The spectrum of matrices depending on two idempotents

Xiaoji Liu* Julio Benítez[†]

Abstract

Let P and Q be two complex matrices satisfying $P^2 = P$ and $Q^2 = Q$. If a, b are nonzero complex numbers such that aP + bQ is diagonalizable, we relation the spectrum of aP + bQ with the spectrum of P - Q, PQ, PQP and PQ - QP.

Keywords: idempotent matrix; spectrum **AMS Classification:** 15A18, 15A21

Let $\mathbb{C}^{m\times n}$ denote the set of complex $m\times n$ matrices. A matrix P is said to be idempotent when $P^2=P$. Furthermore, a matrix P is said to be an orthogonal projector when $P^2=P=P^*$. The symbol I_n will stand for the identity matrix of order n. For $A\in\mathbb{C}^{m\times n}$, the symbols $\mathrm{rk}(A)$ and $\sigma(A)$ will denote the rank of A and the spectrum of A.

Recently, many properties concerning two orthogonal projectors have been deduced (see, e.g., [6, 8]). If we remove the hermitancy property (i.e., if we study expressions depending on two idempotents), the study becomes harder. However, some results can be found in the literature (see [9, 13, 14] and references therein). In this paper, we shall study the spectrum of several matrices depending on two idempotents. A related result was deduced in [6, Theorem 2.8].

When the idempotent matrices $P, Q \in \mathbb{C}^{n \times n}$ commute, the study of the spectrum of aP + bQ for $a, b \in \mathbb{C} \setminus \{0\}$ is easy, and we can make it by using the following two well-known results:

- a) Every idempotent matrix A is diagonalizable and $\sigma(A) \subset \{0,1\}$ [16, Theorem 4.1].
- b) Two diagonalizable matrices commute if and only if they are simultaneously diagonalizable [10, Theorem 1.3.19].

Theorem 1. Let $P,Q \in \mathbb{C}^{n \times n}$ be two idempotent matrices such that PQ = QP and let $a,b \in \mathbb{C} \setminus \{0\}$. Then $\sigma(aP + bQ) \subset \{0,a,b,a+b\}$.

Proof. Let x = rk(PQ), y = rk(P), and z = rk(Q). There exist a nonsingular $S \in \mathbb{C}^{n \times n}$ such that $P = S(I_x \oplus I_{y-x} \oplus 0 \oplus 0)S^{-1}$ and $Q = S(I_x \oplus 0 \oplus I_{z-x} \oplus 0)S^{-1}$. It is clear that

$$aP + bQ = S((a+b)I_x \oplus aI_{y-x} \oplus bI_{z-x} \oplus 0)S^{-1}.$$

This concludes the proof.

In the rest of the paper, we will relation $\sigma(aP+bQ)$ with $\sigma(P-Q)$, $\sigma(PQ)$, $\sigma(PQP)$, and $\sigma(PQ-QP)$ under the assumption that aP+bQ is diagonalizable. Let us recall that the subset of $\mathbb{C}^{n\times n}$ composed of diagonalizable matrices is dense in $\mathbb{C}^{n\times n}$ and the Lebesgue measure of the subset composed of non diagonalizable matrices is 0. We need the following rather technical lemma to study the aforementioned spectrums.

Lemma 1. Let $P, Q \in \mathbb{C}^{n \times n}$ be two idempotent matrices such that $PQ \neq QP$ and let $a, b \in \mathbb{C} \setminus \{0\}$ such that aP + bQ is diagonalizable.

^{*}College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, China (xiaojiliu72@yahoo.com.cn).

[†]Departamento de Matemática Aplicada, Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain (jbenitez@mat.upv.es). Supported by Spanish Project MTM2010-18539.

(i) There exist a nonsingular $S \in \mathbb{C}^{n \times n}$ and idempotents $P_0, \ldots, P_k, Q_0, \ldots Q_k$ such that $P_i, Q_i \in \mathbb{C}^{m_i \times m_i}$ for $i = 0, \ldots, k$,

$$P = S((\bigoplus_{i=1}^{k} P_i) \oplus P_0) S^{-1}, \qquad Q = S((\bigoplus_{i=1}^{k} Q_i) \oplus Q_0) S^{-1}, \tag{1}$$

 $P_0Q_0 = Q_0P_0$, and $P_iQ_i \neq Q_iP_i$ for i = 1, ..., k.

(ii) There exist pairwise distinct complex numbers $\mu_1, \nu_1, \dots, \mu_k, \nu_k$ such that

$$a + b = \mu_i + \nu_i, \quad \sigma(aP_i + bQ_i) = \{\mu_i, \nu_i\}, \quad ab(P_i - Q_i)^2 = \mu_i \nu_i I_{m_i}$$
 (2)

for $i = 1, \ldots, k$.

(iii) For i = 1, ..., k, there exist nonsingular matrices S_i such that

$$P_i = S_i \begin{bmatrix} I_{x_i} & 0 \\ 0 & 0 \end{bmatrix} S_i^{-1}, \qquad Q_i = S_i \begin{bmatrix} A_i & B_i \\ C_i & D_i \end{bmatrix} S_i^{-1}, \tag{3}$$

where $x_i = \operatorname{rk}(P_i)$, $A_i \in \mathbb{C}^{x_i \times x_i}$, $D_i \in \mathbb{C}^{(m_i - x_i) \times (m_i - x_i)}$, and

$$A_i = \left(1 - \frac{\mu_i \nu_i}{ab}\right) I_{x_i},\tag{4}$$

$$B_i C_i = \frac{\mu_i \nu_i}{ab} \left(1 - \frac{\mu_i \nu_i}{ab} \right) I_{x_i},\tag{5}$$

$$C_i B_i = \frac{\mu_i \nu_i}{ab} \left(1 - \frac{\mu_i \nu_i}{ab} \right) I_{m_i - x_i},\tag{6}$$

and

$$D_i = \frac{\mu_i \nu_i}{ab} I_{m_i - x_i}.\tag{7}$$

Proof. Let us denote

$$X = aP + bQ. (8)$$

Since XP - PX = b(QP - PQ) and $PQ \neq QP$ we obtain $PX \neq XP$. Expression (8) can be equivalently written as

$$Q = \alpha P + \beta X, \qquad \alpha = -\frac{a}{b}, \quad \beta = \frac{1}{b}. \tag{9}$$

Idempotency of Q leads to $(\alpha P + \beta X)^2 = \alpha P + \beta X$, which, in view of $P^2 = P$, simplifies to

$$(\alpha^2 - \alpha)P + \beta^2 X^2 + \alpha \beta (PX + XP) = \beta X. \tag{10}$$

Since X is diagonalizable, there exists a nonsingular $S \in \mathbb{C}^{n \times n}$ such that

$$X = S(\lambda_1 I_{p_1} \oplus \dots \oplus \lambda_m I_{p_m}) S^{-1}$$
(11)

with $\lambda_i \neq \lambda_j$ whenever $i \neq j$ and $p_1 + \cdots + p_m = n$. Let us represent P as

$$P = S \begin{bmatrix} P_{11} & \cdots & P_{1m} \\ \vdots & \ddots & \vdots \\ P_{m1} & \cdots & P_{mm} \end{bmatrix} S^{-1}, \tag{12}$$

with $P_{ii} \in \mathbb{C}^{p_i \times p_i}$ for $i = 1, \dots, m$. We get

$$XP = S \begin{bmatrix} \lambda_1 P_{11} & \cdots & \lambda_1 P_{1m} \\ \vdots & \ddots & \vdots \\ \lambda_m P_{m1} & \cdots & \lambda_m P_{mm} \end{bmatrix} S^{-1}, \quad PX = S \begin{bmatrix} \lambda_1 P_{11} & \cdots & \lambda_m P_{1m} \\ \vdots & \ddots & \vdots \\ \lambda_1 P_{m1} & \cdots & \lambda_m P_{mm} \end{bmatrix} S^{-1}. \quad (13)$$

Relation (10) and representations (11), (12), and (13) imply that

$$\left[\alpha - 1 + \beta(\lambda_r + \lambda_s)\right] P_{rs} = 0 \tag{14}$$

holds for every $r, s \in \{1, ..., m\}$ such that $r \neq s$.

In view of (13) and $XP \neq PX$, we deduce that there exist $i, j \in \{1, ..., m\}$ such that $i \neq j$ and $\lambda_i P_{ij} \neq \lambda_j P_{ij}$, and thus $P_{ij} \neq 0$. We have from (14) the relationship $\alpha + \beta(\lambda_i + \lambda_j) = 1$ for $i \neq j$. Using the second and the third relations of (9) we have

$$a + b = \lambda_i + \lambda_j. \tag{15}$$

with $i \neq j$.

We rearrange the subindexes in such a way that i=1 and j=2. Assume that there exists $r\in\{3,\ldots,m\}$ such that $a+b=\lambda_1+\lambda_r$. Combining this last equality with (15) leads to $\lambda_1+\lambda_2=\lambda_1+\lambda_r$, which yields $\lambda_2=\lambda_r$, a contradiction. Thus $\lambda_1+\lambda_r\neq a+b$ for any $r\in\{3,\ldots,m\}$. Using (14), the second and the third relations of (9) leads to $P_{1r}=0$ for all $r\in\{3,\ldots,m\}$. And a symmetric reasoning permits to obtain $P_{2r}=0$, $P_{r1}=0$, and $P_{r2}=0$ for all $r\in\{3,\ldots,m\}$. Whence P can be written as

$$P = S\left(P_1 \oplus \widetilde{P}\right) S^{-1}, \qquad P_1 = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}, \quad P_{11} \in \mathbb{C}^{p_1 \times p_1}, \ P_{22} \in \mathbb{C}^{p_2 \times p_2}$$
 (16)

for some square matrix \widetilde{P} of suitable size. Furthermore, P_1 and \widetilde{P} are idempotent because P is idempotent. From now on, we shall denote $\mu_1 = \lambda_1$, $\nu_1 = \lambda_2$, $r_1 = p_1$, and $s_1 = p_2$.

From (11), (16), and $Q = \alpha P + \beta X$, we obtain

$$X = S\left(\left(\mu_1 I_{r_1} \oplus \nu_1 I_{s_1}\right) \oplus \Lambda_2\right) S^{-1}, \qquad Q = S\left(Q_1 \oplus \widetilde{Q}\right) S^{-1},$$

where Λ_2 is diagonal and $Q_1 \in \mathbb{C}^{(r_1+s_1)\times(r_1+s_1)}$. Observe that $aP_1 + bQ_1 = \mu_1 I_{r_1} \oplus \nu_1 I_{s_1}$.

If $\widetilde{P}\widetilde{Q} = \widetilde{Q}\widetilde{P}$, then it is enough to take $P_0 = \widetilde{P}$ and $Q_0 = \widetilde{Q}$ to prove (i) and the two first equalities of (2). Assume $\widetilde{P}\widetilde{Q} \neq \widetilde{Q}\widetilde{P}$. Let us observe that we have partitioned the matrices P, Q, and X as follows

$$X = S \left[\begin{array}{cc} \mu_1 I_{r_1} \oplus \nu_1 I_{s_1} & 0 \\ 0 & \Lambda_2 \end{array} \right] S^{-1}, \quad P = S \left[\begin{array}{cc} P_1 & 0 \\ 0 & \widetilde{P} \end{array} \right] S^{-1}, \quad Q = S \left[\begin{array}{cc} Q_1 & 0 \\ 0 & \widetilde{Q} \end{array} \right] S^{-1}.$$

From (8) we obtain $\Lambda_2 = a\widetilde{P} + b\widetilde{Q}$. Since $\Lambda_2\widetilde{P} - \widetilde{P}\Lambda_2 = b(\widetilde{Q}\widetilde{P} - \widetilde{P}\widetilde{Q}) \neq 0$ (recall that \widetilde{P} and \widetilde{Q} are idempotents) and by having in mind that Λ_2 is a diagonal matrix, (in fact, Λ_2 is obtained by removing in the expression (11) the two first summands, getting $\Lambda_2 = \lambda_3 I_{p_3} \oplus \cdots \oplus \lambda_{p_m} I_{p_m}$) by doing the same procedure as before, we can write

$$\Lambda_2 = \mu_2 I_{r_2} \oplus \nu_2 I_{s_2} \oplus \Lambda_3, \qquad \widetilde{P} = P_2 \oplus \widetilde{\widetilde{P}}, \qquad P_2 = \begin{bmatrix} \widetilde{P}_{11} & \widetilde{P}_{12} \\ \widetilde{P}_{21} & \widetilde{P}_{22} \end{bmatrix}, \tag{17}$$

where $\widetilde{P}_{11} \in \mathbb{C}^{r_2 \times r_2}$, $\widetilde{P}_{22} \in \mathbb{C}^{s_2 \times s_2}$. Since $\widetilde{Q} = \frac{1}{b}(\Lambda_2 - a\widetilde{P})$ from (17), we can partition $\widetilde{Q} = Q_2 \oplus \widetilde{Q}$, where the size of Q_2 is the same as the sizes of $\mu_2 I_{r_2} \oplus \nu_2 I_{s_2}$ and P_2 . In addition, we obtain $a+b=\mu_2+\nu_2$, the cardinal of the set $\{\mu_1,\nu_2,\mu_2,\nu_2\}$ is exactly four (because in the representation (11), all λ s are pairwise distinct). Observe that $aP_2 + bQ_2 = \mu_2 I_{r_2} \oplus \nu_2 I_{s_2}$. Now, an exhaustion process permits to prove (i), the first and the second relations of (2).

We shall prove the last equality of (2). Let us denote $X_i = aP_i + bQ_i$ for i = 1, ..., k, and observe that there exists $r_i, s_i \in \{1, ..., m_i\}$ such that

$$X_i = \mu_i I_{r_i} \oplus \nu_i I_{s_i} \tag{18}$$

and $r_i + s_i = m_i$. From (18) we get $0 = (X_i - \mu_i I_{m_i})(X_i - \nu_i I_{m_i})$, which, in view of $a + b = \mu_i + \nu_i$, simplifies to $X_i^2 - (a + b)X_i + \mu_i \nu_i I_{m_i} = 0$. Using $X_i = aP_i + bQ_i$ and the idempotency of P_i and Q_i leads to

$$0 = (aP_i + bQ_i)^2 - (a+b)(aP_i + bQ_i) + \mu_i \nu_i I_{m_i}$$

= $ab(P_iQ_i + Q_iP_i - P_i - Q_i) + \mu_i \nu_i I_{m_i}$
= $-ab(P_i - Q_i)^2 + \mu_i \nu_i I_{m_i}$.

We shall prove (iii). Let us fix $i \in \{1, ..., k\}$. Matrices P_i and Q_i are idempotent because P and Q are idempotent. It is known that every idempotent matrix is diagonalizable [16, Theorem 4.1], and thus there exists a nonsingular matrix $S_i \in \mathbb{C}^{m_i \times m_i}$ such that $P_i = S(I_{x_i} \oplus 0)S^{-1}$, where $x_i = \text{rk}(P_i)$. Let us write Q_i as

$$Q_i = S_i \begin{bmatrix} A_i & B_i \\ C_i & D_i \end{bmatrix} S_i^{-1}, \qquad A_i \in \mathbb{C}^{x_i \times x_i}, \quad D_i \in \mathbb{C}^{(m_i - x_i) \times (m_i - x_i)}.$$

This proves that P_i and Q_i can be written as in (3). Next, we will prove that relations (4)–(7) hold. Using the last equality of (2) and having in mind that P_i and Q_i are idempotent we get

$$ab(P_i + Q_i - P_iQ_i - Q_iP_i) = \mu_i\nu_i I_{m_i}.$$

Using representations (3) we get

$$\left[\begin{array}{cc} I_{x_i} & 0 \\ 0 & 0 \end{array}\right] + \left[\begin{array}{cc} A_i & B_i \\ C_i & D_i \end{array}\right] - \left[\begin{array}{cc} A_i & B_i \\ 0 & 0 \end{array}\right] - \left[\begin{array}{cc} A_i & 0 \\ C_i & 0 \end{array}\right] = \frac{\mu_i \nu_i}{ab} \left[\begin{array}{cc} I_{x_i} & 0 \\ 0 & I_{m_i - x_i} \end{array}\right].$$

The upper-left and lower-right blocks prove (4) and (7). Now we use $Q_i^2 = Q_i$. If we define $\rho_i = (\mu_i \nu_i)/(ab)$, from

$$\begin{bmatrix} (1-\rho_i)I_{x_i} & B_i \\ C_i & \rho_i I_{m_i-x_i} \end{bmatrix} \begin{bmatrix} (1-\rho_i)I_{x_i} & B_i \\ C_i & \rho_i I_{m_i-x_i} \end{bmatrix} = \begin{bmatrix} (1-\rho_i)I_{x_i} & B_i \\ C_i & \rho_i I_{m_i-x_i} \end{bmatrix}$$

we get

$$(1 - \rho_i)^2 I_{x_i} + B_i C_i = (1 - \rho_i) I_{x_i}, \qquad C_i B_i + \rho_i^2 I_{m_i - x_i} = \rho_i I_{m_i - x_i}.$$

This proves (5) and (6).

Let us observe that in (1), blocks P_0 and Q_0 may be absent.

The following corollary is a simple consequence of former Lemma 1.

Corollary 1. Let $P,Q \in \mathbb{C}^{n \times n}$ be two idempotents matrices such that $PQ \neq QP$ and let $a,b \in \mathbb{C} \setminus \{0\}$ such that aP + bQ is diagonalizable. If $\lambda \in \sigma(aP + bQ) \setminus \{0,a,b,a+b\}$, then there exists $\mu \in \sigma(aP + bQ)$ satisfying $a + b = \lambda + \mu$.

We shall need the following well known result, sometimes known as the polynomial spectral mapping theorem (see e.g., [15, Theorem 9.33]):

Theorem 2. For every matrix A and every polynomial p, one has $\sigma(p(A)) = p(\sigma(A))$.

In next result we relation the spectrum of the difference of two idempotents with the spectrum of a linear combination of these idempotents, provided this linear combination is diagonalizable.

Theorem 3. Let $P, Q \in \mathbb{C}^{n \times n}$ be two idempotent matrices such that $PQ \neq QP$ and let $a, b \in \mathbb{C} \setminus \{0\}$ such that aP + bQ is diagonalizable.

- (i) If $\mu \in \sigma(aP + bQ) \setminus \{0, a, b, a + b\}$, there exists $\lambda \in \sigma(P Q)$ such that $\frac{\mu(a + b \mu)}{ab} = \lambda^2$.
- (ii) If $\lambda \in \sigma(P-Q) \setminus \{0,-1,1\}$, then the roots of the polynomial $x^2 (a+b)x + \lambda^2 ab$ are eigenvalues of aP + bQ.

Proof. Represent P and Q as in Lemma 1.

(i) Pick any $\mu \in \sigma(aP + bQ) \setminus \{0, a, b, a + b\}$. By Theorem 1 and expression (1), there exists $i \in \{1, ..., k\}$ such that $\sigma(aP_i + bQ_i) = \{\mu, a + b - \mu\}$. Applying the last relation of (2) we have

$$\frac{\mu(a+b-\mu)}{ab} \in \sigma[(P-Q)^2].$$

The polynomial spectral mapping theorem finishes the proof of this item.

(ii) Pick any $\lambda \in \sigma(P-Q) \setminus \{0,-1,1\}$. Since $\lambda \notin \{0,-1,1\}$, by Theorem 1 we have that $\lambda \notin \sigma(P_0-Q_0)$, hence there exists $i \in \{1,\ldots,k\}$ with $\lambda \in \sigma(P_i-Q_i)$. By the polynomial spectral mapping theorem we have $\lambda^2 \in \sigma[(P-Q)^2]$. By (2), there exist $\mu, \nu \in \sigma(aP_i+bQ_i)$ such that $a+b=\mu+\nu$ and $\lambda^2=(\mu\nu)/(ab)$, and therefore, μ and ν are the roots of the polynomial $x^2-(a+b)x+\lambda^2ab$. The proof finishes by recalling $\sigma(aP_i+bQ_i)\subset \sigma(aP+bQ)$.

Theorem 4. Let $P,Q \in \mathbb{C}^{n \times n}$ be two idempotent matrices such that $PQ \neq QP$ and let $a,b,a',b' \in \mathbb{C} \setminus \{0\}$ such that aP + bQ and a'P + b'Q are diagonalizable. If $\mu \in \sigma(aP + bQ) \setminus \{0,a,b,a+b\}$, then the roots of the polynomial $x^2 - (a' + b')x + \frac{\mu(a+b-\mu)}{ab}a'b'$ are eigenvalues of a'P + b'Q.

Proof. Let $\mu \in \sigma(aP+bQ) \setminus \{0,a,b,a+b\}$. By item (i) of Theorem 3 there exists $\lambda \in \sigma(P-Q)$ such that $\frac{\mu(a+b-\mu)}{ab} = \lambda^2$. Observe that $\lambda \notin \{0,-1,1\}$ since $\mu \notin \{0,a,b,a+b\}$. By item (ii) of Theorem 3, the roots of the polynomial $x^2 - (a'+b')x + \lambda^2 a'b'$ are eigenvalues of a'P + b'Q. \square

Next theorem concerns with the spectrum of PQ when P and Q satisfy Lemma 1.

Theorem 5. Let $P, Q \in \mathbb{C}^{n \times n}$ be two idempotent matrices such that $PQ \neq QP$ and let $a, b \in \mathbb{C} \setminus \{0\}$ such that aP + bQ is diagonalizable.

- (i) If $\lambda \in \sigma(PQ) \setminus \{0,1\}$, then the roots of the polynomial $x^2 (a+b)x + ab(1-\lambda)$ are eigenvalues of aP + bQ.
- (ii) If $\mu \in \sigma(aP + bQ) \setminus \{0, a, b, a + b\}$, then $1 [\mu(a + b \mu)]/(ab) \in \sigma(PQ)$.

Proof. Let us represent P and Q as in (1). By (3) and (4) we have

$$PQ = S\left(\bigoplus_{i=1}^{k} P_{i}Q_{i} \oplus P_{0}Q_{0}\right)S^{-1}, \qquad P_{i}Q_{i} = S_{i} \begin{bmatrix} (1-\rho_{i})I_{x_{i}} & B_{i} \\ 0 & 0 \end{bmatrix}S^{-1}$$
(19)

for all i = 1, ..., k, with $\rho_i = (\mu_i \nu_i)/(ab)$. On the other hand, since P_0 and Q_0 are two commuting idempotents, P_0Q_0 is another idempotent, and therefore, $\sigma(P_0Q_0) \subset \{0,1\}$.

(i) Pick any $\lambda \in \sigma(PQ) \setminus \{0, 1\}$. From (19), there exists $i \in \{1, \dots, k\}$ such that $\lambda = 1 - \rho_i$. By item (ii) of Lemma 1, there exists two eigenvalues of aP + bQ, say μ and ν , such that $\rho_i = (\mu\nu)/(ab)$ and $\mu + \nu = a + b$. Hence

$$\mu + \nu = a + b$$
, and $\mu \nu = ab(1 - \lambda)$.

Therefore, μ and ν are the roots of the polynomial $x^2 - (a+b)x + ab(1-\lambda)$.

(ii) Pick any $\mu \in \sigma(aP + bQ) \setminus \{0, a, b, a + b\}$. From Lemma 1 and Theorem 1, there exists $i \in \{1, \dots, k\}$ such that μ and $a + b - \mu$ are eigenvalues of $aP_i + bQ_i$. Hence (19) implies $1 - [\mu(a + b - \mu)]/(ab) \in \sigma(P_iQ_i) \subset \sigma(PQ)$.

Koliha and Rakočević proved in [12] that for p,q two nontrivial projections in a C^* -algebra (a projection f in a C^* -algebra satisfies $f^2 = f = f^*$) and $\lambda \in \mathbb{C} \setminus \{0,1,-1\}$, then $\lambda \in \sigma(p-q)$ if and only if $1 - \lambda^2 \in \sigma(pq)$. Observe that we obtain the same relations when in Theorem 5 we substitute a = 1, b = -1. See [7] for a further generalization of the result of Koliha and Rakočević.

Theorem 6. Let $P, Q \in \mathbb{C}^{n \times n}$ be two idempotent matrices such that $PQ \neq QP$ and let $a, b \in \mathbb{C} \setminus \{0\}$ such that aP + bQ is diagonalizable.

- (i) If $\lambda \in \sigma(PQP) \setminus \{0,1\}$, then the roots of the polynomial $x^2 (a+b)x + ab(1-\lambda)$ are eigenvalues of aP + bQ.
- (ii) If $\lambda \in \sigma(aP + bQ) \setminus \{0, a, b, a + b\}$, then $1 [\mu(a + b \mu)]/(ab) \in \sigma(PQP)$.

Proof. Let us represent P and Q as in (1). By (3) and (4) we have

$$PQP = S\left(\bigoplus_{i=1}^{k} P_{i}Q_{i}P_{i} \oplus P_{0}Q_{0}\right)S^{-1}, \qquad P_{i}Q_{i}P_{i} = S_{i}\begin{bmatrix} (1-\rho_{i})I_{x_{i}} & 0\\ 0 & 0 \end{bmatrix}S_{i}^{-1},$$

for i = 1, ..., k with $\rho_i = (\mu_i \nu_i)/(ab)$. The proof finishes as in the proof of Theorem 5.

Theorem 7. Let $P,Q \in \mathbb{C}^{n \times n}$ be two idempotents matrices such that $PQ \neq QP$ and let $a,b \in \mathbb{C} \setminus \{0\}$ such that aP + bQ is diagonalizable.

(i) Let $\lambda \in \sigma(PQ - QP) \setminus \{0\}$. There exist $\mu, \nu \in \sigma(aP + bQ)$ such that

$$\lambda^2 = -\frac{\mu\nu}{ab} \left(1 - \frac{\mu\nu}{ab} \right) \qquad and \qquad \mu + \nu = a + b. \tag{20}$$

(ii) If $\mu \in \sigma(aP + bQ) \setminus \{0, a, b, a + b\}$, then there exists $\lambda \in \sigma(PQ - QP)$ such that

$$-\frac{\mu(a+b-\mu)}{ab}\left(1-\frac{\mu(a+b-\mu)}{ab}\right)=\lambda^2.$$

Proof. Let us represent P and Q as in (1). We have that

$$PQ - QP = S\left(\bigoplus_{i=1}^{k} (P_i Q_i - Q_i P_i) \oplus 0\right) S^{-1}.$$

By (3) and (4), for any $i = 1, \ldots, k$, one has

$$P_{i}Q_{i} - Q_{i}P_{i} = S_{i} \left(\begin{bmatrix} (1 - \rho_{i})I_{x_{i}} & B_{i} \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} (1 - \rho_{i})I_{x_{i}} & 0 \\ C_{i} & 0 \end{bmatrix} \right) S_{i}^{-1} = S_{i} \begin{bmatrix} 0 & B_{i} \\ -C_{i} & 0 \end{bmatrix} S_{i}^{-1},$$

where $\rho_i = (\mu_i \nu_i)/(ab)$. Now,

$$(P_iQ_i - Q_iP_i)^2 = S_i \begin{bmatrix} 0 & B_i \\ -C_i & 0 \end{bmatrix} \begin{bmatrix} 0 & B_i \\ -C_i & 0 \end{bmatrix} S_i^{-1} = S_i \begin{bmatrix} -B_iC_i & 0 \\ 0 & -C_iB_i \end{bmatrix} S_i^{-1}.$$

And (5), (6) lead to

$$(P_iQ_i - Q_iP_i)^2 = -\rho_i(1 - \rho_i)I_{m_i}. (21)$$

- (i) Pick any $\lambda \in \sigma(PQ QP) \setminus \{0\}$. We have $\lambda^2 \in \sigma[(PQ QP)^2] \setminus \{0\}$, and thus, there exists $i \in \{1, ..., k\}$ such that $\lambda^2 = -\rho_i(1 \rho_i)$. So, there exist $\mu, \nu \in \sigma(aP + bQ)$ satisfying (20).
- (ii) Pick any $\mu \in \sigma(aP + bQ) \setminus \{0, a, b, a + b\}$. There exists $i \in \{1, \dots, k\}$ such that $\mu \in \sigma(aP_i + bQ_i)$. If we define $\rho = \mu(a + b \mu)/(ab)$, then (21) and Lemma 1 ensure that $-\rho(1 \rho) \in \sigma[(PQ QP)^2]$. The polynomial spectral mapping theorem finishes the proof.

Let us show how the previous results fit in the literature concerning on linear combinations of two idempotents.

In [2] it was characterized when aP+bQ is idempotent provided P and Q are idempotents and $a,b\in\mathbb{C}\setminus\{0\}$. We will show how to derive this result (if $PQ\neq QP$) by using Lemma 1. Since aP+bQ is idempotent, $\sigma(aP+bQ)\subset\{0,1\}$. Since $PQ\neq QP$, then $\sigma(aP+bQ)$ is not a singleton. From Lemma 1, we can write $P=S(P_1\oplus P_0)S^{-1}$, $Q=S(Q_1\oplus Q_0)S^{-1}$ with $P_0Q_0=Q_0P_0$, $P_1Q_1\neq Q_1P_1$, a+b=1 and $(P_1-Q_1)^2=0$. If the blocks P_0,Q_0 were present, then by a simultaneous diagonalization, we would get that a=b=1, or a=1,b=-1, or a=-1,b=1 which would contradict a+b=1. Hence $(P-Q)^2=0$.

In [1] the author characterized when $c_1A_1 + c_2A_2 + c_3A_3$ is idempotent provided A_1, A_2, A_3 are idempotents, $A_2A_3 = A_3A_2 = 0$, and $c_1, c_2, c_3 \in \mathbb{C} \setminus \{0\}$ (this paper generalized to [4]). We

will not give the whole solution, but only deduce a consequence from Lemma 1. Let $P = A_1$, $Q = c_1A_1 + c_2A_2 + c_3A_3$, $a = -c_1$, and b = 1. Now, $aP + bQ = c_2A_2 + c_3A_3$ is diagonalizable and $\sigma(aP + bQ) = \{c_2, c_3\}$ because A_2, A_3 are nonzero idempotents with $A_2A_3 = A_3A_2 = 0$. If $PQ \neq QP$, and $c_2 \neq c_3$, then Lemma 1 yields $a + b = c_2 + c_3$, i.e., $1 = c_1 + c_2 + c_3$.

If P and Q are idempotents and $a, b \in \mathbb{C} \setminus \{0\}$, then the authors of [5] studied when $(aP + bQ)^{k+1} = aP + bQ$ for a fixed $k \in \mathbb{N}$. In [5] it was proved that a matrix X satisfies $X^{k+1} = X$ if and only if X is diagonalizable and $\sigma(X) \subset \{0\} \cup \sqrt[k]{1}$. Therefore, Lemma 1 implies that if $PQ \neq QP$ there exists $\alpha, \beta \in \{0\} \cup \sqrt[k]{1}$ such that $\alpha + \beta = a + b$ and $\alpha \neq \beta$.

Also, there has been many results concerning the invertibility of expressions involving two idempotents [3, 9, 11, 14]. As an example, we shall prove the following result: If $P,Q \in \mathbb{C}^{n \times n}$ are two idempotents such that P+Q is diagonalizable and P-Q is nonsingular, then P+Q and I_n-PQ are nonsingular [3, 11]. Let us write P and Q as in (1). By a similar argument as in Theorem 1, there exists a nonsingular $S \in \mathbb{C}^{m_0 \times m_0}$ such that $P_0 = S \operatorname{diag}(\lambda_1, \ldots, \lambda_{m_0}) S^{-1}$ and $Q_0 = S \operatorname{diag}(\mu_1, \ldots, \mu_{m_0}) S^{-1}$, where $\lambda_i, \mu_j \in \{0, 1\}$ for $i, j \in \{1, \ldots, m_0\}$. As P-Q is nonsingular, then $\lambda_i \neq \mu_i$ for all $i \in \{1, \ldots, m_0\}$, and therefore $\lambda_i + \mu_i = 1 - \lambda_i \mu_i = 1$ for all $i \in \{1, \ldots, m_0\}$, which implies the nonsingularity of $P_0 + Q_0$ and $I_{m_0} - P_0 Q_0$. If P+Q were singular, by (1), there would exist $i \in \{1, \ldots, k\}$ such that $P_i + Q_i$ is singular, by the second expression of (2), one has $\mu_i = 0$ or $\nu_i = 0$, and by the last expression of (2), one gets $(P_i - Q_i)^2 = 0$, hence $P_i - Q_i$ is singular, in contradiction with the nonsingularity of P-Q. If $I_n - PQ$ were singular, by (1), there would exist $j \in \{1, \ldots, k\}$ such that $I_{m_j} - P_j Q_j$ is singular. By (3) and (4)

$$I_{m_j} - P_j Q_j = S_j \begin{bmatrix} \frac{\mu_j \nu_j}{ab} I_{x_j} & -B_j \\ 0 & I_{m_j - x_j} \end{bmatrix} S_j^{-1},$$

which in view of the singularity of $I_{m_j} - P_j Q_j$ we get $\mu_j = 0$ or $\nu_j = 0$, and as before, we arrive at a contradiction.

Example: Let

$$P = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \quad \text{and} \quad Q = \frac{1}{2} \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right].$$

These matrices satisfy $P^2=P,\ Q^2=Q,\$ and $PQ\neq QP.$ Furthermore, if $a,b\in\mathbb{R}\setminus\{0\},$ then aP+bQ is diagonalizable (because aP+bQ is Hermitian). One trivially has $\sigma(P-Q)=\{1/\sqrt{2},-1/\sqrt{2}\},$ and by Theorem 3, we obtain that the roots of the polynomial $x^2-(a+b)x+ab/2$ are the eigenvalues of aP+bQ, which can be verified by simplifying $\det(aP+bQ-\lambda I_2)$. On the other hand, we can quickly compute than $\sigma(PQ)=\sigma(PQP)=\{0,1/2\},$ and Theorem 5 or Theorem 6 lead again that the roots of $x^2-(a+b)x+ab/2$ are the eigenvalues of aP+bQ. Finally, a trivial computation shows $\sigma(PQ-QP)=\{i/2,-i/2\},$ and Theorem 7 yields that there exists $\mu,\nu\in\sigma(aP+bQ)$ such that $-\frac{1}{4}=-\frac{\mu\nu}{ab}\left(1-\frac{\mu\nu}{ab}\right)$ and $\mu+\nu=a+b$, which reduce to $\mu\nu=ab/2$ and $\mu+\nu=a+b$, in other words, μ,ν are the roots of $x^2-(a+b)x+ab/2$.

Acknowledgments: We would like to thank the referees for their comments on the manuscript.

References

- [1] O.M. Baksalary Idempotency of linear combinations of three idempotent matrices, two of which are disjoint. Linear Algebra and its Applications, Volume 388, (2004), 67-78.
- [2] J.K. Baksalary, O.M. Baksalary. Idempotency of linear combinations of two idempotent matrices. Linear Algebra and its Applications, Volume 321, (2000) 3-7.
- [3] J.K. Baksalary, O.M. Baksalary. Nonsingularity of linear combinations of idempotents matrices. Linear Algebra Appl. 388, (2004) 25-29.
- [4] J.K. Baksalary, O.M. Baksalary, G.P.H. Styan. Idempotency of linear combinations of an idempotent matrix and a tripotent matrix. Linear Algebra Appl. 354, (2002), 21-34.

- [5] J. Benítez, N. Thome. {k}-group periodic matrices. SIAM J. Matrix Anal. Appl. 28, (2006) 9-25.
- [6] J. Benítez, V. Rakočević. Applications of CS decomposition in linear combinations of two orthogonal projectors. Appl. Math. Comput., 203, (2008), 761-769.
- [7] J. Benítez, V. Rakočević. On the spectrum of linear combinations of two projections in C^* -algebras. Linear Multilinear Algebra. 58 (2010) 673-679.
- [8] A. Galántai. Subspaces, angles and pairs of orthogonal projections. Linear Multilinear Algebra, 56, (2008), 227-260.
- [9] J. Groß, G. Trenkler. Nonsingularity of the difference of two oblique projectors. SIAM J. Matrix Anal. Appl. 21, (1999) 390-395.
- [10] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.
- [11] J.J. Koliha, V. Rakočević. Invertibility of the sum of idempotents. Linear Multilinear Algebra. 50 (2002) 285-292.
- [12] J. J. Koliha, V. Rakočević. On the norm of idempotents in C^* -algebras. Rocky Mountain J. Math., 34, (2004), 685-697.
- [13] J. J. Koliha, V. Rakočević. The nullity and rank of linear combinations of idempotent matrices. Linear Algebra Appl., 418, (2006), 11-14.
- [14] J. J. Koliha, V. Rakočević, I. Straškraba. The difference and sum of projectors. Linear Algebra Appl., 388, (2004), 279-288.
- [15] K. Spindler, Abstract Algebra With Applications: V. 1: Vector Spaces And Groups, Taylor & Francis Ltd., 1993
- [16] F. Zhang, Matrix Theory, Springer, New York, 1999.