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Universidad Politécnica de Valencia
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Resumen

The purpose of this note is to show s physical application of Vector Calculus.

1. introduce

Dejando aparte cuestiones médicas como el riego sangúıneo o la sudoración, vamos a ver
en esta nota la respuesta a la pregunta del t́ıtulo bajo unas hipótesis f́ısicas relativamente
razonables.

El origen de la pregunta del t́ıtulo surgió debido a la necesidad de hacer más ameno
el análisis vectorial para alumnos de ingenieŕıa. En mi opinión es buena idea explicar los
conceptos matemáticos ligados a las ciencias f́ısicas (¡siempre que se pueda y que la dificultad
inherente a la f́ısica sea pequeña!). Aśı se produce una interacción entre las matemáticas y la
f́ısica que ayuda a los estudiantes a comprender conceptos matemáticos complejos. A lo largo
de esta nota iremos viendo cómo aparecen ideas tan diversas como el gradiente, la regla de
la cadena, curvas en el espacio, el teorema de la divergencia, derivación bajo el signo de la
integral, e incluso la desigualdad isoperimétrica.

El orden de exposición de esta nota coincide con el de resolución de la pregunta del
t́ıtulo. Como ya se mencionó, la idea original fue mostrar a alumnos de ingenieŕıa algunas
aplicaciones sencillas del cálculo vectorial a la f́ısica. Una de estas aplicaciones es la ecuación
del calor. Las referencias de consulta usadas fueron [2, 3, 4]. Se muestra un breve resumen
para uniformar la notación y los conceptos usados.

2. preliminares

Supóngase un sólido cuyos puntos no están a la misma temperatura. Sea T (x, y, z, t),
diferenciable tantas veces como sea preciso, la temperatura del punto (x, y, z) en el tiempo t.
Las partes más fŕıas se calientan y viceversa, y es posible imaginar que hay un “flujo de calor”
de la parte más caliente a la más fŕıa. Es natural asumir que la magnitud de este “flúıdo” es
proporcional a la razón de cáıda de la temperatura. Definimos el flujo de calor J mediante

J = −k∇T = −k

(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
, (1)

donde k es una constante que se supondrá estrictamente positiva.
La constante de proporcionalidad k depende del material y mide su conductividad

térmica. Para una valor fijo de ∇T , cuando κ aumenta, el módulo de J también aumen-
ta; luego κ verdaderamente mide la conductividad térmica del material.
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La explicación que se suele dar del signo negativo que aparece en (1) es la siguiente: El
calor fluye desde las regiones cálidas hacia las más fŕıas. El vector ∇T apunta de las regiones
más fŕıas a las más calientes, es por tanto lógico que J y ∇T tengan signos opuestos. Sin
embargo, no contento con esta explicación de tipo intuitivo el autor se propus pensar en una
explicación “más matemática”. Y fue la que viene a continuación:

Sea una curva orientada en la dirección del flujo. Es decir α : [a, b] → IR3 que cumple
α′(t) = f(t)J(α(t)) para cierta función f positiva. Se puede probar, usando (1), que la función
T (α(t)) es decreciente; esto es, el calor fluye de la parte más caliente a la más fŕıa. Esto es
sencillo si se usa la regla de la cadena, obteniendo (T ◦ α)′(t) = −kf(t)‖∇T (α(t))‖2 < 0.

Argumentos que involucran a la ley de conservación de la enerǵıa junto la integral
∫∫

S JdS,
donde S es una superficie cerrada, permiten probar la ecuación del calor (véase [2, 3, 4]):

∂T

∂t
= κ

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
= κ∇2T, (2)

donde κ = k/(cρ), la constante c es el calor espećıfico y ρ es la densidad.

3. idea central

El teorema de la divergencia es ampliamente usado en las aplicaciones del análisis vectorial.
¿Es posible usar este teorema junto con (2) para deducir alguna consecuencia interesante?

Supóngase que Ω es un sólido tridimensional con frontera S y sea N el vector normal
unitario exterior a S. Ya que la deducción de (2) se vale de la integral

∫∫
S JdS, ahora se

partirá de la misma integral junto con (1) y (2):
∫∫

S
JdS =

∫∫∫

Ω
div Jdv = (1) = −k

∫∫∫

Ω
∇2T dv = (2) = −cρ

∫∫∫

Ω

∂T

∂t
dv.

Un paso que en muchas ocasiones se efectúa sin justificar es intercambiar la derivada y la
integral. De hecho, en muchos libros de texto en donde se aplica el análisis vectorial a la
teoŕıa de campos electromagnéticos ni siquiera se menciona este paso y se considera obvio.
En realidad, este paso no es ni mucho menos obvio y es un resultado no trivial de integración.
Suponiendo que este paso sea leǵıtimo, entonces

∫∫

S
JdS = −cρ

d
dt

∫∫∫

Ω
T dv.

¿Hay alguna manera más concisa de escribir esta expresión? Si se usa el promedio de una
función, la igualdad anterior se escribe como

∫∫

S
J dS = −cρ

d
dt

(Volumen(Ω)T ) = −cρVolumen(Ω)
dT

dt
, (3)

donde T indica el promedio de T sobre Ω.
No se puede simplificar más el término derecho. Respecto al izquierdo, es cierto que tam-

poco se puede simplificar más. Sin embargo se puede simplificar bajo hipótesis razonables.
A partir de ahora se supondrá que J es perpendicular a la superficie S y que el módulo

de J es constante, sea J (lo que significa que el calor “se escapa” de manera “constante”, ya
que ‖J‖ es constante, y de modo máximo, pues si J no fuera perpendicular a la superficie,
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entonces 〈J,N〉 < J). Entonces se cumple que 〈J,N〉 = J , por lo que
∫∫

S JdS = JÁrea(S).
Luego, por (3)

dT

dt
= − J

cρ

Área(S)
Volumen(Ω)

. (4)

Esta relación nos dice que los cuerpos que más pierden calor son aquellos en los que el cociente
Área(S)/Volumen(Ω) es lo más grande posible.

¿Qué objetos tienen este cociente más grande? Esta cuestión está ı́ntimamente relacionada
con el problema isoperimétrico en tres dimensiones.

El problema isoperimétrico ha sido conocido desde la antigüedad. Puede ser enunciado de
la siguiente manera: Entre todas las curvas planas con el mismo peŕımetro, demuéstrese que
la circunferencia es la que encierra mayor área. Este problema se puede resolver por medio de
la desigualdad isoperimétrica: Denotemos el peŕımetro y área de una curva plana por L y
A, respectivamente, entonces L2 ≥ 4πA. La igualdad sólo se mantiene para la circunferencia.

La desigualdad isoperimétrica puede ser generalizada para espacios de dimensión más
grande. Por ejemplo, si V es el volumen encerrado por una superficie cerrada con área A,
entonces A3 ≥ 36πV 2. La igualdad sólo se cumple para la esfera. En [1] se explica de una
manera amena el problema isoperimétrico.

Luego un objeto cuanto “más esférico” sea, el cociente Área/Volumen es menor. Y por
tanto dT/dt (en módulo) es menor. Es decir, que un objeto cuanto más redondeado sea,
pierde menos calor. Lo que responde a la pregunta planteada en el t́ıtulo de esta nota. Otra
forma de comprender este resultado es observando que en un objeto, cuanto mayor sea la
superficie en relación a su volumen, el calor “tiene más sitio por donde escaparse”.

Llegado a este punto, el autor se sintió satisfecho de que con unas matemáticas relativa-
mente sencillas se pueda demostrar algo bastante evidente desde el punto f́ısico (¡sobre todo
en invierno!) y poder relacionar dos mundos, el f́ısico y el matemático, algunas veces bastante
desconectados. Sin embargo, tras repasar los cálculos se observó que hab́ıa un error. ¿Cuál?
y ¿cómo se descubrió? De la ecuación (4) se deduce claramente que dT/ dt < 0, lo que indica
que el cuerpo se enfŕıa. Y esto no siempre es cierto. ¡Los objetos se pueden calentar!

La explicación consiste en que bajo las hipótesis previas se tiene en realidad que 〈J,N〉 =
±J , dependiendo del sentido de J. Si se elige el signo positivo, entonces J tiene el mismo
sentido que N, es decir, J es exterior a S y por tanto el calor va desde dentro hacia fuera,
y por tanto es lógico que el cuerpo pierda calor. Si se elige el signo negativo, entonces J es
interior a S, el calor va desde fuera adentro y el cuerpo gana calor.

Referencias

[1] S. Hildebrandt y A. Tromba. (1990), Matemática y formas ṕtimas. Prensa Cientfica,
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