
Algunos problemas de aplicaciones lineales

1 Uno de los principales problemas en el
diseño gráfico es cómo dibujar objetos tridimen-
sionales en el papel o en la pantalla del or-
denador. O expresado de forma matemática:
dado x = (x, y, z)t ∈ IR3, ¿qué coordenadas
(x′, y′)t ∈ IR2 debe tener el punto que repre-
senta a x en el plano? Es decir, tenemos una
aplicación (proyección) P : IR3 → IR2 cuyo sig-
nificado es el siguiente: P (x) es dónde se tiene
que dibujar el punto x.
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La proyección isométrica es muy usada en
el diseño gráfico. Esta aplicación cumple:

• Es una aplicación lineal.

• P (i) =
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, P (j) =
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)t

y P (k) = (0, 1)t, en donde {i, j,k} es la
base canónica de IR3.

1. Halle la matriz de esta aplicación en las
bases canónicas.

2. Calcule P (x) para un punto arbitrario x de
IR3.

3. Calcule el núcleo de P y su dimensión.
¿Cuál es el significado geométrico del
núcleo de P?

4. Dados dos puntos p y q de IR3, ¿qué
condición necesaria y suficiente deben
cumplir p y q para que sean dibujados en
el mismo lugar?

5. Los vértices del cubo unidad son 0, i, j,k, i+
j, i+k, j+k, i+j+k. ¿Qué figura geométrica
resulta si proyectamos el cubo unidad?

6. Estudie qué proyección se ha de usar si
se quiere dibujar el cubo unidad como se
muestra:
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2 En este problema se hallará la proyección
P sobre un plano que pasa por el origen. Puesto
que calcular P (i), P (j) ó P (k) es complicado, en
este caso es más fácil utilizar la base de IR3 for-
mada por {u,v,n}, siendo {u,v} una base del
plano y n un vector normal al plano de norma
1. Sea A es la matriz de P en las canónicas.
Observe que Au = u, Av = v y An = 0.

1. Deduzca que A[u,v,n] = [u,v,0]. Diga
la razón de que la matriz [u,v,n] sea in-
vertible. Observe que se puede despejar la
matriz A.

2. Considere el plano x + y = z y tome
{(1, 0, 1)t, (0, 1, 1)t} como base del plano.
Calcule la matriz A usando el apartado pre-
vio. ¿Dónde se proyecta un punto (x, y, z)t?

3. Observe que en el segundo apartado ha
tenido que calcular la inversa de una ma-
triz. El cálculo de la inversa de una matriz
siempre se ha de evitar si hay otras al-
ternativas. En este apartado veremos una
manera de hallar la matriz de proyección
sin calcular ninguna inversa. Si se cogen
los vectores u, v, n perpendiculares entre
śı y de norma 1, pruebe ut

vt

nt

 [ u v n
]

= I
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y deduzca que A = uut + vvt.

4. Calcule ahora la matriz de proyección para
el plano x + y = z usando el apartado an-
terior.

5. Vamos a hallar en este problema la matriz
de proyección de otro modo distinto. Sea
ntx = 0 la ecuación del plano, en donde
n es un vector normal que se puede tomar
unitario. Sea p ∈ IR3 arbitrario y P (p) su
proyección. Mire la figura.

�
�
�

6

�
�
�b

b
P (p)

pn

Puesto que la recta que une p y P (p) es
perpendicular al plano, se tiene que existe
λ ∈ IR tal que P (p) − p = λn. Use ahora
que P (p) cumple la ecuación del plano para
hallar λ (en función de p y n) e inserte este
valor en P (p) = p + λn para probar que
P (p) = (I − nnt)p.

6. Calcule ahora la matriz de proyección para
el plano x + y = z usando el apartado an-
terior.

7. ¿Cómo se pueden modificar los plantea-
mientos de los apartados 1, 3 y 5 para en-
contrar la simetŕıa respecto de un plano que
pasa por el origen?

3 En este problema vamos a usar las apli-
caciones lineales para estudiar una ecuación di-
ferencial. En concreto, se van a encontrar los
polinomios p ∈ P2 que cumplen

p′′(x)− 2xp′(x) + 4p(x) = q(x),

para un q ∈ P2 dado. Se define Φ : P2 → P2

como Φ(y) = y′′(x)− 2xy′(x) + 4y(x).

1. Halle la matriz de Φ en las canónicas.

2. Halle usando el apartado anterior los poli-
nomios p ∈ P2 tales que Φ(p) = x2 − 1 (el
planteamiento permite substituir x2−1 por
cualquier otro polinomio de P2).

3. ¿Qué debe verificar q ∈ P2 para que exista
p ∈ P2 tal que

p′′(x)− 2xp′(x) + 4p(x) = q(x)?

4 Ahora vamos a resolver un problema de
interpolación. En concreto vamos a hallar to-
dos los polinomios p ∈ P2 tales que p(1) = y1,
p(2) = y2 y p(3) = y3 para y1, y2, y3 ∈ IR
dados. Para ello se se define Φ : P2 → IR3,
como Φ(q) = (q(1), q(2), q(3))t, y observe que el
problema planteado equivale a resolver Φ(p) =
(y1, y2, y3)t. b bby1

y2
y3

1 2 3

1. Halle la matriz de Φ en las canónicas. Use
esta matriz para resolver el problema.

2. Halle la matriz de Φ, pero ahora con-
siderando {1, x−1, (x−1)(x−2)} como base
inicial y la canónica de IR3 como base final.
Use esta matriz para resolver el problema.
¿Cuál de las dos matrices es más cómoda
de usar?

5 En este problema vamos a encontrar las
llamadas fórmulas de cuadraturas de Simp-
son y de Gauss que sirven para calcular de
forma aproximada integrales definidas. Se de-
finen las dos siguientes aplicaciones de Pn a IR
(se puede demostrar fácilmente que son lineales)

• Ln(p) =
∫ 1

−1
p(x)dx,

• Tn(p) = w0p(x0) + · · ·+ wkp(xk),

donde w0, . . . , wk ∈ IR y x0, . . . , xk ∈ [−1, 1].
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1. Halle las matrices de Ln y Tn en las canó-
nicas y denótelas, respectivamente, M(Ln)
y M(Tn).

2. Fuerce M(Ln) = M(Tn) para n = 2, k = 2,
x0 = −1, x1 = 0, x2 = 1. Halle w0, w1 y w2.
Acaba de obtener la fórmula de Simpson.

3. Tras forzar M(Ln) = M(Tn) para n = 3,
k = 1 debe obtener cuatro ecuaciones. Con-
sidere como incógnitas w0 y w1 e investigue
los valores x0 y x1 para los cuales este sis-
tema es compatible. Halle w0 w1. Acaba
de obtener la fórmula de Gauss. Ayuda:
en algún momento debe usarse la fórmula
a3 − b3 = (a− b)(a2 + ab + b2).

Thomas Simpson, 1710–1761.
Homer Simpson, 1987–.

Johann Carl Friedrich Gauss, 1777–1855.

Nota: Por el apartado 2, como las matrices
coinciden, las aplicaciones coinciden; luego∫ 1

−1

p(x)dx = w0p(−1) + w1p(0) + w2p(1), (1)

para todo p ∈ P2, siendo w0, w1 y w2 los valores
encontrados en el apartado 2. En realidad se
tiene∫ 1

−1

f(x)dx ' w0f(−1) + w1f(0) + w2f(1),

donde f es una función que se comporta “razo-
nablemente” bien.

La fórmula de Gauss es aún mejor que la
de Simpson. La idea es la siguiente: por el
apartado 3 se tiene∫ 1

−1

p(x)dx = w0p(x0) + w1p(x1), (2)

para todo p ∈ P3, siendo w0, w1, x0 y x1 los
valores encontrados en el apartado 3. Aparte
que (2) requiere menos operaciones que (1), la
fórmula de Gauss es válida para polinomios de
grado más alto y parece razonable que∫ 1

−1

f(x)dx ' w0f(x0) + w1f(x1)

sea más precisa que la fórmula correspondiente
de Simpson.

6 En este problema vamos a calcular (sin
apenas usar cálculo diferencial) la primitiva de
la función eax cos(bx) siendo a, b ∈ IR y b 6= 0.
Es claro que la integral indefinida es el proceso
contrario de la derivación y también debe ser
claro que la derivación es mucho más simple que
la integración; por lo que nos vamos a concen-
trar en la derivación. Sea V el espacio genera-
do por las funciones eax cos(bx), eax sen(bx) (ob-
serve que dim(V) = 2) y se define D : V → V

dada por D(f) = f ′.

1. Halle la matriz de D en la base
{eax cos(bx), eax sen(bx)}. Sea A esta ma-
triz

2. Pruebe que AAt = kI para un determinado
escalar k que debe expresar en función de
a y b. Aproveche este apartado para hallar
A−1 sin calcular nada.

3. Use los apartados anteriores para hallar
las funciones f(x) de V tales que D(f) =
eax cos(bx). Observe que está calculando la
integral indefinida

∫
eax cos(bx)dx.

4. ¿En qué cambian los apartados anteriores si
se toma ahora V como el espacio generado
por 1, eax cos(bx), eax sen(bx)?

5. Calcule la integral indefinida de x2ex usan-
do las ideas previas.

7 Las aplicaciones lineales sirven también
para demostrar resultados geométricos. Como
problema guiado incluimos el siguiente teorema
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(de Von Aubel): Si sobre los lados de un
cuadrilátero se levantan cuadrados y se unen los
centros correspondientes a los lados no adya-
centes se obtienen dos segmentos perpendicu-
lares y de la misma longitud.
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Sea J el giro de ángulo π/2 centrado en el ori-
gen y sean a,b, c,d los vértices del cuadrilátero.
Los centros de los cuadrados son

p =
b + a + J(b− a)

2
, q =

c + b + J(c− b)
2

,

r =
d + c + J(d− c)

2
, s =

a + d + J(a− d)
2

.

1. ¿Por qué los puntos p,q, r y s se pueden
calcular usando las expresiones de arriba?

2. ¿Por qué para probar el teorema de Von
Aubel basta demostrar J(q− s) = p− r?

3. Pruebe J(q− s) = p− r usando J2 = −I.

8 El objetivo de este problema es hallar
los valores de α de modo que la ecuación (de
Hermite)

y′′(x)− 2xy′(x) + αy(x) = 0

admita soluciones polinómicas no nulas. Para
ello se define Φn : Pn → Pn dado por

Φ(p) = p′′(x)− 2xp′(x) + αp(x).

1. Halle la matriz de Φ en las canónicas.

2. ¿Para qué valores de α la aplicación Φ deja
de ser biyectiva?

3. Observe la relación entre el segundo
apartado y la existencia de soluciones
polinómicas no nulas de la ecuación de Her-
mite.

4. Para α = 4 encuentre todas las soluciones
polinómicas de la ecuación de Hermite.

Charles Hermite, 1822–1901.

9 Considere las siguientes funciones conti-
nuas definidas a trozos:

φ1(x) =
{
−x −1 ≤ x ≤ 0

0 0 ≤ x ≤ 1

φ2(x) =
{

1 + x −1 ≤ x ≤ 0
1− x 0 ≤ x ≤ 1

φ3(x) =
{

0 −1 ≤ x ≤ 0
x 0 ≤ x ≤ 1

Sea H el espacio generado por estas tres fun-
ciones independientes. Se define la aplicación
lineal T : C([−1, 1]) → H dada por T (f) =
f(−1)φ1 + f(0)φ2 + f(1)φ3.

1. Represente en una misma gráfica f(x) =
sen(πx) y T (f). Haga lo mismo para
f(x) = ex. ¿Qué hace el operador T?

2. ¿Es T inyectiva?

3. Se define Tn la restricción de T a Pn. Halle
la matriz de Tn si se considera como base
inicial la canónica de Pn.

4. ¿Para qué valores de n la aplicación Tn es
inyectiva¿, ¿y sobreyectiva?

5. Halle el núcleo de Tn para n ≤ 4.
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