Algunos problemas de aplicaciones lineales

1  Uno de los principales problemas en el
diseno grafico es como dibujar objetos tridimen-
sionales en el papel o en la pantalla del or-
denador. O expresado de forma matemaética:
dado x = (z,,2)' € R?, ;qué coordenadas
(z',y")* € IR? debe tener el punto que repre-
senta a X en el plano? Es decir, tenemos una
aplicacién (proyeccién) P : R® — IR? cuyo sig-
nificado es el siguiente: P(x) es dénde se tiene
que dibujar el punto x.
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La proyeccién isométrica es muy usada en
el diseno grafico. Esta aplicaciéon cumple:

e Es una aplicacion lineal.
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y P(k) = (0,1)", en donde {i,j,k} es la

base candnica de IR”.
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1. Halle la matriz de esta aplicacién en las
bases candnicas.

2. Calcule P(x) para un punto arbitrario x de
R®.

3. Calcule el nticleo de P y su dimensién.
;Cudl es el significado geométrico del
nucleo de P?

4. Dados dos puntos p y q de RR?, ;qué
condicién necesaria y suficiente deben
cumplir p y q para que sean dibujados en
el mismo lugar?

5. Los vértices del cubo unidad son 0, i, j, k, i+
J,i+k, j+k,i+j+k. ;Qué figura geométrica
resulta si proyectamos el cubo unidad?

6. Estudie qué proyeccion se ha de usar si
se quiere dibujar el cubo unidad como se
muestra:

2 TEneste problema se hallard la proyeccién
P sobre un plano que pasa por el origen. Puesto
que calcular P(i), P(j) 6 P(k) es complicado, en
este caso es méas facil utilizar la base de IR® for-
mada por {u,v,n}, siendo {u,v} una base del
plano y n un vector normal al plano de norma
1. Sea A es la matriz de P en las candnicas.
Observe que Au=u, Av=vy An=0.

1. Deduzca que A[u,v,n] = [u,v,0]. Diga
la razén de que la matriz [u,v,n] sea in-
vertible. Observe que se puede despejar la
matriz A.

2. Considere el plano © +y = z y tome
{(1,0,1)%,(0,1,1)*} como base del plano.
Calcule la matriz A usando el apartado pre-
vio. ;jDénde se proyecta un punto (z,y, 2)'?

3. Observe que en el segundo apartado ha
tenido que calcular la inversa de una ma-
triz. El célculo de la inversa de una matriz
siempre se ha de evitar si hay otras al-
ternativas. En este apartado veremos una
manera de hallar la matriz de proyeccién
sin calcular ninguna inversa. Si se cogen
los vectores u, v, n perpendiculares entre
si y de norma 1, pruebe
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y deduzca que A = uu® + vvt.

4. Calcule ahora la matriz de proyeccién para
el plano x + y = z usando el apartado an-
terior.

5. Vamos a hallar en este problema la matriz
de proyeccién de otro modo distinto. Sea
n'x = 0 la ecuacién del plano, en donde
n es un vector normal que se puede tomar
unitario. Sea p € IR? arbitrario y P(p) su
proyeccién. Mire la figura.

Puesto que la recta que une p y P(p) es
perpendicular al plano, se tiene que existe
A € R tal que P(p) — p = An. Use ahora
que P(p) cumple la ecuacién del plano para
hallar A (en funcién de p y n) e inserte este
valor en P(p) = p + An para probar que
P(p) = (I — nn')p.

6. Calcule ahora la matriz de proyeccién para
el plano x + y = z usando el apartado an-
terior.

7. {Cémo se pueden modificar los plantea-
mientos de los apartados 1, 3 y 5 para en-
contrar la simetria respecto de un plano que
pasa por el origen?

3  Eneste problema vamos a usar las apli-
caciones lineales para estudiar una ecuaciéon di-
ferencial. En concreto, se van a encontrar los
polinomios p € Py que cumplen

P (x) — 2zp' (x) + 4p(x) = q(2),

para un ¢ € Py dado. Se define ® : Py — Py
como B(y) =y (x) — 2zy(z) + 4y(x).

1. Halle la matriz de ® en las canonicas.

2. Halle usando el apartado anterior los poli-
nomios p € Py tales que ®(p) = 2% — 1 (el
planteamiento permite substituir 22 —1 por
cualquier otro polinomio de Ps).

3. ;Qué debe verificar ¢ € Py para que exista
p € Py tal que

P (x) — 2zp' () + 4p(z) = q(2)?

4 Ahora vamos a resolver un problema de
interpolacion. En concreto vamos a hallar to-
dos los polinomios p € P» tales que p(1) = yq,
p(2) = y2 v p(3) = ys para y1,y2,y3 € R
dados. Para ello se se define ® : P — RS,
como ®(q) = (q(1),4(2),q(3))t, y observe que el
problema planteado equivale a resolver ®(p) =
(yl» Y2, yS)t~

1. Halle la matriz de ® en las candnicas. Use
esta matriz para resolver el problema.

2. Halle la matriz de ®, pero ahora con-
siderando {1,2—1, (z—1)(z—2)} como base
inicial y la canénica de IR® como base final.
Use esta matriz para resolver el problema.
;Cual de las dos matrices es méas comoda
de usar?

5 En este problema vamos a encontrar las
llamadas férmulas de cuadraturas de Simp-
son y de Gauss que sirven para calcular de
forma aproximada integrales definidas. Se de-
finen las dos siguientes aplicaciones de P, a IR
(se puede demostrar facilmente que son lineales)

o Ln(p) = [, ple)dz,
o T, (p) = wop(xo) + - + wrp(zr),
donde wy, . .

Lwi € Ry g, ..., x5 € [-1,1].



1. Halle las matrices de L,, y T}, en las cané-
nicas y denételas, respectivamente, M (L,,)
y M(T).

2. Fuerce M (L,) = M(T,) paran =2,k = 2,
zo = —1,21 =0, x5 = 1. Halle wg, w1 y ws.
Acaba de obtener la férmula de Simpson.

3. Tras forzar M(L,) = M(T,) para n = 3,
k = 1 debe obtener cuatro ecuaciones. Con-
sidere como incégnitas wg y wy e investigue
los valores xg y =1 para los cuales este sis-
tema es compatible. Halle wg w;. Acaba
de obtener la férmula de Gauss. Ayuda:
en algin momento debe usarse la férmula
a® — b = (a — b)(a® + ab + b?).

Thomas Simpson, 1710-1761.
Homer Simpson, 1987—.
Johann Carl Friedrich Gauss, 1777-1855.

Nota: Por el apartado 2, como las matrices
coinciden, las aplicaciones coinciden; luego

1
[ pla)dz = wop(=1) + w1p(0) + wap(1). (1)
-1
para todo p € P, siendo wq,w; y ws los valores
encontrados en el apartado 2. En realidad se
tiene

1
[ @ 2 (1) + 1w £(0) + (1),

donde f es una funcién que se comporta “razo-
nablemente” bien.

La férmula de Gauss es ain mejor que la
de Simpson. La idea es la siguiente: por el
apartado 3 se tiene

/ p(x)de = wop(zo) + wip(z1),

-1

(2)

para todo p € P3, siendo wg,wi,z9 ¥y x1 los
valores encontrados en el apartado 3. Aparte
que (2) requiere menos operaciones que (1), la
férmula de Gauss es valida para polinomios de
grado mas alto y parece razonable que

/_1 J(z)dz ~ wo f(xo) + w1 f(x1)

sea mds precisa que la férmula correspondiente
de Simpson.

6 En este problema vamos a calcular (sin
apenas usar célculo diferencial) la primitiva de
la funcién e** cos(bz) siendo a,b € R y b # 0.
Es claro que la integral indefinida es el proceso
contrario de la derivacién y también debe ser
claro que la derivacién es mucho més simple que
la integracién; por lo que nos vamos a concen-
trar en la derivacién. Sea 'V el espacio genera-
do por las funciones e** cos(bx), e** sen(bx) (ob-
serve que dim(V) = 2) y se define D : V — V
dada por D(f) = f'.

1. Halle la matriz de D en la base
{e? cos(bx), e sen(bx)}. Sea A esta ma-
triz

2. Pruebe que AA' = kI para un determinado
escalar k que debe expresar en funcién de
a y b. Aproveche este apartado para hallar
A~ sin calcular nada.

3. Use los apartados anteriores para hallar
las funciones f(z) de V tales que D(f) =
e cos(bx). Observe que estd calculando la
integral indefinida [ e** cos(bx)dz.

4. ;En qué cambian los apartados anteriores si
se toma ahora V como el espacio generado
por 1,e* cos(bx), e*® sen(bx)?

5. Calcule la integral indefinida de z2e® usan-
do las ideas previas.

7 Las aplicaciones lineales sirven también
para demostrar resultados geométricos. Como
problema guiado incluimos el siguiente teorema



(de Von Aubel): Si sobre los lados de un
cuadrilatero se levantan cuadrados y se unen los
centros correspondientes a los lados no adya-
centes se obtienen dos segmentos perpendicu-
lares y de la misma longitud.
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Sea J el giro de dngulo 7/2 centrado en el ori-
gen y sean a, b, ¢, d los vértices del cuadrilatero.
Los centros de los cuadrados son

_b+ta+Jb-a)  c+b+J(c-Db)

2 )q._ 2 )
I‘_d—l—c—i—.](d—c) . at+d+Ja-d)
B 2 T 2 '

1. ;Por qué los puntos p,q,r y s se pueden
calcular usando las expresiones de arriba?

2. jPor qué para probar el teorema de Von
Aubel basta demostrar J(q —s) =p —r?

3. Pruebe J(q —s) = p — r usando J? = —1I.

8 = objetivo de este problema es hallar
los valores de a de modo que la ecuacién (de
Hermite)

y' (@) = 22y (z) + ay(z) = 0

admita soluciones polinémicas no nulas. Para
ello se define ®,, : P,, — P,, dado por

®(p) =p'(z) — 2xp'(z) + ap(x).

1. Halle la matriz de ® en las canonicas.

2. ;Para qué valores de « la aplicacion ® deja
de ser biyectiva?

3. Observe la relacién entre el segundo
apartado y la existencia de soluciones
polinémicas no nulas de la ecuacién de Her-
mite.

4. Para o = 4 encuentre todas las soluciones
polinémicas de la ecuacién de Hermite.

Charles Hermite, 1822-1901.

9 Considere las siguientes funciones conti-
nuas definidas a trozos:

—x —-1<z<0

‘bl(w)_{ 0 0<z<1
142 -1<2<0
¢2(x)_{1x 0<z<1

0 -1<2<0
Sea H el espacio generado por estas tres fun-
ciones independientes. Se define la aplicacién
lineal T : C([-1,1]) — JH dada por T(f) =
f(=D)o1 + f(0)d2 + f(1)¢s.
1. Represente en una misma grafica f(z) =
sen(rz) y T(f). Haga lo mismo para
f(x) =€*. ;Qué hace el operador T

2. ;Es T inyectiva?

3. Se define T}, la restricciéon de T a P,,. Halle
la matriz de T, si se considera como base
inicial la canénica de P,,.

4. ;Para qué valores de n la aplicacién T,, es
inyectivaj, ;y sobreyectiva?

5. Halle el ntcleo de T;, para n < 4.



