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Basic description and motivation

Presentations in Video:
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Cascade flow loops:



MULTILOOP (nominal a=5, r=1; q=6, x=1/6):
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RATIO control:
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Decoupling in INVERSE form:



flow
level

in out

Decoupling in DIRECT form: LINEAR

NON-LINEAR:

*We invert everything,
we don't leave 5/36 linearised gain,
contrarily to other decoupling strategies trying to keep the multiloop tuning.
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Objectives and motivation
Consider this mixing process (heating not considered), where nominally we must introduce 1 liter of reagent for 

every 5 liters of water to dilute it:

Multiloop: we must decide if we control level either with water flow or with reagent and, therefore, we control 

concentration with the other flow (VM4 or VM2). Temperature control not considered here.

More sophisticated structures: we could also think of ratio control, decoupling, or similar, to improve the 

performance of the basic "multiloop" strategy. Our objective is to analyze all this and the relationships between  

the various options. In short, the goal is to decide what to put in the "??" block below:
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Non-linear model of static mixing process

syms r w q x real

Variable r represents reagent flow (input); Variable a in drawings represents water input flow to dilute it, here I 

named it "w".

Model=[q==r+w; x==r/(r+w)]

Model = 

The first equation of the model describes the total flow (which will influence flows/levels in tanks downstream); 

the second row is the reagent concentration entering the tanks, resulting from the mixture.

Linearization

J=simplify(jacobian(rhs(Model),[r,w])); %partial derivatives

 If you wish symbolic output for "theory", uncomment this:

%syms r_0 w_0 real %symbolic operating point

 If you wish a numerical example with operating point , , input flows will be 5 liters of water, 1 liter 

of reagent (per unit time):

r_0=1; w_0=5; %Numerical example

Computations yield

G=subs(J,{r,w},{r_0,w_0}) %Linearization at operating point

G = 

Outputs of G are [ increments of total inflow to tanks; increment of inflow concentration]. Inputs to G are 

[increment of reagent inflow; increment of water inflow].

Multiloop Control : RGA pairing rule

rga = simplify(G.*inv(G')) %Relative gain array

rga = 

2



Recommended pairing is

 "incr. flow  water" e "incr. concentration in  reagent" if ; 

 "incr. flow  reagent" e "incr. concentration in  water" if ; 

That is, concentration with the "nominally small inflow" and "total flow" with "nominally large inflow".

MultiloopPairing=[2;1];

Decoupling

Inverted (reverse) Form (linear)

If we assume  at nominal operating point, inverted-form decoupling yields:

D1=-G(1,1)/G(1,2)

D1 = 

D2=simplify(-G(2,2)/G(2,1))

D2 = 

Direct Form (linear)

We insert a matrix so that virtual inputs "increase q" and "increase x" translate to flow rates of reagent and 

water... The direct inversion of the linearised model will be:

Decoupler1=inv(G)

Decoupler1 = 

The inputs to this decoupler would be "desired total flow rate increment" and "desired inflow mix concentration 

increment". The outputs, reagent flow and water flow.

G*Decoupler1

ans = 
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If we simply seek to insert a matrix such that the apparent matrix is the "chosen" pairing of G (to improve a 

pre-existing RGA-based controller performance, without redesigning it), we would have:

Decoupler2=simplify(inv(G)*[0 G(1,2);G(2,1) 0])

Decoupler2 = 

Inputs to Decoupler2 would be  "multiloop concentration control action " y "multiloop level control action "; 

outputs would be "reagent flow" and "water flow".

G*Decoupler2

ans = 

The forward direct decoupling equivalent to the block diagram of decoupling in inverted form is:

Decoupler3=inv([1 -D2;-D1 1]) %coincides with Decoupler2

Decoupler3 = 

4
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Non-linear model of static mixing process

syms r w q x real

Variable r represents reagent flow (input); Variable a in drawings represents water input flow to dilute it, here I 

named it "w".

Model=[q==r+w; x==r/(r+w)]

Model = 

The first equation of the model describes the total flow (which will influence flows/levels in tanks downstream); 

the second row is the reagent concentration entering the tanks, resulting from the mixture.

Linearization

J=simplify(jacobian(rhs(Model),[w,r])); %partial derivatives

 If you wish symbolic output for "theory", uncomment this:

%syms r_0 w_0 real %symbolic operating point

 If you wish a numerical example with operating point , , input flows will be 5 liters of water, 1 liter 

of reagent (per unit time):

r_0=1; w_0=5; %Numerical example

Computations yield

G=subs(J,{r,w},{r_0,w_0}) %Linearization at operating point

G = 

Outputs of G are [ increments of total inflow to tanks; increment of inflow concentration]. Inputs to G are 

[increment of WATER inflow; increment of REAGENT inflow].

Multiloop Control : RGA pairing rule

rga = simplify(G.*inv(G')) %Relative gain array

rga = 

2



Recommended pairing is

 "incr. flow  water" e "incr. concentration in  reagent" if ; 

 "incr. flow  reagent" e "incr. concentration in  water" if ; 

That is, concentration with the "nominally small inflow" and "total flow" with "nominally large inflow".

Decoupling

Inverted (reverse) Form (linear)

If we assume  at nominal operating point, inverted-form decoupling yields:

D1=-G(1,2)/G(1,1)

D1 = 

D2=simplify(-G(2,1)/G(2,2))

D2 = 

Direct Form (linear)

We insert a matrix so that virtual inputs "increase q" and "increase x" translate to flow rates of reagent and 

water... The direct inversion of the linearised model will be:

Decoupler1=inv(G)

Decoupler1 = 

The inputs to this decoupler would be "desired total flow rate increment" and "desired inflow mix concentration 

increment". The outputs, WATER flow and REAGENT flow.

G*Decoupler1

ans = 

3



If we simply seek to insert a matrix such that the apparent matrix is the "chosen" pairing of G (to improve a 

pre-existing RGA-based controller performance, without redesigning it), we would have:

Decoupler2=simplify(inv(G)*diag(diag(G)))

Decoupler2 = 

Inputs to Decoupler2 would be  "multiloop level control action " y "multiloop concentration control action  "; 

outputs would be "water flow" and "reagent flow". ROWS need to be swapped to be in accordance to the video's 

block diagram.

G*Decoupler2

ans = 

The forward direct decoupling equivalent to the block diagram of decoupling in inverted form is:

Decoupler3=inv([1 -D1;-D2 1]) %coincides with Decoupler2

Decoupler3 = 

4


