ERRORES, OPTIMIZACIÓN Y RESOLUCIÓN NUMÉRICA DE SISTEMAS

Valentín Gregori Gregori Bernardino Roig Sala

Enero 2015

Presentación

La Universidad Española ha emprendido una etapa inédita con el denominado Plan Bolonia. En el nuevo plan el tiempo del que dispone el profesorado para la impartición de la docencia matemática se ha reducido drásticamente. De esta manera la clásica clase magistral del siglo anterior se vuelve, en ocasiones, menos expositiva y más orientada hacia la búsqueda de conocimientos en los que el universitario deberá involucrarse de una manera más activa.

Este texto encuentra un hueco entre los textos matemáticos de investigación numérica en los que se estudia la teoría con detalle y se realizan algunas aplicaciones, y aquellos otros más centrados en la ingeniería que sin apenas justificación alguna se dedican a enfatizar las aplicaciones.

El presente libro es un texto sobre la resolución numérica de problemas esenciales para los alumnos de ingeniería que se graduarán en estos nuevos planes. Básicamente el contenido corresponde a un curso que los autores han impartido en la Escuela Politécnica Superior de Gandia en anteriores años académicos. El poco tiempo de que se dispone para su impartición queda patente, en cierta manera, en la ausencia de demostraciones que sólo aparecen esporádicamente en letra pequeña si éstas permiten entender mejor el capítulo. Ello, sin embargo, permite una lectura más fluida del texto.

Este libro sirve de base para primeros cursos de grado enfatizando la parte algorítmica y computacional y para cursos superiores en donde ya es posible incidir con detalle en todo el contenido del libro.

Para la comprensión del texto sólo se requieren nociones del análisis matemático y matricial, así como una base de algorítmica y programación. Todos los requisitos teóricos utilizados se han explicitado previamente de forma breve. Los algoritmos o comandos presentados se han escrito de la forma que se ha creído más sencilla y compacta en la versión actual de Matlab. Obviamente dichos algoritmos se pueden escribir de forma más general y abarcando más casuísticas, ahora bien, ello desvía el enfoque de este libro que incide más en la comprensión de los métodos y conceptos tratados. En http://personales.upv.es/~broig/ se puede encontrar un fichero con todos los comandos Matlab incluidos en el texto. Se han recuadrado las ecuaciones más esenciales desde la perspectiva numérica sobre todo para facilitar su uso a estudiantes de primeros cursos.

Los autores agradecerán cualquier sugerencia tendente a mejorar el presente texto en ediciones sucesivas.

Los autores.

NOTACIÓN:

En este texto se ha evitado un lenguaje excesivamente simbólico. No obstante, el lector debe conocer la siguiente terminología básica que se usa en matemáticas y ciencias tecnológicas:

- ∀ Cuantificador universal. Se lee "para todo" o "para cada"
- ∃ Cuantificador existencial. Se lee "existe"
- $\ \Longleftrightarrow\$ Equivalencia proposicional. Se le
e "si y sólo si"
- sii Abreviatura de "si y sólo si"
- \Rightarrow Implicación proposicional. La proposición de la izquierda implica la de la derecha. Se lee "implica"
- Se lee "tal (tales) que"
- : Se lee "tal (tales) que"
- i.e. En latín *id est* y se lee "es decir"
- \in Símbolo de pertenencia
- \subset Símbolo de inclusión
- ∪ Símbolo de unión
- \cap Símbolo de intersección
- N Conjunto de los números naturales (incluye al cero)
- \mathbb{N}^* El conjunto \mathbb{N} sin el cero
- \mathbb{Z} El anillo de los números enteros
- Q El cuerpo de los números racionales
- \mathbb{R} El cuerpo de los números reales
- \mathbb{C} El cuerpo de los números complejos

Sumario 5

Sumario

L	REI	PRESI	ENTACIÓN NUMÉRICA Y TEORÍA DE ERRORES	9
	1.1	1 INTRODUCCIÓN		
	1.2	REPR	ESENTACIÓN DE NÚMEROS AL ORDENADOR	10
		1.2.1	El sistema decimal y el binario	11
		1.2.2	Números naturales	12
		1.2.3	Números enteros	13
		1.2.4	Números reales	14
		1.2.5	Ejemplo con 4 decimales en binario	17
		1.2.6	El formato en punto flotante IEEE-754 $\ \ldots \ \ldots \ \ldots \ \ldots$	18
		1.2.7	El formato punto flotante de precisión doble	19
	1.3	CÁLC	CULO APROXIMADO DE FUNCIONES	22
		1.3.1	Teorema de Rolle	22
		1.3.2	Teorema del valor medio (de Lagrange) $\ \ldots \ \ldots \ \ldots \ \ldots$	22
		1.3.3	Teorema de Taylor (fórmula de Taylor) $\dots \dots \dots \dots$	22
		1.3.4	Teorema de Taylor en funciones de varias variables	28
		1.3.5	Aproximaciones de primer y segundo orden de una función de una variable	31
		1.3.6	Aproximaciones de primer y segundo orden de una función de varias	
			variables	32
		1.3.7	Aproximación de primer orden de un campo vectorial	37
	1.4	ERRC	DRES	38
		1.4.1	Definiciones de errores	39
		1.4.2	Observación sobre el error máximo de truncamiento o redondeo	40
		1.4.3	Definiciones de precisión	41
		1.4.4	Cifras exactas de un decimal	41
		1.4.5	Cotas del error	42
	1.5	PROF	AGACIÓN DE ERRORES	
		1.5.1	Definiciones	43
		1.5.2	Propagación del error en operaciones aritméticas	
		159	Droblemes nor conceleciones	45

6 Sumario

		1.5.4	La diferencial de una función			48
		1.5.5	Propagación del error en funciones			49
		1.5.6	Propagación del error en funciones de varias variables			53
		1.5.7	Propagación del error en campos vectoriales			57
	1.6	ALGU	NAS INDICACIONES PARA LA COMPUTACIÓN			61
	1.7	EJER	CICIOS			61
	1.8	MAPA	CONCEPTUAL			65
2	RES	SOLUC	CIÓN DE ECUACIONES			67
	2.1	ELEM	ENTOS DE ANÁLISIS			68
		2.1.1	Teorema de Bolzano			68
		2.1.2	Minimización de funciones			68
		2.1.3	Convergencia de una sucesión			69
		2.1.4	Orden de convergencia			70
		2.1.5	Teorema de completitud de $\mathbb R$			71
	2.2	RESO	LUCIÓN DE ECUACIONES NO LINEALES			72
		2.2.1	Criterios de finalización			73
		2.2.2	Método de bisección			74
		2.2.3	Método de regula-falsi			77
	2.3	NUEV	OS ELEMENTOS DEL ANÁLISIS			81
		2.3.1	Funciones contractivas			81
		2.3.2	Teorema. Condición suficiente de contractividad			82
		2.3.3	Teorema del punto fijo			83
		2.3.4	Cotas del error en el método iterativo del punto fijo			83
		2.3.5	Teorema sobre el orden del método iterativo			85
	2.4	MÉTO	DOOS ITERATIVOS DE RESOLUCIÓN DE ECUACIONES .			85
		2.4.1	Método iterativo del punto fijo			85
		2.4.2	Método de Newton			88
		2.4.3	Método de la secante			92
		2.4.4	Estudio del caso de raíces múltiples en el método de Newton			96
		2.4.5	Aceleración de la convergencia			
		2.4.6	Notas			100
		2.4.7	Extensión a \mathbb{C}			103
		2.4.8	El comando fzero de Matlab			103
	2.5	EJER	CICIOS			104
	2.6		CONCEPTUAL			
3	RES	SOLUC	CIÓN DE SISTEMAS DE ECUACIONES LINEALES			113
	3.1	ELEM	ENTOS DE ÁLGEBRA			114
		3.1.1	Producto escalar			114
		919	Normas vastariales			117

Sumario 7

		3.1.3	Ángulo entre dos vectores
		3.1.4	Aproximaciones del error en un algoritmo iterativo
		3.1.5	Norma matricial, número de condición y cotas del error
		3.1.6	Estudio del error en sistemas de ecuaciones lineales
		3.1.7	Ejemplo de propagación del error en sistemas
		3.1.8	Precondicionado en sistemas lineales
		3.1.9	Observación sobre los números complejos
	3.2	MÉTO	DDOS DIRECTOS DE RESOLUCIÓN DE SISTEMAS LINEALES 131
		3.2.1	Resolución de sistemas simples
		3.2.2	Método de Gauss y descomposición LU
		3.2.3	Método de Gauss y descomposición LU con pivotaje
	3.3	MÉTO	DDOS ITERATIVOS DE RESOLUCIÓN DE SISTEMAS LINEALES . 140
		3.3.1	Convergencia de métodos iterativos matriciales
		3.3.2	Criterios de finalización
		3.3.3	Método Jacobi
		3.3.4	Método Gauss-Seidel
		3.3.5	Métodos de sobrerrelajación
		3.3.6	Observaciones
	3.4	EJER	CICIOS
	3.5	MAPA	A CONCEPTUAL
4	OP'	TIMIZ	ACIÓN Y RESOLUCIÓN DE SISTEMAS DE ECUACIONES
		LINE	
	4.1	ELEM	IENTOS DEL ÁLGEBRA Y DEL ANÁLISIS
		4.1.1	Direcciones conjugadas. Ortogonalidad
		4.1.2	Curvas de nivel y dirección de máximo descenso
		4.1.3	Clasificación de puntos críticos en un campo escalar
			Clasificación de puntos críticos en un campo escarar 109
		4.1.4	Campo vectorial contractivo y teorema del punto fijo
	4.2		
	4.2		Campo vectorial contractivo y teorema del punto fijo
	4.2	RESO	Campo vectorial contractivo y teorema del punto fijo
	4.2	RESO 4.2.1 4.2.2	Campo vectorial contractivo y teorema del punto fijo
		RESO 4.2.1 4.2.2 RESO	Campo vectorial contractivo y teorema del punto fijo
		RESO 4.2.1 4.2.2 RESO	Campo vectorial contractivo y teorema del punto fijo
		RESO 4.2.1 4.2.2 RESO 4.3.1	Campo vectorial contractivo y teorema del punto fijo
		RESO 4.2.1 4.2.2 RESO 4.3.1 4.3.2	Campo vectorial contractivo y teorema del punto fijo
		RESO 4.2.1 4.2.2 RESO 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Campo vectorial contractivo y teorema del punto fijo
		RESO 4.2.1 4.2.2 RESO 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 MÉTO	Campo vectorial contractivo y teorema del punto fijo
	4.3	RESO 4.2.1 4.2.2 RESO 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Campo vectorial contractivo y teorema del punto fijo
	4.3	RESO 4.2.1 4.2.2 RESO 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 MÉTO	Campo vectorial contractivo y teorema del punto fijo

8			Sumario
O			Sumano

	4.4.4	Método de minimización de Newton
	4.4.5	Métodos de minimización cuasi-Newton
	4.4.6	La función fminunc
	4.4.7	Resolución de sistemas mediante métodos de minimización $\ \ldots \ \ldots \ 205$
4.5	EJER	CICIOS
4.6	MAPA	CONCEPTUAL
BIB	LIOG	RAFÍA

ángulo entre vectores, 118	cúbica, 70
1 1/ 1 1	cuadrática, 70, 90
aceleración de la convergencia, 98	de primer orden, 70
ajuste	de segundo orden, 70
polinómico, 172	de tercer orden, 70
ancho de banda, 114	lineal, 70, 71
aproximación	superlineal, 70
cuadrática, 31–33	coste
de primer orden, 31	computacional, 134
de segundo orden, 31	operativo, 103
del error absoluto, 71, 119	cota
del error relativo, 71, 119	del error, 11, 73, 74, 143
del orden de convergencia, 72	absoluto, 42
lineal, 31–33, 37	absoluto en el método iterativo, 84
backtracking, 187	relativo, 42
base canónica, 115	del número de iteraciones, 84, 143,
bien condicionado, 43, 50, 123, 134	171
	del residuo de Taylor, 23, 29, 30
campo vectorial, 37, 57	criterio
contractivo, 170	de Sylvester, 115
cancelación numérica, 45	para finalizar un algoritmo, 73, 143,
catenaria, 107	174, 185
Cholesky, 138	cuádrica tangente, 33
cifras	curva de nivel, 169
exactas, 41	,
significativas, 41	dígitos significativos, 41
coma flotante, 15	decimales
complejos, 103, 130, 173	correctos, 41
comportamiento	exactos, 41
del error, 101	definida
lineal, 101	negativa, 115
potencial, 101	positiva, 115
composición de funciones, 82	derivada
condición de convergencia, 141	direccional, 168
suficiente, 141, 144, 146	logarítmica, 49
suficiente y necesaria, 141	descomposición LU, 133
constante	diagonal principal, 114
de convergencia, 70	diferencia
de error asintótico, 70	finita, 161
convergencia	progresiva, 99
215	progressiva, oo

diferencia finita, 179	máximo, 68, 120, 170
diferencial, 48	ascenso, 168
logarítmica, 49	descenso, 169
dirección conjugada, 118, 166	método
direction conjugada, 110, 100	\triangle^2 de Aitken, 99
eficiencia, 103	convergente, 69
eliminación gaussiana, 132	cuasi-Newton, 181
epsilon, 20	de bisección, 74, 76
error	de Broyden, 182
absoluto, 11, 39, 59	de Cholesky, 138
de una iteración, 70	de descenso, 185
en una iteración, 142	de eliminación de Gauss, 132
cuadrático, 171	de Gauss
de discretización, 39	con pivotaje completo, 137
de incertidumbre, 38	
de modelización, 38	con pivotaje parcial, 135
de redondeo, 38, 39	sin pivotaje, 136
de representación, 38, 43	de Gauss-Seidel, 145, 146
de truncamiento, 38, 39	de interpolación cuadrática inversa,
experimental, 38	103
máximo	de Jacobi, 144, 145
de redondeo, 40	de la cuerda de Whitakker, 91
de truncamiento, 40	de la posición falsa, 77
relativo, 11, 39, 59	de la secante, 92, 94
de una iteración, 70	de las diferencias finitas, 161
residual, 124	de minimización, 185
vectorial, 141	de Newton, 88, 91, 177
esquema iterativo, 140	de Newton modificado, 178
estable, 43	de optimización, 185
,	de regula-falsi, 77, 79
fórmula de Sherman-Morrison, 182	de regula-falsi modificado, 78, 81
factorización de Cholesky, 138	de relajación, 148
fminunc, 204	de Schröder, 96, 97
función	de sobrerelajación, 147–149
cóncava, 68	de sobrerrelajación sucesiva, 147
compleja, 103	de Steffensen, 94, 95, 99
componente, 37, 57	de subrelajación, 147
contractiva, 82	del máximo descenso, 186
convexa, 68	directo, 131
objetivo, 185	iterativo, 72, 140
	del punto fijo, 83, 85, 87
gradiente, 168	multivariable, 175
	por intervalos, 73
incremento	puntual, 73
de x , 32, 33	SOR, 147, 148
de x, 161	mínima pendiente, 169
inestable, 43	mínimo, 68, 169, 185
N N 14 04 00	mal condicionado, 43, 50, 123, 134
linealización, 31, 33	matriz
LU, 133	ampliada, 133
	banda, 114
máxima pendiente, 168	de Hilbert, 155

de iteración, 140	polinomio de Taylor, 23, 29
de permutación, 134	precisión, 15
de Vandermonde, 155	cuádruple, 18
diagonal, 114, 131	doble, 18
diagonal dominante, 116	simple, 18
dispersa, 114	precondicionado, 128
escasa, 114	producto escalar, 114, 116
hermítica, 130	habitual, 116
hessiana, 32, 33, 169	propagación del error
jacobiana, 37	absoluto en funciones, 50, 54, 56
regular, 132	absoluto en sistemas lineales, 124
triangular inferior, 114, 131	en operaciones aritméticas, 44
triangular superior, 114, 131	relativo en funciones, 50, 56
tridiagonal, 114	relativo en sistemas lineales, 124
multiplicadores, 132	proyección ortogonal, 166
multiplicidad de una raíz, 96	punto
maniphorada de ana rais, eo	crítico, 68, 169
número de condición, 50, 55, 122	de inflexión, 68
parcial, 54	fijo, 14, 82, 170
NaN, 20	flotante, 15
nodo, 161	silla, 170
norma, 117	Silia, 170
p, 117	radio espectral, 121, 122
* /	1 / /
del máximo, 117	rango de representación, 9, 14
euclídea, 117	recta tangente, 31
infinito, 55, 117	reescalado, 128
matricial, 119, 122	residuo, 205
asociada, 120	de Taylor, 23, 29, 30
de Frobenius, 119	resolución
dos, 120	aproximada, 187
euclídea, 120	exacta, 187
infinito, 59, 120	inexacta, 187
uno, 120	resto de Lagrange, 23
uno, 117	
numéricamente	semidefinida
estable, 42	negativa, 115
inestable, 42	positiva, 115
	serie
orden	de Mc Laurin, 23
de aproximación, 23, 30	de Taylor, 23
de convergencia, 70	sistema
de convergencia de un método, 70	bien condicionado, 123
del residuo de Taylor, 23, 30	binario, 11
overflow, 20	decimal, 11
	mal condicionado, 123
parábola tangente, 31	rígido, 113
pivotaje, 135	subespacio ortogonal, 166
completo, 136	subespacio propio, 166
parcial, 135	sucesión
pivote, 132	convergente, 69, 119
plano tangente, 32	de Cauchy, 71
I O/ -	···· - ··· · · · · · · · · · · · · · ·

```
supremo,\,120
sustitución
     hacia adelante, 132
     hacia atrás, 131
     progresiva, 132
     regresiva, 131
teorema
     condición suficiente de contractividad,
          82
     de Bolzano, 68
     de Rolle, 22
     de Taylor, 22, 28
     del punto fijo, 83
     del valor medio, 22
     orden de un método iterativo, 85
tipos de representación
     de números enteros, 14
     de números reales, 16\,
     formato IEEE-754, 18
     precisión doble, 19
tolerancia, 73, 74, 143
underflow, 20
valor óptimo, 147
     de w, 148, 149
vector
     diferencia, 32, 33, 166
     direccional, 168
     director, 168
     error absoluto, 54, 58, 125
     error relativo, 55, 58, 125
     gradiente, 32, 33, 168
     número de condición, 55
     ortogonal, 118, 166
     perpendicular, 118
     unitario, 168
     valor absoluto del gradiente, 54
```