
Una introducción al diseño de curvas

por ordenador

Contenidos

1 El algoritmo de De Casteljau 1

1.1 Parábolas . 1
1.2 Curvas de Bézier generales . 4
1.3 La complejidad del algoritmo de De Castelajau 6

2 Propiedades de las curvas de Bézier 7

2.1 La propiedad de la envoltura convexa . 7
2.2 Interpolación inicial y final . 8
2.3 Pseudocontrol local. 8
2.4 Vectores tangentes. 8

3 Desarrollos más avanzados 9

4 Para leer más 10

5 Ejercicios 10

La representación de curvas más usada en el diseño por ordenador fue descubierta de
manera independiente por Pierre Bézier (1910–1999) y por Paul de Casteljau que tra-
bajaron para las empresas automoviĺısticas de Rénault y Citröen respectivamente. De
Casteljau publicó en un informe secreto en 1959 el algoritmo que lleva su nombre desti-
nado a generar por ordenador unas curvas sencillas e intuitivas de manipular, mientras que
Bézier en el principio de la década de los 60 derivó una forma diferente de diseñar el mismo
tipo de curvas.

Los trabajos de Bézier y de De Casteljau estaban orientados a la industria automoviĺıstica,
pero ahora las curvas de Bézier (en su versión plana) son la base de todos los programas

1

informáticos de diseño gráfico (como Adobe Illustrator y Corel Draw) y del diseño de tipos
de fuentes de letras como las PostScript o las TrueType.

1 El algoritmo de De Casteljau

1.1 Parábolas

Comencemos con el siguiente algoritmo que genera una curva: Sean p0,p1,p2 tres puntos
en IR3 y t ∈ [0, 1]. Construimos los siguientes dos puntos:

b1

0(t) := (1 − t)p0 + tp1, b1

1(t) := (1 − t)p1 + tp2.

Observemos que b1
0(t) es un punto situado en el segmento de extremos p0 y p1 y análoga-

mente b1
1(t) está entre p1 y p2. A continuación construimos otro punto:

b2

0(t) := (1 − t)b1

0(t) + tb1

1(t).

Un dibujo será de momento de más ayuda que las fórmulas anteriores: Para ello podemos
observar la parte izquierda de la figura 1. A medida que t vaŕıa entre 0 y 1, el punto b2

0(t)
describe una curva, como se puede ver en la parte derecha de la figura 1. La curva b2

0(t)
se llama curva de Bézier asociada a los puntos p0,p1,p2.

vp0

vp1

vp2�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A
A
A
AA

#
#

#
#

#
#

##

fb1
0(t)

fb1
1(t)

v
b2

0(t)

vp0

vp1

vp2�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A
A
A
AA

f

f

#
#

#
#

#
#

##
f

fv
v

aaaaaaaa

Figura 1: Se muestra a la izquierda el algoritmo de De Casteljau. A la derecha se muestra
la curva de Bézier que resulta tras aplicar el algoritmo.

En la siguiente dirección hay un programa (Java) que dibuja curvas de Bézier asociadas
a tres puntos de IR2, mediante el algoritmo descrito.

http://personales.upv.es/jbenitez/cajon_sastre/bez_par.jar

2

http://personales.upv.es/jbenitez/cajon_sastre/bez_par.jar

¿Qué tipo de curva es la curva de Bézier asociada a los puntos p0,p1,p2? El siguiente
ejercicio muestra que es una parábola.

Ejercicio: Usando las definiciones de b1
0(t),b

1
1(t) y b2

0(t) pruébese que

b2

0(t) = (1 − t)2p0 + 2t(1 − t)p1 + t2p2. (1)

Vamos a implementar una función de MATLAB que dibuje la curva de Bézier asociada
a tres puntos de IR2. Si los argumentos de entrada son los puntos

p0 = (P11, P12), p1 = (P21, P22), p2 = (P31, P32),

almacenaremos a estos puntos en la siguiente matriz 3 × 2

P =





P11 P12

P21 P22

P31 P32



 =





p0

p1

p2



 .

Vamos a calcular b1
0(t) y b1

1(t) de forma simultánea:

[
b1

0(t)
b1

1(t)

]

=

[
(1 − t)p0 + tp1

(1 − t)p1 + tp2

]

= (1 − t)

[
p0

p1

]

+ t

[
p1

p2

]

︸ ︷︷ ︸

⋆

=

[
p0

p1

]

+ t

([
p1

p2

]

−
[

p0

p1

])

︸ ︷︷ ︸

△

Aunque las expresiones (⋆) y (△) sean iguales, se va a usar (△) en vez de (⋆) debido a
que hay una multiplicación menos.

Por último,

b2

0(t) = (1 − t)b1

0(t) + tb1

1(t) = b1

0(t) + t
(
b1

1(t) − b1

0(t)
)
.

function cast2(P)

plot(P(1,1),P(1,2),’o’)

hold on, axis off, axis equal

plot(P(2,1),P(2,2),’o’), plot(P(3,1),P(3,2),’o’)

line(P(:,1),P(:,2))

PI=P(1,:); PF=P(3,:);

for t=0.1:0.1:0.9

Q=P([1 2],:)+t*(P([2 3],:)-P([1 2],:));

q1=plot(Q(1,1),Q(1,2),’*’);

3

q2=plot(Q(2,1),Q(2,2),’*’);

h=line(Q(:,1),Q(:,2));

R=Q(1,:)+t*(Q(2,:)-Q(1,:));

plot(R(1),R(2),’o’)

line([PI(1),R(1)],[PI(2),R(2)])

pause

PI=R;

delete(h), delete(q1), delete(q2)

end

line([R(1),PF(1)],[R(2),PF(2)])

Ejercicio: Dibuje varias curvas de Bézier asociadas a distintos puntos p0, p1, p2.
Observe que −−→p0p1 es tangente a la curva en p0 y que −−→p1p2 es tangente a la curva
en p1. Pruebe esta afirmación.

Ejercicio: Imagine que desea enlazar de forma suave los segmentos dibujados en
la parte izquierda de la figura 2 con el fin de obtener la parte derecha. Para ello se
construirá una parábola de Bézier cuyo punto inicial sea p y su punto final sea q.
Suponga que p = (1, 0) y q = (3, 1). ¿Qué coordenadas han de tener los puntos
de control? Represente estos puntos en MATLAB y dibuje la curva de Bézier.
Ayuda: piense en el ejercicio anterior.

p

q

p

q

Figura 2: ¿Cómo se ha de proceder para enlazar los dos segmentos de forma suave?

1.2 Curvas de Bézier generales

Las parábolas son curvas planas; sin embargo es interesante en las aplicaciones construir
curvas tridimensionales. Además las parábolas permiten poca flexibilidad en el diseño
gráfico asistido por ordenador. Esto se logra modificando el algoritmo anterior.

Dados los siguientes n + 1 puntos: p0,p1, . . . ,pn y dado el número t ∈ [0, 1], en primer
lugar se calculan n puntos

b1

i
(t) = (1 − t)pi + tpi+1, i = 0, . . . , n − 1.

A continuación se calculan n − 1 puntos

b2

i
(t) = (1 − t)b1

i
(t) + tb1

i+1(t), i = 0, . . . , n − 2.

4

Y aśı progresivamente hasta calcular

bn

0 (t) = (1 − t)bn−1

0 (t) + tbn−1

1 (t).

Este algoritmo se ve mejor si se pone en forma triangular. Como se ve en la tabla
siguiente con cuatro puntos iniciales (en donde se ha escrito br

i
por br

i
(t)).

p0

ց
p1 → b1

0 = (1 − t)p0 + tp1

ց ց
p2 → b1

1 = (1 − t)p1 + tp2 → b2
0 = (1 − t)b1

0 + tb1
1

ց ց ց
p3 → b1

2 = (1 − t)p2 + tp3 → b2
1 = (1 − t)b1

1 + tb1
2 → b3

0 = (1 − t)b2
0 + tb2

1

En general, el algoritmo de de Casteljau es el siguiente: Dados n puntos p0, . . . ,pn y
t ∈ [0, 1], se calculan los siguientes de forma recursiva:

1: b0
i
(t) = pi para i = 0, . . . , n.

2: br

i
(t) = (1 − t)br−1

i
+ tbr−1

i+1 para r = 1, . . . , n, e i = 0, . . . , n − r.

3: La curva final es bn

0 (t).

Los puntos p0, . . . ,pn se llaman puntos de control y la curva final se llama curva de Bézier

asociada a los puntos p0, . . . ,pn, la cual será denotada en lo sucesivo por B[p0, . . . ,pn](t).

En la siguiente dirección hay un programa (Java) que dibuja cúbicas de Bézier asociadas
a cuatro puntos de IR2, mediante el algoritmo descrito.

http://personales.upv.es/jbenitez/cajon_sastre/bez_cub.jar

En la figura 3 se muestran 4 curvas de Bézier. Las dos de arriba tienen 4 puntos de
control, mientras que las dos de abajo tienen 5 puntos de control. En la de abajo de la
derecha, los puntos inicial y final coinciden para producir una curva cerrada.

La siguiente función de MATLAB genera una curva de Bézier donde los puntos de control
se introducen de forma interactiva con el ratón.

function decast(n)

% n es el numero de puntos. Tiene que ser mayor que 2.

axis off, axis equal, hold on

P=ginput(n);

line(P(:,1),P(:,2))

j=1;

x=zeros(1,21); y=x;

5

http://personales.upv.es/jbenitez/cajon_sastre/bez_cub.jar

Figura 3: Diferentes curvas de Bézier.

for t=0:0.05:1

Q=P;

for i=1:n-1

Q = (1-t)*Q(1:n-i,:)+t*Q(2:n-i+1,:);

Q(n-i+1:n,:) = zeros(i,2);

end

x(j) = Q(1,1); y(j) = Q(1,2);

j=j+1;

end

plot(x,y)

Ejercicio: Modifique el programa anterior de forma que el argumento de entrada
en vez de ser el número de puntos que se introducen con el ratón, sea una matriz
con n filas y 2 columnas, siendo cada fila las coordenadas de los puntos de control.

6

Podemos observar en la figura 3 cómo la curva de Bézier suaviza la poligonal. Variando
los puntos de control, la curva se modifica por lo que estos puntos efectivamente propor-
cionan un control de la curva. Se supone que el diseñador de curvas debe saber “pocas”
matemáticas.

1.3 La complejidad del algoritmo de De Castelajau

Comentemos a continuación algo sobre la complejidad del algoritmo descrito. En general,
un algoritmo depende de n entradas. Por tanto, el número de operaciones depende de
n, denotemos por f(n) la cantidad de estas operaciones (en MATLAB se puede llevar
la cuenta de las operaciones realizadas mediante el comando flops). Es deseable que el
número de operaciones sea lo menor posible.

Podemos clasificar los algoritmos dependiendo de cómo sea esta función f(n). En par-
ticular hay dos tipos. Los algoritmos tales que f(n) es un polinomio se llaman de tiempo

polinómico y los que f(n) sea de la forma Kebn, donde b > 0, se llaman de tiempo expo-

nencial. Como para n grande, cualquier polinomio es menor que cualquier exponencial, se
prefiere los algoritmos de tiempo polinómico a los de tiempo exponencial.

¿Cómo es el algoritmo de De Casteljau? Hemos ejecutado el programa en varias oca-
siones y hemos hecho una tabla en donde aparecen el número de puntos de entrada y de
operaciones:

n 3 4 5 6 7 8
f(n) 1077 1586 2217 2974 3857 4866

El polinomio de segundo grado que mejor ajusta a los datos es p(n) = 62′6429n2 +
68′5n + 308′4286 de modo que cumple

n 3 4 5 6 7 8
p(n) 1077 1584 2217 2975 3857 4866

Como se observa fácilmente, se tiene que f(n) y p(n) son muy parecidos para n = 3, . . . , 8.
Se puede demostrar efectivamente que en el algoritmo de De Casteljau se cumple que f(n)
es un polinomio de grado 2, lo que indica que este algoritmo es bastante rápido.

2 Propiedades de las curvas de Bézier

Vamos a ver algunas propiedades que hacen importantes desde el punto de vista del diseño
de curvas por ordenador las curvas de Bézier.

7

2.1 La propiedad de la envoltura convexa

La curva de Bézier B[p0, . . . ,pt](t) siempre está contenida en el poĺıgono cuyos vértices
son los puntos p0, . . . ,pn. Esta propiedad se observa en la figura 3.

Esta propiedad es útil por lo siguiente: en muchas ocasiones es deseable saber si dos
curvas de Bézier se cortan o no. Esto computacionalmente es costoso (hay que decidir
si, dadas las curvas r, s : [0, 1] → IR2, existen t, s ∈ [0, 1] tales que r(t) = s(s)). Si
comprobamos que los poĺıgonos no se solapan, que es menos costoso, entonces seguro que
las curvas no se cortan. Sin embargo, si los poĺıgonos se solapan, no podemos concluir
nada.

2.2 Interpolación inicial y final

La curva de Bézier pasa por el primer y último punto de control.

2.3 Pseudocontrol local.

Supongamos que tenemos una curva de Bézier con puntos de control p0, . . . ,pn y queremos
modificarla levemente. ¿Cómo podemos hacerlo? ¿Qué ocurre si se mueve un punto de
control?

Figura 4: Si movemos un punto de control, la curva de Bézier trata de seguir a este punto.

Si movemos un punto de control, la variación de la curva se hace máxima alrededor del
punto de control que movemos, como se indica en la figura 4.

8

2.4 Vectores tangentes.

En el diseño gráfico es importante saber calcular tangentes a las curvas. Se cumple lo
siguiente: Sean p0,p1, . . . ,pn−1,pn puntos de IR2 o de IR3 y r = r(t) la curva de Bézier
asociada a estos puntos.

1. El segmento p0p1 es tangente a r en el punto inicial (que es r(0)).

2. El segmento pn−1pn es tangente a r en el punto final (que es r(1)).

3. Los penúltimos puntos calculados por medio del algoritmo de De Casteljau sirven
para dibujar la tangente a la curva.

Observe las figuras 1, 3 y 5.

a(t)

b(t)

Figura 5: El algoritmo de De Casteljau sirve para trazar tangentes.

Pruebe a ejecutar los programas

http://personales.upv.es/jbenitez/cajon_sastre/bez_par.jar

y

http://personales.upv.es/jbenitez/cajon_sastre/bez_cub.jar

9

http://personales.upv.es/jbenitez/cajon_sastre/bez_par.jar
http://personales.upv.es/jbenitez/cajon_sastre/bez_cub.jar

3 Desarrollos más avanzados

Éste no es el momento para profundizar más en la teoŕıa del diseño gráfico por ordenador, ya
que el objetivo de la práctica es simplemente mostrar alguna aplicación sencilla del análisis
vectorial. Lo único que haremos ahora es señalar algunos defectos de la teoŕıa expuesta y
cómo se han resueltos para aśı indicar algunos esbozos de una teoŕıa más avanzada.

• Si una curva de Bézier tiene un trozo recto, entonces toda la curva debe ser recta. Por
tanto, es imposible diseñar una única curva que contenga partes rectas y no rectas.
La solución es sencilla: diseñar por separado trozos de curvas que se unen.

• Si se desea generar curvas complicadas, el grado del polinomio debe ser elevado y
por tanto los cálculos se ralentizan. La solución es la misma que la del punto previo:
diseñar curvas de grado bajo que se ensamblan de forma adecuada. La solución más
socorrida es la de usar cúbicas de Bézier.

• Es imposible que la gráfica de un polinomio de grado 2 sea parte de una circunferen-
cia (o de una hipérbola). Por tanto es imposible usar curvas de Bézier para dibujar
circunferencias. Hay dos posibles soluciones: una es aproximar un trozo de circun-
ferencia mediante cúbicas de Bézier y la otra solución es usar las llamadas curvas

racionales de Bézier , que no explicaremos aqúı.

4 Para leer más

http://en.wikipedia.org/wiki/Bzier_curve

http://en.wikipedia.org/wiki/De_Casteljau’s_algorithm

http://processingjs.nihongoresources.com/bezierinfo/

http://devmag.org.za/2011/04/05/bzier-curves-a-tutorial/

http://tom.cs.byu.edu/~557/text/cagd.pdf

5 Ejercicios

1– En este ejercicio se buscará una cúbica de Bézier para aproximar un cuarto de
circunferencia. Por simplicidad se supondrá que la circunferencia es de radio r y está
centrada en el origen. Por tanto, el objetivo de este ejercicio es hallar b0,b1,b2,b3 puntos
de IR2 tales que r(t) = B[b0,b1,b2,b3](t) sea la cúbica que se desea hallar. Obsérvese la
figura 6.

10

http://en.wikipedia.org/wiki/B�zier_curve
http://en.wikipedia.org/wiki/De_Casteljau's_algorithm
http://processingjs.nihongoresources.com/bezierinfo/
http://devmag.org.za/2011/04/05/bzier-curves-a-tutorial/
http://tom.cs.byu.edu/~557/text/cagd.pdf

1. Ya que el cuarto de circunferencia debe pasar por (r, 0) y por (0, r), se exige r(0) =
(r, 0) y r(1) = (0, r). Pruébese que b0 = (r, 0) y b3 = (0, r).

v
b0 = (r, 0)

v
b1

v
b2

v
b3 = (0, r)

@
@

@
@

@
@

fr(1/2)

Figura 6: Aproximación de una circunferencia por una cúbica de Bézier.

2. Ya que la tangente al cuarto de la circunferencia en (r, 0) es vertical se exige r′(0) =
(0, λ) para algún λ > 0 y por idéntico motivo se exige r′(1) = (−µ, 0) para µ > 0.
Por cuestión de simetŕıa, se tomará λ = µ. Pruébese que b1 = (r, λ/3) y que
b2 = (λ/3, r).

3. Por tanto, sólo hace falta determinar λ. Forzamos que el punto que está en la
mitad de la curva de Bézier pase por la mitad del cuarto de circunferencia. Hágase
r(1/2) = (r

√
2/2, r

√
2/2) para hallar λ.

4. Implemente una función de Matlab de modo que sus argumentos de entrada sean el
centro y el radio de una circunferencia y dibuje (mediante el procedimiento descrito
previamente, enlazando cuatro cuartos de circunferencia y usando los programas
dados en esta práctica) esta circunferencia.

2– Observe la figura 5. Pruebe que el vector que une a(t) y b(t) es tangente a la
curva de Bézier generada por 4 puntos.

3– Pruebe que una expresión expĺıcita para la curva de Bézier generada por los puntos
p0, p1, p2, p3 (análoga a la expresión (1)) es

r(t) = (1 − t)3p0 + 3t(1 − t)2p1 + 2t2(1 − t)p2 + t3p3, t ∈ [0, 1]. (2)

4– Sean p0, p1, p2 y p3 cuatro puntos de IR2 y v un vector. Def́ınanse r la curva de
Bézier generada por p0, p1, p2 y p3 y s la curva de Bézier generada por p0 + v, p1 + v,
p2 + v y p3 + v. Pruebe que

r(t) + v = s(t), t ∈ [0, 1]. (3)

11

p0 p1

p2

p3

p0 + v
p1 + v

p2 + v

p3 + v

b b

b

b

b b

b

b

v

Figura 7: Utilidad de la igualdad (3).

Explique de forma intuitiva qué utilidad puede tener la identidad (3). Para ello piense
sobre la figura 7.

5– En este ejercicio se razonará sobre la propiedad del pseudocontrol local.

Sean p0, p1, p2 y p3 cuatro puntos de IR2 y v un vector. Def́ınanse r la curva de Bézier
generada por p0, p1, p2 y p3 y s la curva de Bézier generada por p0, p1 + v, p2 y p3.
Pruebe que

r(t) − s(t) = 3t(1 − t)2v, t ∈ [0, 1]. (4)

¿Qué valor de t maximiza ‖r(t) − s(t)‖? ¿Qué significado geométrico posee (4)?

6– Si una curva r : [a, b] → IR2 cumple que existe t0 ∈ [a, b] tal que r′(t0) = 0, es
posible que tenga un “pico” en r(t0), aunque r sea diferenciable.

1. Dibuje (con Matlab) la curva r(t) = (t2, t3), para t ∈ [−1, 1]. ¿Qué ocurre para t = 0?

2. Sean p0,p1,p2 tres puntos de IR2 no alineados. Pruebe que si r es la curva de Bézier
asociada a estos tres puntos, entonces r′(t) 6= 0 para cualquier t ∈ [0, 1].

3. Dé un ejemplo (dibújelo con Matlab y pruébelo de forma razonada) de 4 puntos de
IR2 cuya curva de Bézier asociada presente un “pico”. Ayuda: Observe la figura 8.

b

bb

b b

bb

b b

bb

b

Figura 8: Una cúbica de Bézier puede presentar “picos”.

12

7– Sean p0, p1, p2 y p3 cuatro puntos de IR2 y M una matriz cuadrada 2 × 2. Sean
qi = Mpi para i = 0, 1, 2, 3. Denótese por r la curva de Bézier asociada a p0, p1, p2 y p3

y por s la curva de Bézier asociada a q0, q1, q2 y q3. Pruebe que

Mr(t) = s(t), t ∈ [0, 1]. (5)

¿Qué utilidad práctica tiene (5)? Ayuda: Considere la matriz

M =

[
cos 30o − sen 30o

sen 30o cos 30o

]

,

que corresponde a un giro de ángulo 30o grados y los puntos

p0 =

[
1
1

]

, p1 =

[
2
2

]

, p2 =

[
1
2

]

, p3 =

[
2
1

]

.

Dibuje (en Matlab y por separado) las curvas de Bézier asociadas a p0, p1, p2 y p3, y a
q0, q1, q2 y q3. ¿Qué observa?

13

	El algoritmo de De Casteljau
	Parábolas
	Curvas de Bézier generales
	La complejidad del algoritmo de De Castelajau

	Propiedades de las curvas de Bézier
	La propiedad de la envoltura convexa
	Interpolación inicial y final
	Pseudocontrol local.
	Vectores tangentes.

	Desarrollos más avanzados
	Para leer más
	Ejercicios

