Characterization of consistent completion of reciprocal comparison matrices

J. Benítez, L. Carrión, J. Izquierdo, R. Pérez-García

Instituto de Matemática Multidisciplinar — FluIng

Mathematical Modelling in Engineering & Human Behaviour 2013

Decision making is becoming increasingly complex due to the large number of alternatives and multiple conflicting goals.

The Analytic Hierarchy Process (AHP) has been accepted as a leading multiattribute decision-aiding model.

Decisions arise in every type of application including

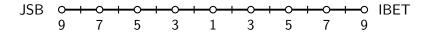
- Engineering
- Economy
- Medical management
- Emergency situations
- ...

Example: (Pairwise comparisons)

I want to submit a manuscript to one of the following two journals:

- Journal of Superb Mathematics
- International Bulletin of Excellent Theorems

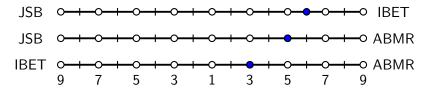
What can I do?



- 1 Equal importance.
- 3 Moderate importance of one over another.
- 5 Strong importance.
- 7 Very strong importance.
- 9 Extreme importance.

Example: (Reciprocal matrices)

- Journal of Superb Mathematics
- International Bulletin of Excellent Theorems
- Annals of the Best Mathematical Results



Definition

A matrix $\mathbf{A} = (a_{ij})_{i,j=1}^n \in \mathbb{R}_{n,n}$ is reciprocal when $a_{ij} > 0$ and $a_{ij} = 1/a_{ji}$ for all $i, j \in \{1, \dots, n\}$.

Example: (Consistent matrices)

- I prefer JSB 6 times over IBET.
- I prefer IBET 3 times over ABMR.
- I prefer JSB 5 times over ABMR.

This is not "rational". I had to prefer JSB 6×3 times over ABMR!

$$6 \times 3 \neq 5$$

Definition

A matrix $\mathbf{A} = (a_{ij})_{i,j=1}^n \in \mathbb{R}_{n,n}$ is consistent when $a_{ij} > 0$ and $a_{ij}a_{jk} = a_{ik}$ for all $i, j, k \in \{1, ..., n\}$.

Theorem

Let $\mathbf{A} \in \mathbb{R}_{n,n}$ be positive.

- If A is consistent, then A is reciprocal.
- If **A** is reciprocal and n = 2, then **A** is consistent.

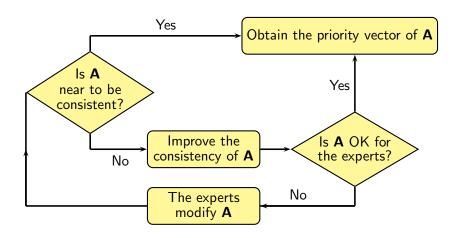
T. Saaty (1970) proposed a measure of the inconstency of a reciprocal matrix **A** based on Perron theory.

Theorem (O. Perron 1907)

Let $\mathbf{A} \in \mathbb{R}_{n,n}$ be positive. Let $\rho(\mathbf{A}) := \max\{|\lambda| : \lambda \text{ is an eigenvalue of } \mathbf{A}\}$. The following statements hold:

- $\rho(\mathbf{A})$ is an eigenvalue of \mathbf{A} , and there is a positive vector \mathbf{x} such that $\mathbf{A}\mathbf{x} = \rho(\mathbf{A})\mathbf{A}$.
- If λ is an eigenvalue of **A**, then $|\lambda| < \rho(\mathbf{A})$.
- The eigenspace corresponding to $\rho(\mathbf{A})$ has dimension 1.

If **A** is a matrix "near" to be consistent, the eigenvector corresponding to $\rho(\mathbf{A})$ is called the priority vector.



Example: (two levels)

I want to submit a paper to JSB, IBET, or ABMR, but considering several criteria: Quickness of publication, Quality of typesetting, Quality of refereeing, Prestige of the journal.

Example: (two levels)

I want to submit a paper to JSB, IBET, or ABMR, but considering several criteria: Quickness of publication, Quality of typesetting, Quality of refereeing, Prestige of the journal.

First step: Determine the relative importance of the criteria:

$$\begin{array}{c} \text{Quickness of publication} \\ \text{Quality of typesetting} \\ \text{Quality of refereeing} \\ \text{Prestige of the journal} \end{array} \left[\begin{array}{cccc} 1 & 7 & 2 & 1/3 \\ 1/7 & 1 & 1/5 & 1/9 \\ 1/2 & 5 & 1 & 1/2 \\ 3 & 9 & 2 & 1 \end{array} \right] = \textbf{A}$$

If A is near to be consistent, obtain the priority vector

$$\mathbf{w} = (w_1, w_2, w_3, w_4), \qquad w_1 + w_2 + w_3 + w_4 = 1.$$

Example: (two levels)

I want to submit a paper to JSB, IBET, or ABMR, but considering several criteria: Quickness of publication, Quality of typesetting, Quality of refereeing, Prestige of the journal

Second step: For each criteria, order the alternatives:

Criteria (weight)	JSB	IBET	ABMR	
Quickness of publication (w_1)	v ₁₁	<i>v</i> ₁₂	<i>v</i> ₁₃	$ o$ v $_1 \in \mathbb{R}^3$
Quality of Typesetting (w_2)	<i>v</i> ₂₁	<i>V</i> 22	<i>V</i> 23	$ ightarrow$ $\mathbf{v}_2 \in \mathbb{R}^3$
Quality of refereeing (w_3)	<i>v</i> ₃₁	<i>V</i> ₃₂	<i>V</i> 33	$ ightarrow$ v $_3\in\mathbb{R}^3$
Prestige of the journal (w_4)	V ₄₁	V ₄₂	V ₄₃	$\rightarrow \textbf{v}_4 \in \mathbb{R}^3$

Priority vector: $w_1\mathbf{v}_1 + w_2\mathbf{v}_2 + w_3\mathbf{v}_3 + w_4\mathbf{v}_4$

Statement of the problem

Sometimes, the appearing comparison matrices can be incomplete.

- Some experts may not be completely familiar with one or more of the elements.
- It is possible that there exist conflicts of interests.
- Some experts may not want to express their opinion.
- Some data may be lost.
- ..

Statement of the problem

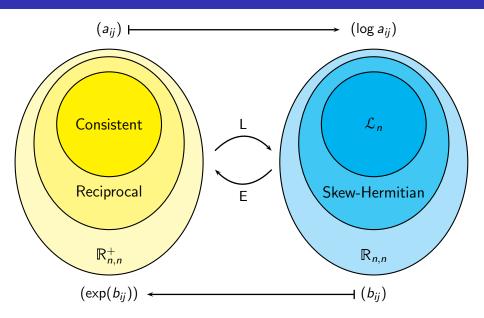
Sometimes, the appearing reciprocal matrices can be incomplete.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix}$$

Problem

When **A** can be completed to be consistent? In case that **A** can be completed, find all consistent completations.

Preliminaries – Linearization



Notations – Statement of the theorem

Example:

$$\begin{bmatrix}
1 & 2 & 3 & * \\
1/2 & 1 & 3 & 4 \\
1/3 & 1/3 & 1 & * \\
* & 1/4 & * & 1
\end{bmatrix}
\iff
\begin{bmatrix}
0 & \log 2 & \log 3 & * \\
-\log 2 & 0 & \log 3 & \log 4 \\
-\log 3 & -\log 3 & 0 & * \\
* & -\log 4 & * & 0
\end{bmatrix}$$

Any skew-Hermitiam completation of $L(\mathbf{A})$ is of the form

$$\mathbf{C}(\lambda, \mu) = \begin{bmatrix} 0 & \log 2 & \log 3 & \lambda \\ -\log 2 & 0 & \log 3 & \log 4 \\ -\log 3 & -\log 3 & 0 & \mu \\ -\lambda & -\log 4 & -\mu & 0 \end{bmatrix}$$

Notations – Statement of the theorem

Example:
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix}$$

Notations – Statement of the theorem

Notations

$$N_n = \{(i,j) : 1 \le i < j \le n\}, \qquad \mathbf{B}_{ij} = \mathbf{e}_i \mathbf{e}_j^T - \mathbf{e}_j \mathbf{e}_i^T, \ (i,j) \in N_n$$

Example: The skew-Hermitian completation considered can be written

$$\mathbf{C}(\lambda,\mu) = \mathbf{C}_0 + \lambda \mathbf{B}_{14} + \mu \mathbf{B}_{34},$$

where

$$\mathbf{C}_0 = \sum_{(i,j)\in N_4\setminus\{(1,4),(3,4)\}} \rho_{ij}\mathbf{B}_{ij},$$

and $\rho_{ii} \in \mathbb{R}$ easily determined from the incomplete matrix **A**.

- ullet C₀ is the incomplete skew-Hermitian matrix to be completed.
- (1,4),(3,4) are the void positions that must be filled.

Consistent completation of a reciprocal matrix

The unspecified entries of **A** will be located at the indices belonging to I.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix}$$

Theorem

Let $1 \leq i_1, j_1, \ldots, i_k, j_k \leq n$ be indices such that $i_r < j_r$ for $r = 1, \ldots, k$. Denote $I = \{(i_1, j_1), \dots, (i_k, j_k)\}$ and $J = N_n \setminus I$. Let $\mathbf{C}_0 = \sum_{(i,j) \in J} \rho_{ij} \mathbf{B}_{ij}$. The following statements are equivalent

- (i) There exist $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ such that $\mathbf{C}_0 + \sum_{r=1}^k \lambda_r \mathbf{B}_{i,i_r} \in \mathcal{L}_n$.
- (ii) There exists $\mathbf{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n$ such that $\rho_{pq} = w_p w_q$ for any $(p,q) \in J$.

Furthermore, in the case that the statements hold, then

$$\lambda_r = w_{i_r} - w_{i_r}, \quad \forall \ r \in \{1, \ldots, k\}.$$

Consistent completation of a reciprocal matrix

Theorem

Let $1 \leq i_1, j_1, \ldots, i_k, j_k \leq n$ be indices such that $i_r < j_r$ for $r = 1, \ldots, k$. Denote $I = \{(i_1, j_1), \ldots, (i_k, j_k)\}$ and $J = N_n \setminus I$. Let $\mathbf{C}_0 = \sum_{(i,j) \in J} \rho_{ij} \mathbf{B}_{ij}$. The following statements are equivalent

- (i) There exist $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ such that $\mathbf{C}_0 + \sum_{r=1}^k \lambda_r \mathbf{B}_{i_r j_r} \in \mathcal{L}_n$.
- (ii) There exists $\mathbf{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n$ such that $\rho_{pq} = w_p w_q$ for any $(p, q) \in J$.

Furthermore, in the case that the statements hold, then

$$\lambda_r = w_{i_r} - w_{j_r}, \qquad \forall \ r \in \{1, \dots, k\}.$$

We have reduced the completation problem to study the linear system occurring in item (ii).

- The coefficients of this system are 0, -1, 1.
- A row has only two non-zero entries (sparsity).

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix}$$

$$\log 2 = w_1 - w_2
\log 3 = w_1 - w_3
\log 3 = w_2 - w_3
\log 4 = w_2 - w_4$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix}$$

$$\log 2 = w_1 - w_2 \log 3 = w_1 - w_3 \log 3 = w_2 - w_3 \log 4 = w_2 - w_4$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix}$$

$$\log 2 = w_1 - w_2
\log 3 = w_1 - w_3
\log 3 = w_2 - w_3
\log 4 = w_2 - w_4$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix}$$

$$\log 2 = w_1 - w_2
\log 3 = w_1 - w_3
\log 3 = w_2 - w_3
\log 4 = w_2 - w_4$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix}$$

If **A** had a consistent completation, then there would exist $\mathbf{w} = (w_1, w_2, w_3, w_4)^T \in \mathbb{R}^4$ such that

$$\log 2 = w_1 - w_2 \log 3 = w_1 - w_3 \log 3 = w_2 - w_3 \log 4 = w_2 - w_4$$

This linear system has no solution

$$\mathbf{A} = \begin{bmatrix} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix}$$

By taking logarithms, we construct

$$\label{eq:c0} \boldsymbol{C}_0 = \left[\begin{array}{ccc} 0 & 0 & -\log 3 \\ 0 & 0 & \log 2 - \log 3 \\ \log 3 & \log 3 - \log 2 & 0 \end{array} \right].$$

$$\mathbf{A} = \begin{bmatrix} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix}$$

By taking logarithms, we construct

$$\label{eq:c0} \boldsymbol{C}_0 = \left[\begin{array}{ccc} 0 & 0 & -\log 3 \\ 0 & 0 & \log 2 - \log 3 \\ \log 3 & \log 3 - \log 2 & 0 \end{array} \right].$$

$$-\log 3 = w_1 - w_3 \qquad \log 2 - \log 3 = w_2 - w_3$$

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{array} \right]$$

By taking logarithms, we construct

$$\label{eq:c0} \boldsymbol{C}_0 = \left[\begin{array}{ccc} 0 & 0 & -\log 3 \\ 0 & 0 & \log 2 - \log 3 \\ \log 3 & \log 3 - \log 2 & 0 \end{array} \right].$$

$$-\log 3 = w_1 - w_3 \qquad \log 2 - \log 3 = w_2 - w_3$$

$$\mathbf{A} = \begin{bmatrix} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix}$$

By taking logarithms, we construct

$$\label{eq:c0} \boldsymbol{C}_0 = \left[\begin{array}{ccc} 0 & 0 & -\log 3 \\ 0 & 0 & \log 2 - \log 3 \\ \log 3 & \log 3 - \log 2 & 0 \end{array} \right].$$

If there were a consistent completation, then there would exist $\mathbf{w} = (w_1, w_2, w_3)^T \in \mathbb{R}^3$ such that

$$-\log 3 = w_1 - w_3 \qquad \log 2 - \log 3 = w_2 - w_3$$

This linear system is solvable. Thus, exists a consistent completation of A.

Another example (continuation)

$$\textbf{A} = \left[\begin{array}{ccc} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{array} \right] \quad \textbf{C}_0 = \left[\begin{array}{ccc} 0 & 0 & -\log 3 \\ 0 & 0 & \log 2 - \log 3 \\ \log 3 & \log 3 - \log 2 & 0 \end{array} \right]$$

The solution of the prior system is

$$w_1 = -\log 3 + \alpha$$
, $w_2 = \log 2 - \log 3 + \alpha$, $w_3 = \alpha$, $\alpha \in \mathbb{R}$.

If X is any consistent completation of A, then

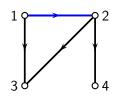
$$L(\mathbf{X}) = \mathbf{C}_0 + (w_1 - w_2)\mathbf{B}_{12} = \mathbf{C}_0 - \log 2 \cdot \mathbf{B}_{12}.$$

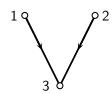
There is a unique consistent completation of **A**:

$$\mathbf{X} = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 2 & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} \log 2 \\ \log 3 \\ \log 3 \\ \log 4 \end{bmatrix}$$

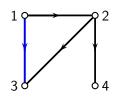
$$\begin{bmatrix} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} -\log 3 \\ \log 2 - \log 3 \end{bmatrix}$$

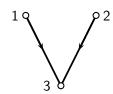




$$\begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} \log 2 \\ \log 3 \\ \log 3 \\ \log 4 \end{bmatrix}$$

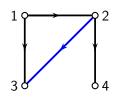
$$\begin{bmatrix} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} -\log 3 \\ \log 2 - \log 3 \end{bmatrix}$$

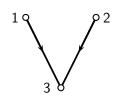




$$\begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} \log 2 \\ \log 3 \\ \log 3 \\ \log 4 \end{bmatrix}$$

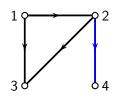
$$\begin{bmatrix} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} -\log 3 \\ \log 2 - \log 3 \end{bmatrix}$$

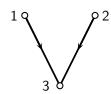




$$\begin{bmatrix} 1 & 2 & 3 & \star \\ 1/2 & 1 & 3 & 4 \\ 1/3 & 1/3 & 1 & \star \\ \star & 1/4 & \star & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} \log 2 \\ \log 3 \\ \log 3 \\ \log 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} -\log 3 \\ \log 2 - \log 3 \end{bmatrix}$$

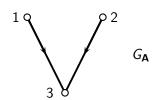




Notations

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & \star & 1/3 \\ \star & 1 & 2/3 \\ 3 & 3/2 & 1 \end{array} \right]$$

$$\underbrace{\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}}_{:=M_{\mathbf{A}}^T} \underbrace{\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}}_{:=\mathbf{w}} = \underbrace{\begin{bmatrix} -\log 3 \\ \log 2 - \log 3 \end{bmatrix}}_{:=\mathbf{b}_{\mathbf{A}}}$$



Some consequences

Theorem

Some consequences

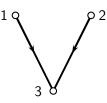
Theorem

If **A** is an incomplete reciprocal matrix, then **A** can be completed to be a consistent matrix if and only if the system $M_{\mathbf{A}}^{\mathsf{T}}\mathbf{w} = \mathbf{b}_{\mathbf{A}}$ is consistent.

Theorem

Let $\mathbf{A} \in \mathbb{R}_{n,n}$ be a reciprocal incomplete matrix and 2k be the number of void entries (located up and down the main diagonal of \mathbf{A}). If $G_{\mathbf{A}}$ has p connected components and $2k \geq n^2 - 3n + 2p$, then \mathbf{A} can be completed to be consistent.

$$\mathbf{A} = \begin{bmatrix} 1 & * & 1/3 \\ * & 1 & 2/3 \\ 3 & 3/2 & 1 \end{bmatrix}$$



n = 3 k = 1 p = 1

Example (disconnected graph)

$$\mathbf{A} = \begin{bmatrix} 1 & \star & \star \\ \star & 1 & a \\ \star & 1/a & 1 \end{bmatrix} \qquad \begin{array}{c} \mathbf{0} & \mathbf{0} \longrightarrow \mathbf{0} \\ 1 & 2 & 3 \end{array}$$

$$M_{\mathbf{A}} = \left[egin{array}{c} 0 \ 1 \ -1 \end{array}
ight]$$

Example (disconnected graph)

$$\mathbf{A} = \begin{bmatrix} 1 & \star & \star \\ \star & 1 & a \\ \star & 1/a & 1 \end{bmatrix} \qquad \begin{array}{c} \mathbf{0} & \mathbf{0} \longrightarrow \mathbf{0} \\ 1 & 2 & 3 \end{array} \qquad M_{\mathbf{A}} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

Any consistent completation of **A** is of the following form

$$\mathbf{X} = \left[egin{array}{ccc} 1 & b & ab \ 1/b & 1 & a \ 1/(ab) & 1/a & 1 \end{array}
ight].$$

The completation of **A** is not unique.

A result on the uniqueness

Theorem

Let $\mathbf{A} \in \mathbb{R}_{n,n}$ be a reciprocal incomplete matrix. If $G_{\mathbf{A}}$ is connected and exists a consistent completation of \mathbf{A} , then this completation is unique.

Let us recall

Theorem

Let us recall

Theorem

$$M_{\mathbf{A}}^T \mathbf{w} = \mathbf{b}_{\mathbf{A}}$$
 is consistent $\iff \mathbf{b}_{\mathbf{A}} \in \mathcal{R}(M_{\mathbf{A}}^T)$

Let us recall

Theorem

$$M_{\mathbf{A}}^T\mathbf{w} = \mathbf{b}_{\mathbf{A}}$$
 is consistent $\iff \mathbf{b}_{\mathbf{A}} \in \mathcal{R}(M_{\mathbf{A}}^T) = \mathcal{N}(M_{\mathbf{A}})^{\perp}$

Let us recall

Theorem

$$M_{\mathbf{A}}^T \mathbf{w} = \mathbf{b}_{\mathbf{A}}$$
 is consistent \iff $\mathbf{b}_{\mathbf{A}}^T \mathbf{x} = 0$ for any $\mathbf{x} \in \mathcal{N}(M_{\mathbf{A}})$

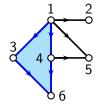
Let us recall

Theorem

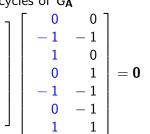
If **A** is an incomplete reciprocal matrix, then **A** can be completed to be a consistent matrix if and only if the system $M_{\mathbf{A}}^{\mathsf{T}}\mathbf{w} = \mathbf{b}_{\mathbf{A}}$ is consistent.

$$M_{\mathbf{A}}^T \mathbf{w} = \mathbf{b}_{\mathbf{A}}$$
 is consistent $\iff \mathbf{b}_{\mathbf{A}}^T \mathbf{x} = 0$ for any $\mathbf{x} \in \mathcal{N}(M_{\mathbf{A}})$

The null space of $M_{\mathbf{A}}$ corresponds to the cycles of $G_{\mathbf{A}}$



				•		
Γ 1	1	1	1	0	0	0
-1	0	0	0	0	0	0
0	-1	0	0	1	0	0
0	0	-1	0	0	1	1
0	0	0	-1	0	-1	0
L 0	0	0	0	-1	0	-1



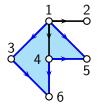
Let us recall

Theorem

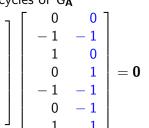
If **A** is an incomplete reciprocal matrix, then **A** can be completed to be a consistent matrix if and only if the system $M_{\mathbf{A}}^{\mathsf{T}}\mathbf{w} = \mathbf{b}_{\mathbf{A}}$ is consistent.

$$M_{\mathbf{A}}^T \mathbf{w} = \mathbf{b}_{\mathbf{A}}$$
 is consistent \iff $\mathbf{b}_{\mathbf{A}}^T \mathbf{x} = 0$ for any $\mathbf{x} \in \mathcal{N}(M_{\mathbf{A}})$

The null space of $M_{\mathbf{A}}$ corresponds to the cycles of $G_{\mathbf{A}}$



				-		
$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$	1	1	1	0	0	0
-1	0	0	0	0	0	0
0	-1	0	0	1	0	0
0	0	-1	0	0	1	1
0	0	0	-1	0	-1	0
0	0	0	0	-1	0	-1



Theorem

If **A** is an incomplete reciprocal matrix, then **A** can be completed to be a consistent matrix if and only if $\mathbf{b}_{\mathbf{A}}^T\mathbf{x} = 0$ for any $\mathbf{x} \in \mathcal{N}(M_{\mathbf{A}})$.

Sometimes we can find this null space very easily...

Theorem

If A is an incomplete reciprocal matrix, then A can be completed to be a consistent matrix if and only if $\mathbf{b}_{\mathbf{A}}^{\mathsf{T}}\mathbf{x} = 0$ for any $\mathbf{x} \in \mathcal{N}(M_{\mathbf{A}})$.

Sometimes we can find this null space very easily...

Theorem

Let G be a planar graph and M its incidence matrix. If x_1, \ldots, x_f correspond to the faces, then $\{x_1, \dots, x_f\}$ is a basis of $\mathcal{N}(M)$.



$$[0\ 0\ -1\ 1\ 0\ -1\ 0]^T$$

$$[0 \ 0 \ -1 \ 1 \ 0 \ -1 \ 0]^T$$
$$[0 \ -1 \ 1 \ 0 \ -1 \ 0 \ 1]^T$$

Theorem

- If **A** is an incomplete reciprocal matrix, then **A** can be completed to be a consistent matrix if and only if $\mathbf{b}_{\mathbf{A}}^{T}\mathbf{x} = 0$ for any $\mathbf{x} \in \mathcal{N}(M_{\mathbf{A}})$.
- Let G be a planar graph and M its incidence matrix. If $x_1, ..., x_f$ correspond to the faces, then $\{x_1, ..., x_f\}$ is a basis of $\mathcal{N}(M)$.

Corollary

Let **A** be an incomplete reciprocal matrix. If $G_{\mathbf{A}}$ is planar and has no faces, then there exists a consistent completation of **A**.

Many thanks for your kind attention.

These slides are avalaible at

http://personales.upv.es/jbenitez/investigacion.html