Factorizaciéon QR de una matriz.

Dada una matriz A (no necesariamente cuadrada), con columnas linealmente independientes,
encontraremos matrices @, R tales que

(i) A=QR.
(ii) Las columnas de ) son ortonormales.
(iii) @ es del mismo tamafio que A.

(iv) R es triangular superior invertible.

La forma de hacerlo es aplicar el proceso de Gram-Schmidt a las columnas de A.

Proceso de Gram Schmidt.
A partir de los vectores linealmente independientes vy, ..., v, se construyen
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Los vectores uy, ..., u, son ortogonales.
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Las columnas de A son
vi = (1,0,0,0)", vy = (1,1,0,1)", vz = (1,0,1,1)".
Apliquemos el proceso de Gram-Schmidt a vy, vo, vs:

e u; =v; =(1,0,0,0)".
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Ahora se tiene
A = (vi|va]vs)
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