
Breve historia de las ecuaciones diferenciales

Estas notas pretenden mostrar una breve
historia de las ecuaciones diferenciales. Se ha
pretendido dar más énfasis a las ideas que a
las biograf́ıas de los matemáticos creadores de
la teoŕıa. En la siguiente dirección
http://www-groups.dcs.st-and.ac.uk

se halla una colección de biograf́ıas de los
matemáticos más famosos.

La mayor parte de estas notas históricas
está sacadas de [1].

1. Ecuaciones diferenciales de 1er orden

Los primeros intentos para resolver proble-
mas f́ısicos mediante el cálculo diferencial a
finales del siglo XVII llevaron gradualmente
a crear una nueva rama de las matemáticas,
a saber, las ecuaciones diferenciales. A media-
dos del siglo XVIII las ecuaciones diferenciales
se convirtieron en una rama independiente y
su resolución un fin en śı mismo.

Ya Newton (los creadores del cálculo in-
finitesimal fueron Leibniz y Newton) ob-
servó que si dny/dxn = 0, entonces y(x) es
un polinomio de grado n− 1, en particular, y
depende de n constantes arbitrarias, aunque
esta afirmación tuvo que esperar hasta el siglo
XIX para poder ser demostrada con rigor (la
demostración estándar actual usa el teorema
del valor medio). Los matemáticos de la época
con frecuencia usaban argumentos f́ısicos: si
y(t) denota la posición en el tiempo t de una
part́ıcula, entonces dy/dt es su velocidad. Si
dy/dt = 0, se tiene que la velocidad es nula, es
decir, la part́ıcula no se mueve y su posición,
por tanto, permanece constante.

En 1693 Huygens habla expĺıcitamente de
ecuaciones diferenciales y en el mismo año,
Leibniz dice que las ecuaciones diferenciales
son funciones de elementos del triángulo ca-
racteŕıstico.
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Figura 1: El triángulo caracteŕıstico.

En 1690, Jacques Bernouilli planteó el pro-
blema de encontrar la curva que adopta una
cuerda flexible, inextensible y colgada de dos
puntos fijos, que Leibniz llamó catenaria (del
lat́ın cadena). Galileo pensó que esta cur-
va era una parábola, mientras que Huygens
probó que esto no era correcto.
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Figura 2: Una catenaria.

En 1691, Leibniz, Huygens y Jean Bernouil-
li publicaron soluciones independientes. La de
Jean Bernouilli es la que se encuentra habi-
tualmente en los textos de mecánica:

Consideremos un cable homogéneo sujeto
por sus dos extremos (que suponemos a la
misma altura) y que distan 2a uno del otro
y sea ρ la densidad del cable. Sea y = y(x) la
función que describe la posición del cable. Por
conveniencia se asumirá que la altura mı́nima
del cable ocurre en x = 0 (o en otras palabras,
y′(0) = 0).
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Figura 3: Deducción de la ecuación de la cate-
naria.

Sea (x, y) un punto arbitrario del cable (por
conveniencia lo situamos en el tramo positivo
de las x; en otro caso, el razonamiento es com-
pletamente igual) y pensemos en las fuerzas
que actúan en el trozo de cable desde el pun-
to de altura mı́nima hasta (x, y):

El peso P. Si m es la masa y s es la lon-
gitud del trozo considerado del cable, se
tiene m = ρs y por tanto, P = (0,−gρs),
donde g es la aceleración terrestre.

La fuerza T0 que ejerce la parte izquierda
del cable sobre el punto de altura mı́ni-
ma. Se tiene T0 = (−‖T0‖, 0)

La fuerza T que ejerce la parte derecha
del cable sobre el extremo derecho (x, y)
del trozo de cable considerado. Obser-
vando la figura 3 se tiene que T =
‖T‖(cos θ, sen θ).

La condición de equilibrio es P+T0 +T = 0.
O componente a componente:

‖T0‖ = ‖T‖ cos θ, gρs = ‖T‖ sen θ.

Dividiendo ambas expresiones.

tan θ =
gρs

‖T0‖
. (1)

A partir de ahora, denotaremos c = gρ/‖T0‖.
Como (véase la figura 1)

dy/dx = tan θ, (ds)2 = (dx)2 + (dy)2,

si derivamos (respecto a x) la ecuación (1), se
obtiene

d2y

dx2
= c

√
(dx)2 + (dy)2

dx
.

O escrito de otro modo,

d2y

dx2
= c

√
1 +

(
dy

dx

)2

.

Por supuesto, esto es una ecuación de segundo
orden; pero haciendo el cambio v = dy/dx, se
convierte en

dv

dx
= c

√
1 + v2. (2)

Problema 1: Resuelva la ecuación (2). Use
ahora y′(0) = 0 para deducir que la ecuación de
la catenaria es

y(x) =
1
c

cosh(cx) + B, (3)

donde B es una constante arbitraria. ¿Qué sig-
nificado f́ısico o geométrico posee B?

El siguiente problema propone otra manera
de resolver la ecuación (2) usando la teoŕıa
de las ecuaciones diferenciales lineales de or-
den 2:

Problema 2: Eleve al cuadrado (2) y derive
esta nueva ecuación respecto a x para obtener
d2v/dx2 = c2x. Halle ahora v = v(x) y obtenga
de nuevo (3).

La catenaria cumple otra importante
propiedad: de entre todas las curvas de longi-
tud dada, la que minimiza la enerǵıa potencial
es precisamente la catenaria. Si y : [−a, a] →
IR es la función que describe la forma de la
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catenaria (véase la figura 3), ρ es la densidad
del cable y g es la aceleración de terrestre, la
enerǵıa potencial de un elemento infinitesimal
de masa, dm, es

dE = gydm = gyρds = gρy
√

1 + y′2,

donde ds es el elemento diferencial de longitud
de arco. La catenaria minimiza∫ a

−a
gρy(x)

√
1 + y′(x)2dx,

si la longitud de la cuerda es constante, es
decir ∫ a

−a

√
1 + y′(x)2dx es constante.

El estudio de funciones minimizantes
llevó al descubrimiento del cálculo de varia-
ciones por Euler a mediados del siglo XVIII
y Lagrange a finales del siglo XVIII mejoró y
amplió los métodos de Euler.

Por otra parte, acabamos de ver que la cate-
naria se puede obtener por dos caminos dis-
tintos: a partir de las leyes de Newton o co-
mo la curva que minimiza una cierta magni-
tud f́ısica. Se vio que muchos problemas f́ısicos
poseen esta dualidad. La reformulación de las
leyes f́ısicas por medio de funciones minimi-
zantes fue hecha por Hamilton a mediados del
siglo XIX.

Leibniz descubrió la técnica de separación
de variables en 1691: Indicó cómo se resuelve

y
dx

dy
= f(x)g(y).

También redujo en el mismo año la ecuación
homogénea dy/dx = f(y/x) a una separable
de primer orden del modo usual: con el cambio
y = vx. En 1694, Leibniz, publicó la resolu-
ción de la ecuación

dy

dx
+ p(x)y = q(x).

En 1694, Leibniz y Jean Bernouilli estu-
diaron el problema de encontrar la familia
de curvas que cortan con un ángulo dado a
una familia de curvas dadas. Jean Bernouilli
señaló que este problema es importante para
determinar las trayectorias de los rayos de luz
que recorren un medio no uniforme porque di-
chos rayos cortan ortogonalmente los llama-
dos frentes de luz. El problema fue resuelto
de forma general e independiente por Leibniz
y por Jean Bernouilli en 1698. El método em-
pleado es el mismo que se usa hoy en d́ıa.

Jean Bernouilli planteó el problema de de-
terminar el movimiento de un proyectil en un
medio cuya resistencia es proporcional a una
potencia de la velocidad. La ecuación diferen-
cial es en este caso

m
dv

dt
= mg − kvn. (4)

Problema 3: Resuelva la ecuación (4) cuando
n = 2. Deduzca que en este caso se tiene

v(t) = a
f(t) + 1
f(t)− 1

,

donde a =
√

mg/k y f(t) = e2(t+C)/a, sien-
do C una constante arbitraria. Pruebe que
ĺımt→∞ v(t) = a. Ésta es la razón de que
los paracaidistas bajen con velocidad práctica-
mente constante. Explique f́ısicamente el com-
portamiento estacionario de la velocidad cuando
m ó k crecen.

También fueron identificadas las ecuaciones
diferenciales de primer orden exactas, es de-
cir, las ecuaciones M(x, y)dx+N(x, y)dy = 0
para las cuales existe una función z = z(x, y)
tal que dz = Mdx + Ndy. Clairaut en 1739
dió la condición ∂M/∂y = ∂N/∂x, condición
que fue dada de forma independiente por Eu-
ler en 1734. Si se tiene dz = M(x, y)dx +
N(x, y)dy = 0, como remarcaron Euler y
Clairaut, la solución es z = cte.
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Cuando una ecuación de primer orden no
es exacta, es posible muchas veces multipli-
carla por una función, llamada factor inte-
grante, que la convierta en exacta. Aunque
se hab́ıa usado esta técnica en algunas ecua-
ciones, fue Euler en 1734 quien se dió cuen-
ta que este concepto proporcionaba un méto-
do de integración e introdujo las expresiones
que actualmente se usan. Clairaut amplió la
teoŕıa poco más tarde. Hacia 1740 se conoćıan
los métodos elementales de resolución de las
ecuaciones diferenciales de primer orden.

2. Ecuaciones de 2o orden

En sus esfuerzos por tratar el problema de
la cuerda vibrante, Jean Bernouilli en 1724,
planteó y resolvió la ecuación d2y/dx2 =
k2y. Anteriormente se dedujo la ecuación que
debe satisfacer un péndulo simple: d2θ/dt +
mg sen θ = 0.

u

A
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A
A
A
A
A
A

θ

Figura 4: Un péndulo simple.

Problema 4: Deduzca la ecuación diferen-
cial del péndulo simple. Ayuda: por medio de
la ley de conservación de la enerǵıa debe pro-
bar que θ̇2 = 2mg cos θ, donde el punto denota
la derivada respecto al tiempo. A continuación
derive esta ecuación respecto a t.

Nota: No resuelva la ecuación θ̈ = mg sen θ,
pues no se puede hallar la solución en términos
de funciones elementales.

Es de destacar que antes de la solución
de Jean Bernouilli, ni se conoćıa la solución

del péndulo simple, ni la que se obtiene tras
aproximar sen θ por θ. Euler comenzó a con-
siderar ecuaciones de orden superior a uno en
1728.

Desde el punto de vista de la concepción
de función de la época, se dispońıa, a par-
tir de Newton de un método general de inte-
gración de ecuaciones diferenciales mediante
el desarrollo de funciones en forma de serie.
Por ejemplo, en 1733 Daniel Bernouilli en un
art́ıculo cuyo t́ıtulo en castellano es “Teore-
mas sobre oscilaciones de cuerpos conectados
por un hilo flexible y de una cadena vertical-
mente suspendida”, deduce que para una ca-
dena de densidad constante en suspensión que
oscila se tiene

α
d
dx

(
x

dy

dx

)
+ y = 0, (5)

donde x e y = y(x) tienen el significado que
se muestra en la figura siguiente. Resolvere-
mos la ecuación diferencial (5) como Daniel
Bernouilli:

x

y

Figura 5: Una cadena verticalmente suspendi-
da.

Por comodidad, supondremos α = 1. Sea

y = A + Bx + Cx2 + Dx3 + · · · , (6)

la función que se pretende encontrar. Los si-
guientes cálculos son fáciles de entender si se
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supone que una serie de potencias se puede
derivar término a término (operación que has-
ta el siglo XIX se supońıa válida):

dy

dx
= B + 2Cx + 3Dx2 + · · ·

x
dy

dx
= Bx + 2Cx2 + 3Dx3 + · · ·

d
dx

(
x

dy

dx

)
= B + 4Cx + 9Dx2 + · · · (7)

Igualando los coeficientes de (6) y (7) se
tiene

A = B, B = 4C, C = 9D, ...

Todos los coeficientes se pueden poner en fun-
ción del primero:

B = A, C =
A

4
, D =

A

4 · 9
, ...

Por tanto, la solución de (5) es

y = A + Ax +
Ax2

4
+

Ax3

4 · 9
+ · · ·+ Axn

(n!)2
+ · · ·

En un art́ıculo de 1739 “De novo genere
oscillationum” (sobre un nuevo tipo de os-
cilación), Euler se ocupó de la ecuación di-
ferencial

M
d2y

dt2
+ Ky = F sen(ωt)

y descubrió el fenómeno de la resonancia
mecánica.

En 1734, Euler afirmaba que pod́ıa resolver
la ecuación

K4 d4y

dx4
= y, (8)

que surgió tras estudiar el problema de des-
plazamiento tranversal de una barra elástica
fijado un extremo y libre el otro. En 1734, el
único método disponible por Euler fue la uti-
lización de series y obtuvo cuatro series dis-
tintas.

Problema 5: Resuelva la ecuación (8).
¿Cuáles son las cuatro funciones obtenidas por
Euler?

Euler desarrolla un método en 1743 para
resolver las ecuaciones lineales de orden n de
coeficientes constantes: Dada la ecuación

0 = a0y + a1
dy

dx
+ a2

d2y

dx2
+ · · ·+ an

dny

dxn
, (9)

en donde los coeficientes a0, . . . , an son con-
stantes, Euler indica que la solución ha de
contener n constantes arbitrarias y que esta
solución vendrá dada por la suma de n solu-
ciones particulares, cada una de ellas multipli-
cada por una constante. Ahora hace el cambio
y = eλx, en donde λ es constante y obtiene la
ecuación polinómica

0 = a0 + a1λ + a2λ
2 + · · ·+ anλn. (10)

Trata por separado cuando esta ecuación
tiene ráıces simples, múltiples y complejas;
con lo que Euler resuelve completamente las
ecuaciones lineales homogéneas de coeficientes
constantes.

Problema 6: Suponga que λ0 es ráız doble de
(10). Pruebe que y(x) = xeλ0x es una solución
de (9).

D’Alembert observa que el conocimiento de
una solución particular y de la solución gene-
ral de la homogénea conduce, por adición, a
la solución general de la no homogénea. La-
grange estudia cómo obtener soluciones par-
ticulares y a él se le debe también el método
de variación de parámetros.

3. Sistemas de ecuaciones diferenciales

Los sistemas de ecuaciones diferenciales
surgieron en la historia de las matemáticas
con la misma intención que las ecuaciones
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diferenciales ordinarias: Analizar cuantitati-
vamente determinados sistemas f́ısicos, en
particular los astronómicos. En el campo
de la astronomı́a los principios f́ısicos (las
leyes del movimiento de Newton y la ley de
gravitación) estaban claros y los problemas
matemáticos eran mucho más profundos. El
problema matemático fundamental al estu-
diar el movimiento de dos o más cuerpos,
moviéndose cada uno bajo la acción gravita-
toria de los otros es el de resolver un sistema
de ecuaciones diferenciales ordinarias.

El primer éxito lo obtuvo Newton en los
Principia al demostrar que a partir de sus
leyes de movimiento y de la ley de gravitación
universal se pod́ıan deducir las tres leyes pla-
netarias de Kepler. El problema de los tres
cuerpos sometidos a una acción gravitatoria
común fue estudiado intensamente por Euler,
Laplace y Lagrange obteniendo sólo resulta-
dos parciales.

Al no obtener métodos generales para re-
solver los sistemas de ecuaciones diferenciales,
los matemáticos se volcaron con los sistemas
de ecuaciones lineales de coeficientes con-
stantes. La primera vez que surgió este tipo
de sistemas fue al estudiar sistemas de muelles
acoplados, a partir de la ley de Hooke. La
noción de polinomio caracteŕıstico aparece ya
expĺıcitamente en el trabajo de Lagrange so-
bre sistemas de ecuaciones diferenciales pu-
blicado en 1774 y en el trabajo de Laplace en
1775.

Por otra parte, Laplace desarrolló un méto-
do alternativo para hallar la solución de tales
sistemas. En el famoso ensayo Théorie an-
alytique des probabilités, publicado en 1812,
Laplace presentó lo que ahora se conoce co-
mo la transformada de Laplace para encontrar
la solución de ecuaciones diferenciales lineales
de coeficientes constantes. Esta transforma-
da sirve también para encontrar la solución
de los sistemas lineales de ecuaciones diferen-
ciales con coeficientes constantes.

4. Desarrollos posteriores

A principios del siglo XIX se desarrolló una
fase en la que se trataba de demostrar algunos
hechos dados por válidos en el siglo anterior.
En 1820 Cauchy probó la existencia de solu-
ciones de la ecuación diferencial y′ = f(t, y)
bajo ciertas condiciones. En 1890 Picard es-
tableció un método de aproximaciones suce-
sivas que permite establecer con precisión el
teorema de existencia y unicidad de las ecua-
ciones diferenciales de orden n.

Posteriormente, Cauchy, al tratar de de-
mostrar el mismo teorema para los sistemas
de ecuaciones diferenciales, introdujo la no-
tación vectorial que todav́ıa se utiliza hoy
en d́ıa. Generalización que, utilizando los
conceptos matriciales introducidos por Cay-
ley a mediados del siglo XIX, ayudó a Ja-
cobi a resolver completamente los sistema
de ecuaciones diferenciales lineales de coefi-
cientes constantes donde la matriz del sis-
tema es diagonalizable. Posteriormente Jor-
dan introdujo lo que hoy se conoce como la
forma canónica de Jordan precisamente para
resolver los sistemas lineales de ecuaciones
donde la matriz no es diagonalizable.

Las investigaciones de Poincaré sobre la es-
tabilidad y periodicidad de las soluciones del
sistema solar le condujeron al inicio de la
teoŕıa de las ecuaciones diferenciales no linea-
les. Obtuvo a finales del siglo XIX una serie
de resultados de ı́ndole cualitativo que fueron
mejorados por Bendixson y por Liapunov.
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