vinnicombe works).

Matlab: [~, ng]=gapmetric(1/(s+1),1/(s+3)). Weights are usually needed to

give a meaningful interpretation in actual applications.
Grosso modo, it shrinks uncertainty at large amplitudes.
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