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4.3. Sistemas homogéneos de coeficientes constantes . . . . . . . . . . . . . . . . . 115
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0. Metodoloǵıa Docente

0.1. Matemática y matemática aplicada

¿Cuáles son las cualidades fundamentales de las matemáticas?: Abstracción, rigor lógico,
el ineludible carácter de sus conclusiones y, finalmente, el amplio campo de sus aplicaciones.

En relación con la abstracción, podemos decir que es un rasgo fundamental de toda ciencia.
Sin embargo, en las ciencias de la naturaleza se realizan representaciones directas de fenómenos
de la realidad y posteriormente una generalización experimental, por lo que los conceptos o
teoŕıas abstráıdas pueden ser rechazadas en cuanto una nueva observación aśı lo exija. Por el
contrario en matemáticas, los conceptos tienen sentido por śı mismos, únicamente dejan de
ser aceptados si se demuestra su inconsistencia y las teoŕıas sólo son rechazadas si se descubre
algún error en los razonamientos. Por tanto, la abstracción va más allá que en ninguna otra
ciencia, pues aunque sus bases surgen de analoǵıas directas con la realidad, su desarrollo
formal es totalmente independiente de ésta siguiendo su propio camino. Podemos decir que
las ideas matemáticas se originan en la experiencia. Sin embargo, una vez axiomatizadas,
comienzan una vida propia.

La construcción del edificio matemático, aunque guiada por la intuición, se realiza con
total rigor lógico. Si alguna observación de la realidad modifica los cimientos sobre los que
se asienta, no por ello la teoŕıa matemática dejará de tener validez, únicamente su aplica-
ción a ese caso concreto habrá dejado de tener valor. Por todo esto, las matemáticas van
creciendo, al mismo tiempo que crece el grado de abstracción. Este rigor lógico hace que los
razonamientos matemáticos sean incontestables. Citando a J. Hadamard: “El objetivo del
rigor matemático es confirmar y legitimar las conquistas de la intuición y nunca ha tenido
otra finalidad.”Gracias a esto, el rigor matemático es el responsable de que las matemáticas
ocupen un lugar insustituible en las restantes ciencias en las que la creación de modelos o
abstracciones de la realidad resultan imprescindibles.

Debemos resaltar la amplitud de aplicaciones de las matemáticas en la industria, tecno-
loǵıa moderna, mecánica, f́ısica, economı́a,... bien en procesos técnicos, bien en expresión de
leyes, influyendo de forma decisiva en su desarrollo. Sirva como ejemplo las importantes con-
tribuciones a estas disciplinas por muchos matemáticos ilustres como Arqúımedes, Newton,
Euler, Legendre, Laplace, Lagrange, Fourier, Gauss, Hamilton, Poincaré, Minkowski, Weyl,
Morgenstein, von Neumann, Nash, ...

Partiendo de la observación, las ciencias producen una formulación de leyes y expresiones
matemáticas de éstas. De estas leyes vienen las deducciones y, finalmente, la teoŕıa es llevada
a la práctica que a su vez proporciona nuevos y poderosos impulsos al desarrollo de la teoŕıa.
Como dos ejemplos destacados podemos citar los siguientes:

El estudio de los fenómenos electromagnéticos obligó a Maxwell a desarrollar las ecuaciones
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de Maxwell, para a partir de estas ecuaciones deducir, por métodos puramente matemáticos,
la existencia de las ondas electromagnéticas y que su velocidad de propagación deb́ıa de ser
la de la luz. Tras este resultado propuso la teoŕıa electromagnética de la luz que motivó la
búsqueda de ondas electromagnéticas. Estas ondas fueron descubiertas de manera emṕırica
por Hertz poco después.

Otro ejemplo es el descubrimiento del planeta Neptuno. Es una de las más fascinantes
historias de la astronomı́a y muestra la precisión de la teoŕıa matemática de movimientos
planetarios. En 1820 el astrónomo Bouvard construyó tablas de los movimientos de Júpiter,
Saturno y Urano. Las posiciones de Júpiter y Saturno fueron satisfactorias; pero encontró que
era imposible cuadrar las de Urano. En 1845 el astrónomo Le Verrier propuso la existencia
de un planeta exterior para explicar las irregularidades del movimiento de Urano. El 31 de
Agosto de 1846 presentó una memoria en la Academia de las Ciencias francesa, escribió el
18 de Septiembre al astrónomo Galle y el 23 de Septiembre el planeta fue descubierto en un
primer intento separándose tan sólo 1o del lugar predicho por Le Verrier.

Un buen desarrollo matemático permite obtener resultados potentes al investigador cient́ı-
fico. Pero también rećıprocamente, una ciencia y técnica ambiciosa en sus proyectos empujan
las matemáticas hacia cotas superiores de desarrollo a través de los problemas que obligan a
plantearse al matemático.

¿Dónde está la frontera entre la matemática pura y la aplicada? Tenemos que decir
que esta frontera es muy difusa puesto que es imposible afirmar a priori si unos resultados
determinados, aunque dentro de un marco de total abstracción y sin ninguna conexión con
la realidad, podŕıan aplicarse o no. La investigación matemática va alejándose de la realidad
emṕırica; pero a la vez tiene posibilidades totalmente insospechadas de actuar en un nivel
teórico superior.

Podemos citar el ejemplo de la geometŕıa eucĺıdea. Cuando los griegos axiomatizaron la
geometŕıa partieron de una serie de resultados emṕıricos obtenidos de los egipcios y babilo-
nios. La culminación fueron los Elementos de Euclides donde todo el saber estaba rigorizado
al máximo permitido por la época, al tiempo que aparentemente inútil. Podemos citar la
siguiente anécdota atribuida a Euclides: Una vez un alumno le interrumpió su explicación
sobre geometŕıa preguntándole qué se podŕıa ganar con aquellas elucubraciones tan extrañas.
Euclides se dirigió a su esclavo alĺı presente: “Dale una moneda y que se vaya, pues necesita
sacar ganancias de lo que aprenden”. Aśı llegamos hasta el siglo XVI, cuando se descubrió
que las órbitas de los planetas son elipses, las trayectorias de la baĺıstica son parábolas, los
telescopios han de se paraboloides, ... Más aún la geometŕıa eucĺıdea fue hecha álgebra por
medio de la geometŕıa anaĺıtica de Descartes, a continuación la generalización del estudio de
las cónicas llevó al estudio de la diagonalización de matrices simétricas, y posteriormente al
estudio de diagonalización de endomorfismos en espacios de infinitas dimensiones, que ayudó
a resolver las ecuaciones integro-diferenciales a principios del siglo XX que aparecen en mul-
titud de campos de la f́ısica. Asimismo el estudio de los operadores diagonalizables en los
espacios de Hilbert llevó al formalismo matemático de la mecánica cuántica.

Otro ejemplo sacado de la historia nos lo proporciona el imperio romano. Los romanos
eran un pueblo práctico y haćıan alarde de su practicismo. Diseñaron y completaron grandes
proyectos de ingenieŕıa; pero se negaron a considerar cualquier idea que no pudiera venir de
las aplicaciones prácticas. La actividad romana acerca de las matemáticas viene dada por
Cicerón: “Los griegos dieron al geómetra el más alto honor. Pero nosotros hemos establecido
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como ĺımite de este arte su utilidad para medir y contar”. La incapacidad de los romanos para
desarrollar las matemáticas era notoria. La lección que se puede aprender es que los pueblos
que desdeñan los trabajos de matemáticos y cient́ıficos altamente teóricos y desacreditan su
utilidad ignoran la forma en la que se han presentado importantes desarrollos prácticos.

0.2. La enseñanza de las matemáticas en las escuelas técnicas

La enseñanza de las matemáticas en una escuela técnica plantea el problema de elegir qué
matemáticas hay que impartir y cómo hacerlo.

Todo esto nos lleva a distinguir entre las necesidades externas de las matemáticas, origi-
nadas por las demás ciencias y las necesidades internas relativas a unificación, generalización,
... Son las primeras las que deben estudiarse en las escuelas técnicas, adecuando los planes
de estudio a tal fin. Estos planes deben proporcionar al estudiante la capacidad de atacar los
problemas que se plantearán en el ejercicio de su profesión.

Uno de los principales problemas que surgen en la enseñanza de las matemáticas en una
universidad tecnológica es el siguiente:

¿Cómo motivar al alumno en las clases de matemáticas?

Es un error frecuente suponer que un estudiante de una carrera tecnológica está interesado
en las matemáticas como un fin en śı mismas. En un curso demasiado formalista el alumno
ve hasta la saciedad el siguiente modelo secuencial de exposición de la teoŕıa:

Definición ⇒ Ejemplos ⇒ Teorema ⇒ Demostración ⇒ Corolarios

La imponente sucesión de teoremas frustra al alumno, especialmente en los primeros años
de universidad. El resultado inmediato es la falta de motivación y la insatisfacción del alumno,
lo que provoca un alto porcentaje de abandonos y la sensación de que las matemáticas son
demasiado abstractas y carentes de utilidad.

Una de las preguntas que se formulan los alumnos al ver contenidos matemáticos en sus
planes de estudio es

¿Para qué sirven las matemáticas?

Creemos que no hay mejor manera de motivar al alumno que la conexión con otras asig-
naturas de la carrera. No debemos olvidar que la mayor parte de las teoŕıas matemáticas
surgieron de ejemplos f́ısicos concretos. Citamos a M. Kline [44]:

Mathematics is the key to our understanding of the physical world... Should such
uses and values of mathematics be taught in mathematics courses? Certainly!
Knowledge is a whole and mathematics is part of that whole... To teach mathe-
matics as a separate discipline is a perversion, a corruption and a distortion of true
knowledge. Each subject is an approach to knowledge and any mixing or overlap
where convenient and pedagogically useful, is desirable and to be welcomed. Some
of these relationships can serve as motivation; others would be applications; and
still others would supply interesting reading and discussion material that would
vary and enliven the content of our mathematics courses.
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Mathematics is not an isolated, self-sufficient body of knowledge. It exists pri-
marily to help man understand and master the physical, the economic and the
social worlds... This is also the primary reason for the presence of mathematics
in the curriculum. We are therefore obliged to present this value of mathematics.
Anything less is cheating the student out of the fruit of his learning

The natural motivation is the study of real, largely physical, problems. Practically
all the major beanches of mathematics arose in response to such problems and
certainly on the elementary level this motivation is genuine. It may perhaps seem
strange that the great significance of mathematics lies outside of mathematics but
this fact be reckoned with. For most people, including the great mathematician,
the richness and values that do attach to mathematics derive from its use in
studying the real world. Mathematics is a means to an end. One uses the concepts
and reasoning to achieve results about real things.

Plutarch said, “The mind is not a vessel to be filled but a fire to be kind-
led.”Motivation kindles the fire. The use of real and especially physical problems
serves not only to motivate mathemaitics but to give meaning to it... Mathemati-
cal concepts arose from such physical situations or phenomena and their meanings
were physical for those who created mathematics in the first place. To rob the
concepts of their meaning is to keep the rind and to throw away the fruit.

Aśı pues, surge una pregunta:

¿Debe un profesor de matemáticas enseñar contenidos no matemáticos?

En nuestra opinión la respuesta debe ser no. Pero, también, el profesor de matemáticas
debe tener conocimiemtos de otras disciplinas para apoyar la docencia de las herramientas
matemáticas que el alumno necesita a lo largo de sus estudios. Es importante mostrar la
interactividad entre las matemáticas y las diferentes disciplinas cient́ıficas [54, 67]. Por tanto,
creemos adecuado, en la medida de lo posible, seguir el siguiente esquema:

Problema real ⇒ Formulación matemática ⇒ Teoŕıa ⇒ Validación ⇒ Predicciones

La teoŕıa introducida puede alcanzar toda su amplitud generalizadora e incluso puede
finalmente construirse la teoŕıa axiomática de la que se deducen como casos particulares los
problemas concretos que hicieron introducir el tema.

La tendencia a tratar sólo el problema concreto puede conducir a que los cursos de ma-
temáticas se conviertan en recetarios. Esta desviación se ha dado a lo largo del tiempo como
reacción ante la enseñanza viciada de teoricismo que en algunos casos se ha producido. La
reacción antiteórica provocó la proliferación de “ingenieros de manual”, técnicos excesiva-
mente habituados a resolver los problemas mediante los numerosos manuales que proliferaron
por entonces. El constante ensanchamiento de la técnica y la creciente complejidad de los
problemas hacen inútil el empeño de dominar toda la casúıstica. Las técnicas concretas enve-
jecen rápidamente, lo que hace más patente aún la necesidad de dar una formación abierta,
dinámica y polivalente que capacite al titulado profundizar posteriormente en otras áreas.

Como ya comentábamos, una gran parte del desarrollo tecnológico se basa en la aplicación
de los resultados obtenidos en investigación básica. Desdeñar la teoŕıa frente a la práctica nos
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parece imponer una limitación en la formación de nuestros alumnos que puede tener graves
consecuencias a la hora de abordar una especialización seria.

De todo ello se desprende que durante su estancia en los primeros años de universidad,
el futuro ingeniero debe adquirir una formación básica sin pretender altas especializaciones.
Sobre esta base el estudiante podrá construir posteriormente una estructura sólida y cursar
la especialidad de modo adecuado.

Creemos que debemos aspirar a alcanzar un equilibrio: Definiendo los términos técnicos
claramente. Enunciando todos los teoremas. Demostrando todos salvo los que por limitación
temporal sean excesivamente largos o los que la demostración no aporte algo significativo.
Establecer teoremas tan generales como sea posible, exceptuando los casos en los que una
generalización obligue a complicar sustancialmente la demostración de un resultado sencillo
o si no se utiliza efectivamente en la práctica.

0.3. Métodos de enseñanza

Son múltiples los métodos de enseñanza. Debemos tener presente que la enseñanza no
debe olvidar sus objetivos; por lo que una excesiva erudición no es el conducto óptimo. Como
se ha dicho, el arte de enseñar consiste en callar lo que no es necesario decir.

Comencemos por examinar las dos técnicas pedagógicas más extendidas y en cierto modo
más antagónicas.

Lección magistral. El profesor expone un tema relacionándolo con los temas anteriores. Ca-
ben diversas posibilidades: exposición ordenada de los temas (de acuerdo con el esque-
ma lógico definición-proposición-demostración) o el planteamiento por el profesor de un
problema práctico cuya discusión origine el desarrollo de toda una teoŕıa.

Método heuŕıstico. El trabajo personal del alumno es fundamental. Se trata que el estu-
diante analice por su cuenta la materia bajo la supervisión del profesor que indica los
objetivos y ayuda con sus puntualizaciones y explicaciones (véase [53]).

Ambos métodos deben ser complementarios y un buen profesor ha de extraer lo mejor de
ambos. Desgraciadamente, el método heuŕıstico es muy lento, por lo que sólo es aplicable a
grupos reducidos.

Hemos intentado construir un proyecto docente flexible que ocupa una posición intermedia
entre los anteriormente descritos. No distinguiremos entre clases teóricas y de problemas,
plantearemos problemas para interpretar el significado de un teorema o una definición o para
introducir una determinada parte de la teoŕıa y al final de cada tema para asentar todos
aquellos resultados que se acaban de explicar y aśı como sus aplicaciones.

Aconseja el matemático Puig Adam recurrir a la intuición. Como homenaje a su figura
reproducimos su famoso decálogo de la didáctica, donde cada precepto queda resumido en una
sola palabra:

I - Adaptación. No adoptar una didáctica ŕıgida, sino acomodarla en cada caso al alumno,
observándole atentamente.

II - Genetismo. No olvidar el origen concreto de la matemática ni los procesos históricos
de su evolución.
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III - Vitalismo. Presentar la matemática como una unidad en relación con la vida natural
y social.

IV - Graduación. Graduar cuidadosamente los planos de abstracción
V - Heurismo. Enseñar guiando la actividad creadora y descubridora del alumno
VI - Interés. Estimular la actividad despertando interés directo y funcional hacia el objeto

del conocimiento.
VII - Autocŕıtica. Promover en todo momento la autocorrección.
VIII - Maestŕıa. Conseguir cierta maestŕıa en las soluciones antes de automatizarlas.
IX - Expresión. Cuidar que la expresión del alumno sea traducción fiel de su pensamiento.
X - Éxito. Procurar a todos los alumnos éxitos que eviten su desaliento.

0.4. Desarrollo Teórico

Hemos optado por la lección magistral a la hora de comunicar al alumno los conocimientos
que necesita y que hemos fijado en nuestros objetivos. No significa esto que las clases teóricas
deban ser un monólogo. El profesor debe estimular la participación de los alumnos, por
ejemplo, mediante la intercalación de preguntas que les obliguen a pensar. Es tarea del
profesor aprovechar estas preguntas para hacer más dinámica su explicación, distinguiendo
cuáles son interesantes para ser contestadas en ese momento y cuáles son preferibles declinar
la respuesta e invitar al alumno a seguir su intuición y buscar dicha respuesta por śı mismo.
Este diálogo permite al profesor conocer mejor a los alumnos, corregir errores, explicar con
mayor fluidez los puntos que a los alumnos les resulten fáciles, insistiendo en los más dif́ıciles
e incluso alterar el ritmo de la clase a fin de adecuarlo más a las caracteŕısticas del grupo en
ese momento.

Por otra parte, siempre que el tema lo permita, podremos cambiar el sistema de conferencia
por el heuŕıstico, guiando al alumno mediante algunas sugerencias que le ayuden a superar los
pasos dif́ıciles. Es provechoso seguir su razonamiento hasta el final, aunque haya escogido un
camino equivocado o excesivamente largo, ya que de los errores también se aprende. También
creemos conveniente dejar al alumno la demostración de alguna cuestión teórica que le sea
accesible, con lo que fomentaremos el hábito de la deducción y la práctica en el uso de los
conceptos adquiridos. Al mismo tiempo adquirirá práctica en abordar problemas nuevos,
buscando un modelo conocido que se ajuste a la cuestión planteada.

Otro sistema para favorecer la presencia activa del alumno es entregar apuntes por an-
ticipado. La distribución de apuntes tiene puntos a favor y en contra. Entre los aspectos
positivos el alumno no distrae su atención con la necesidad de tomar notas. En contrapar-
tida este sistema puede degenerar en que los alumnos dejen de asistir a clase, no consulten
bibliograf́ıa, distraigan su atención al tener la seguridad de poseer de antemano por escrito
la información necesaria, ... El método de apuntes es ideal en situaciones más bien utópicas,
pocos alumnos por grupo, muy trabajadores e interesados en el tema; situación que no es con
mucho la actual en nuestras aulas.

Los ejemplos pueden utilizarse como comprobación de la teoŕıa permitiendo en ocasiones
encontrar la técnica necesaria para la demostración del caso general. Es indudable que dan
mayor valor a la teoŕıa, pudiendo emplearse para generar y mejorar la intuición. Asimismo,
no sólo deben mostrar porqué funcionan los métodos, sino también cuando no. Aprendemos
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mucho de problemas cuya solución no corresponde con lo que esperábamos. A menudo se
desarrollan nuevas ideas al investigar las razones por las que algunos métodos fallan.

Por otra parte, los ejemplos no se referirán a las matemáticas, sino también a otras ciencias
para captar por un lado la atención del estudiante y por otro abrirle posibilidades de aplicación
de los nuevos conceptos. Es por todo ello que los ejemplos irán intercalados, precediendo en
unos casos y complementando en otros el desarrollo teórico. Éste es un objetivo para perseguir
en todos los temas y creemos que el programa que proponemos se presta a ello.

Es conocido que las demostraciones matemáticas contribuyen a formar la mentalidad
cŕıtica del alumno y a hacerle despreciar argumentos falsos. Sin embargo, en ocasiones,
cuando la prueba no aporta nada nuevo de interés es recomendable suprimirla. En estos casos
es preferible la delimitación, mediante ejemplos y contraejemplos de la validez del teorema.

0.5. Desarrollo práctico

El desarrollo práctico es un complemento imprescindible del desarrollo teórico ya que en
ocasiones un problema resuelto inmediatamente después de un resultado teórico sirve para
su comprensión definitiva, y en otras un problema puede generalizarse dando lugar a una
interesante propiedad.

A grandes rasgos, los objetivos del desarrollo práctico son los siguientes:

1. Aclarar los resultados teóricos ya conocidos.

2. Aplicar la teoŕıa en la resolución de problemas de naturaleza real, f́ısicos, técnicos, ...

3. Adquirir habilidad tanto en el manejo de las técnicas de resolución, como en reducir
problemas a modelos ya conocidos.

Creemos que el salto de la teoŕıa a una aplicación concreta es enorme. Exige estar muy
familiarizado con los factores que intervienen en la modelización del problema y podemos
decir que no se comprende bien un concepto hasta que no se aplica en numerosas situacio-
nes concretas, lo que permite asimilar el concepto probando su potencia y limitaciones. Es
por todo ello que las clases de problemas no pueden ser suprimidas en aras de una mayor
información teórica.

Es importante no limitarnos a resolver una serie de problemas concretos en la pizarra;
sino que la participación del alumno en el desarrollo práctico debe ser totalmente activa. El
profesor también debe explicar porqué otros métodos no funcionan, resaltar la importancia
de algunas de las hipótesis, corregir errores de concepto, etc.

0.6. Ubicación de las asignaturas

La asignatura de Álgebra Lineal es troncal, está en el primer curso de la carrera de
ingeniero industrial tiene 6 créditos y es anual.

La asignatura de Ecuaciones Diferenciales Ordinarias es troncal, está en el segundo
curso de la carrera de ingeniero industrial tiene 3 créditos y es del primer cuatrimestre.
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La asignatura de Análisis Vectorial es troncal, está en el primer curso de la carrera de
ingeniero de telecomunicación tiene 4’5 créditos y es del segundo cuatrimestre.

La asignatura de Matemáticas es troncal, está en el segundo curso de la carrera de
ingeniero de telecomunicación tiene 6 créditos y es del primer cuatrimestre.

0.7. Evaluación

La última etapa de la enseñanza es la evaluación. El profesor ha de determinar de algún
modo cuándo un alumno ha alcanzado los objetivos del programa. El método ideal consistiŕıa
evidentemente en un conocimiento personal y profundo de las capacidades y aptitudes de cada
uno de los alumnos. El elevado número de alumnos en las aulas hace imposible llevar a la
práctica este método en la mayoŕıa de los casos.

Optaremos por el clásico examen con dos convocatorias por matŕıcula. En cuanto a las
caracteŕısticas generales de estas pruebas debemos observar algunos criterios generales:

1. Cada prueba será amplia, intentando evitar el factor suerte, y consistirá de cuestiones
teóricas y de problemas. En cualquier caso deberán evitarse los exámenes de naturaleza
puramente memoŕıstica.

2. Se debe exigir al alumno la correcta utilización del lenguaje y terminoloǵıa propios de
la asignatura.

3. Es necesario valorar la exposición lógica, deducción e intuición de las cuestiones en la
resolución de los problemas.

4. Las pruebas se harán simultáneamente a todos los alumnos del mismo curso, para evitar
los agravios comparativos que podŕıan surgir entre exámenes distintos. Por otra parte,
un mismo profesor debe corregir la misma pregunta a todos los alumnos, incluso a los
de grupos a los cuales el profesor no imparta clase, de forma que la tendencia personal
afecte por igual a todos los alumnos del curso.

En los apéndices A, B, C y D hemos incluido un modelo de examen final de cada asigna-
tura.

0.8. El uso de libros

El libro de texto ha extremado posiciones como medio didáctico, exagerando unas veces,
hasta hacerlo imperar en la enseñanza como exclusiva fuente del saber, negando otras su
eficacia.

En la enseñanza media la mayoŕıa de los alumnos han tenido a su disposición uno de estos
libros por cada asignatura. No ha habido consulta bibliográfica adicional por el estudiante.
Llega, pues, a la universidad con el mal hábito de consultar una única fuente de información.
Es ésta una costumbre que debemos ayudarle a olvidar.

Los contenidos de la asignaturas de las que consta este proyecto docente se encuentran
básicamente en un libro para cada asignatura: Para las asignaturas de Álgebra Lineal y
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Ecuaciones Diferenciales Ordinarias proponemos [37], para la de Análisis Vectorial usaremos
[50] y para la de Matemáticas ofrecemos [40].

Pero esto no significa que nos debamos restringir a un sólo libro para cada asignatura.
Como bibliograf́ıa suplementaria incluimos los siguientes libros: Para Álgebra Lineal: [51, 55,
68]. Para Ecuaciones Diferenciales Ordinarias: [11, 13, 45, 62, 75]. Para Análisis Vectorial:
[12, 17, 61]. Puesto que los alumnos de la asignatura de Matemáticas ya son de segundo curso,
podemos dar una bibliograf́ıa más abundante; para cada tema proponemos varios libros, que
se detallarán cuando se exponga el proyecto docente más adelante. Podemos decir que los
contenidos de las asignaturas se encuentran dispersos en varios libros, aunque concentrados
en uno sólo. Es tarea del profesor conseguir un todo homogéneo. No se trata, obviamente,
de elaborar una asignatura a base de “pegar”trozos de distintos libros.

Es conveniente señalar al alumno que, aunque la asignatura consiste en la materia expuesta
en clase, no se debe limitar a estudiar esta materia, ya que malas interpretaciones de lo dicho
en clase o errores no percibidos pueden crearle gran confusión. El alumno debe tomar apuntes
en clase y consultar con el profesor aquello que no entienda; pero al mismo tiempo debe
acostumbrarse a manejar libros de consulta que complementen la explicación del profesor.

Pero la conveniencia de manejar libros de consulta se convierte en necesidad en las clases
prácticas. Los alumnos no deben resolver sólo los problemas planteados en clase, sino que
han de usar la bibliograf́ıa que el profesor les ha suministrado, sobre todo de libros donde se
combinen los problemas resueltos con los propuestos, para conseguir la habilidad suficiente
en el manejo de los métodos y técnicas de resolución.
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Parte I.

Programa de Álgebra Lineal
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Introducción

La finalidad de este curso es presentar la teoŕıa básica y los métodos propios del álgebra
lineal, en vista a posteriores estudios o aplicaciones.

Creemos que los ejemplos concretos han de preceder a la abstracción. Sin embargo, en el
temario no hemos incluido las matrices y sistemas de ecuaciones lineales en primer lugar. El
álgebra lineal trata de vectores y creemos que los estudiantes necesitan ver los vectores (en
IR2 ó IR3 con el fin de adquirir percepción geométrica.

El programa no es parco en aplicaciones. Es importante que los alumnos puedan apreciar
la gran variedad de problemas en los que puede aplicarse el álgebra lineal.

Hemos distribuido la asignatura en estas unidades:

Caṕıtulo 1 Geometŕıa de IR2 y IR3.

Caṕıtulo 2 Matrices.

Caṕıtulo 3 Sistemas de ecuaciones lineales.

Caṕıtulo 4 Espacios vectoriales.

Caṕıtulo 5 Aplicaciones lineales.

Caṕıtulo 6 Curvas de Bézier.

Caṕıtulo 7 Espacio vectorial eucĺıdeo.

Caṕıtulo 8 Aproximación por ḿınimos cuadrados.

Caṕıtulo 9 Teoŕıa espectral.

Caṕıtulo 10 Aplicaciones de la teoŕıa espectral.

Comentamos brevemente el contenido de cada uno de los caṕıtulo.
El Caṕıtulo 1 trata de vectores de IR2 ó IR3 y desarrolla muchos conceptos que se

repiten a lo largo del curso haciendo hincapié en la intuición geométrica. En primer lugar
desarrollamos las operaciones elementales (suma y producto por escalares) e introducimos los
conceptos de independencia lineal, sistemas generadores y bases. A continuación introducimos
el producto escalar usual y el producto vectorial. Aplicamos estas operaciones a problemas
geométricos concretos. Por último se estudian algunas formas de las ecuaciones de rectas y
planos.

El Caṕıtulo 2 estudia las matrices. Introducimos las matrices para mostrar cómo escri-
bir sistemas de ecuaciones de manera compacta. Por medio de esta introducción definimos las
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operaciones básicas: suma, multiplicación por escalares, multiplicación de matrices y poten-
ciación de matrices. Estudiamos sus propiedades elementales, aśı como aplicaciones a modelos
concretos, como los procesos estocásticos o la teoŕıa de grafos. El tema se completa con la
introducción del determinante, la inversión de matrices y las operaciones por bloques.

En el Caṕıtulo 3 estudiamos los métodos directos de resolución de los sistemas de
ecuaciones lineales. De todos los métodos disponibles utilizamos el algoritmo de eliminación
de Gauss por ser el que menos operaciones necesita. Hacemos énfasis en la representación
matricial del método de Gauss que permiten las factorizaciones LU y de Choleski. Explicamos
el algoritmo de Gauss-Jordan para el cálculo de la inversa y el rango de una matriz. Aplicamos
la teoŕıa desarrollada para resolver problemas concretos de otras ramas de la ciencia, como
son el modelo de tráfico en una red de calles o el cálculo de las intensidades en determinados
circuitos eléctricos.

En el Caṕıtulo 4 estudiamos la noción de espacio vectorial, explicando los ejemplos
más importantes y en especial los espacios de funciones. Definimos las ideas básicas del
álgebra lineal: subespacios, dependencia lineal, sistemas generadores, bases, dimensión y
cálculo coordenado.

El Caṕıtulo 5 estudia las aplicaciones lineales. Damos numerosos ejemplos geométricos.
Estudiamos las propiedades de las aplicaciones lineales y el núcleo y la imagen. El punto
más importante del tema es el estudio de la matriz asociada a una aplicación lineal entre
espacios de dimensión finita. Se procede a la construcción y se considera la relación entre la
matriz de una aplicación lineal y ésta. Se usan las aplicaciones lineales en muchos campos
diversos: encontrar soluciones polinómicas de determinadas ecuaciones diferenciales, estudio
de proyecciones en el diseño gráfico, las fórmulas de cuadratura de Newton y de Gauss, calcular
la primitiva de algunas funciones, ...

En el Caṕıtulo 6 se introducen las curvas de Bézier. Creemos conveniente la inclusión
de este tema por dos motivos: Estas curvas son muy usadas en el diseño industrial y una
introducción a este tipo de curvas no requiere herramientas matemáticas muy sofisticadas. El
algoritmo de de Casteljau (en forma matricial) es el elegido para implementar las curvas de
Bézier.

El Caṕıtulo 7 trata los espacios vectoriales eucĺıdeos. Podemos hablar de longitudes y
ángulos entre vectores, de modo que la geometŕıa que obtenemos es esencialmente idéntica
a la de IR3. Dos son los conceptos que, por su importancia y aplicación, están presentes
a lo largo del tema: el de la proyección ortogonal y el de sistema ortogonal de vectores.
El primero de ellos juega un papel clave en el método de los mı́nimos cuadrados. Como una
aplicación aproximamos funciones mediante las proyecciones de éstas sobre ciertos subespacios
obteniendo entre otras cosas, aproximaciones de Fourier.

En el Caṕıtulo 8 desarrollamos el método de los mı́nimos cuadrados utilizado para
ajustar una recta a una nube de puntos obtenidos experimentalmente. Pero no nos detene-
mos en rectas, sino que aproximamos mediante parábolas, cúbicas o incluso por una clase
más amplia. También ajustamos mediante un modelo no lineal importante: el exponencial.
Asimismo, vemos un método sencillo para calcular la distancia entre variedades lineales de
IRn.

En el Caṕıtulo 9 estudiamos los conceptos de valor propio y vector propio aśı como
sus propiedades más importantes. Este estudio nos permite descomponer una cierta clase de
matrices (las diagonalizables) como SDS−1, siendo S una matriz invertible y D una matriz
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diagonal. También estudiamos los valores y vectores propios de matrices simétricas, lo que
nos permite encontrar una factorización del tipo SDSt, siendo S una matriz ortogonal y D
una matriz diagonal.

En el Caṕıtulo 10 aplicamos la teoŕıa desarrollada en el tema anterior. Vemos cómo
calcular de potencias de matrices diagonalizables, estudiamos las sucesiones dadas por una
recurrencia lineal, los procesos de Márkov y las ecuaciones de cónicas y cuádricas.

El libro básico que seguimos es [37], aunque en cada tema indicamos bibliograf́ıa suple-
mentaria donde el alumno puede ampliar temas o encontrar problemas propuestos y resueltos.
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1. Geometŕıa de IR2 y IR3

OBJETIVOS:

Saber las operaciones básicas en IR2 y en IR3: suma, producto por escalares,
producto escalar y producto vectorial. Empezar a que se intuyan conceptos más
abstractos como independiencia lineal, sistema generador o base. Aplicar todo
lo anterior a problemas geométricos concretos. Reconocer las ecuaciones más
importantes de rectas y planos.

Los1 antecedentes históricos del estudio de la geometŕıa plana y espacial se remontan a la
introducción por Descartes (1596–1650) en el siglo XVII de la geometŕıa anaĺıtica que lleva
su nombre. La idea de vector entró en las matemáticas calladamente. Stevin (1548–1620)
empleó la ley del paralelogramo en problemas de estática y Galileo (1564–1642) enunció esta
ley de forma expĺıcita.

Después de la representación geométrica de los números complejos proporcionada por
Wessel (1745–1818), Argand (1768–1822) y Gauss (1777–1855) fuera algo familiar, los ma-
temáticos se percataron de que los números complejos pod́ıan usarse para trabajar los vectores
en el plano. Sin embargo, la utilidad de los números complejos está limitada a problemas
planos. La creación de un análogo tridimensional útil de los números complejos se debe a
Hamilton (1805–1865) cuando descubrió los cuaterniones en 1843.

Mientras Hamilton trabajaba con sus cuaterniones, Grassmann (1809–1877) estaba des-
arrollando la idea moderna de vector. En este sentido, Grassmann definió de forma moderna
la suma y el producto por escalares de vectores de IRn e introdujo dos clases de productos:
el interior (véase la introducción al Caṕıtulo 7) y el exterior. Aplicó estos productos para
resolver problemas geométricos concretos (el producto exterior de vectores no es hoy una
herramienta estándar en la matemática moderna, véase [33] para un tratamiento moderno).

La formulación final se debe a Gibbs (1839–1903) en un panfleto de circulación privada
entre sus alumnos y por Heaviside (1850–1925) en el libro Electromagnetic Theory publicado
en 1893. En ambos libros se introdujeron el producto escalar y el vectorial de forma moderna.

1.1. La geometŕıa y el álgebra de vectores

Comenzamos por definir

IR2 = {(x, y) : x, y ∈ IR}, IR3 = {(x, y, z) : x, y, z ∈ IR}
1La mayor parte de las notas hitóricas de este proyecto docente están sacadas de [43].
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1. Geometŕıa de IR2 y IR3

e interpretamos geométricamente lo que es un vector2 de IR2 y de IR3 para a continuación
definir de forma algebraica la suma de vectores y el producto por escalares. Al mismo tiempo
damos la idea geométrica de estas operaciones (para la suma, la regla del paralelogramos;
y para el producto por escalares, hablaremos de elongaciones, contracciones y sentido de
vectores). Véase la figura 1.1.
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Figura 1.1.: Un vector de IR2. Explicación geométrica de la suma, resta y multiplicación por
escalares.

Estas operaciones se generalizan fácilmente a IRn y a Cn. Las ideas de combinación
lineal, independencia lineal y sistema generador se comprenden fácilmente mediante
ejemplos geométricos.

Con esta álgebra rudimentaria de vectores podemos calcular el vector que une dos puntos
a y b. De a +

−→
ab = b deducimos que

−→
ab = b− a. Véase la figura 1.2.
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Figura 1.2.: Vector que une dos puntos.

En realidad no es demasiado preciso lo que se ha hecho, pues hablando con rigor, no es lo
mismo un espacio de puntos (espacio af́ın) que un espacio de vectores (espacio vectorial) o
dicho de un modo más coloquial: no es lo mismo saber dónde estamos que saber hacia dónde

2En todo el proyecto docente usaremos el convenio de representar a los vectores con letras minúsculas en
negrita: u,v, . . . . Debido a la imposibilidad de diferenciar las negritas en pizarra, creemos oportuno (tal
como se hace en el resto de asignaturas) representar a los vectores con una flechita encima: ~u,~v, .... Creemos
oportuno desde el punto de vista pedagógico representar a los vectores y a los escalares de distinta manera,
aunque por el contexto sea claro.
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1.1. La geometŕıa y el álgebra de vectores

vamos3. Sin embargo, ya que como los puntos y vectores serán representados de la misma
manera (mediante elementos de IRn), los vamos a tratar de la mima manera. Creemos que la
introducción prematura de estructuras algebraicas perjudican, ya que el alumno no entiende
la razón de definir un nuevo concepto más general sin encontrar aplicaciones concretas.

Pensamos oportuno incluir como ejemplos o problemas guiados una serie de teoremas
geométricos en donde el alumno pueda convencerse de la potencia de los métodos vectoriales.
Entre estos podemos incluir:

a) Si se unen los puntos medios de un cuadrilátero arbitrario se obtiene un paralelogramo.

b) Las tres medianas de un triángulo son concurrentes.

c) Si a, b y c son tres puntos no alineados y x, y son puntos que cumplen −→ax = λ
−→
ab y

−→ay = λ−→ac, entonces −→xy = λ
−→
bc (teorema de Tales).
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Figura 1.3.: Tres teoremas de geometŕıa af́ın.

Las demostraciones siguientes muestran con claridad la ventaja de usar vectores como
entidades fundamentales frente al cálculo coordenada a coordenada:

a) Sean a,b, c y d los cuatro puntos. Hay que probar que el vector que une los puntos
(a + d)/2 y (a + b)/2 coincide con el vector que une los puntos (d + c)/2 y (b + c)/2.

b) Sea p el punto medio del segmento bc y sea g el punto del segmento ap tal que 2
3
−→ap = −→ag.

Poco cuesta probar que g = (a + b + c)/3. De aqúı ya se puede deducir que las tres
medianas concurren en g. Además se ha probado que la distancia entre el baricentro y el
pie de la mediana es la tercera parte de la longitud de la mediana.

c) Es trivial a partir de −→xy = y − x = (a + λ−→ac)− (a + λ
−→
ab).

Las pruebas coordenada a coordenada no hacen más que obscurecer la situación. Por
ejemplo, en la demostración de la concurrencia de las tres medianas, aún tomando un sistema
adecuado, a = (0, 0), b = (b, 0), c = (c1, c2), habŕıa que probar que si r es la recta que pasa
por (0, 0) y por ((b + c1)/2, c2); si s es la recta que pasa por (b, 0) y por (c1/2, c2/2) y si t es
la recta que pasa por (c1, c2) y por (b/2, 0); entonces r, s y t son concurrentes4.

3Esta distinción es clara en geometŕıa diferencial, en donde hay una clara diferencia entre los puntos de una
variedad y los vectores tangentes a ésta.

4La introducción de un sistema de coordenadas oblicuo hace la demostración un poco más sencilla: basta
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1. Geometŕıa de IR2 y IR3

1.2. El producto escalar

Se define el producto escalar de los vectores u = (u1, . . . , un) y v = (v1, . . . , vn) de IRn de
la forma siguiente:

〈u,v〉 = u1v1 + · · ·+ unvn.

La definición abstracta de producto escalar en espacios vectoriales se dejará para más adelante.
De momento hacemos énfasis que el resultado es un número real.

A continuación damos las propiedades algebraicas más importantes: Si u,v,w ∈ IRn y si
α ∈ IR, entonces

a) 〈u,v〉 = 〈v,u〉.
b) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉.
c) 〈αu,v〉 = α〈u,v〉.
d) 〈u,u〉 ≥ 0 y 〈u,u〉 = 0 si y sólo si u = 0.

Las demostraciones son muy rutinarias y sólo hacemos alguna de éstas. Recordamos cómo
se calculan longitudes en el plano y en el espacio. En IR2, la longitud del vector u = (a, b) es√

a2 + b2, como se aprecia en la figura 1.4. Observamos que a2 + b2 = 〈u,u〉.
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Figura 1.4.: Longitud de vectores en IR2 y en IR3.

En IR3, si nos fijamos en la figura 1.4, la longitud del vector u = (a, b, c) (aplicando
el teorema de Pitágoras dos veces consecutivas) vale

√
r2 + c2 =

√
a2 + b2 + c2. De nuevo

tenemos que 〈u,u〉 = a2 + b2 + c2. Lo que motiva la siguiente definición:
La longitud o norma de un vector u ∈ IRn se define como ‖u‖ = +

√
〈u,u〉. Las

propiedades básicas son las siguientes: Si α ∈ IR y u ∈ IRn, entonces

a) ‖u‖ = 0 si y sólo si u = 0.

b) ‖αu‖ = |α|‖u‖.
tomar a = (0, 0), b = (1, 0) y c = (0, 1). Pero a un nivel temprano, un alumno medio no comprende
bien la diferencia entre conceptos afines y eucĺıdeos. Claramente, aqúı se ha usado que los conceptos de
concurrencia y mediana son afines.
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1.3. Usos geométricos del producto escalar

Dividiendo un vector no nulo por su norma se obtiene otro vector de norma 1 con la misma
dirección y sentido. Este proceso se suele llamar normalización.

El producto escalar también sirve para medir ángulos. Para motivar la definición de ángulo
entre vectores de IRn, primero vemos cómo se usa el producto escalar para calcular ángulos
entre vectores de IR2. La herramienta básica es ahora el teorema del coseno de trigonometŕıa
plana. Vamos a calcular el ángulo θ entre los vectores u y v.
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Figura 1.5.: Ángulo entre vectores de IR2.

Tras aplicar el teorema del coseno obtenemos ‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ.
Por otra parte, desarrollando de forma algebraica,

‖u− v‖2 = 〈u− v,u− v〉 = ‖u‖2 + ‖v‖2 − 2〈u,v〉.

Luego, en IR2 se cumple que si θ es el ángulo que forman los vectores u y v entonces 〈u,v〉 =
‖u‖‖v‖ cos θ. Esto motiva la definición general de ángulo entre vectores de IRn. Sin embargo,
hemos de demostrar previamente la desigualdad de Cauchy-Schwarz-Bunjakowski para
que la definición general de ángulo entre vectores de IRn sea rigurosa. Con esta desigualdad
podemos definir el ángulo entre dos vectores u y v no nulos de IRn como el único valor de
θ ∈ [0, π] de modo que

cos θ =
〈u,v〉
‖u‖‖v‖ .

Decimos que dos vectores u y v son perpendiculares u ortogonales si 〈u,v〉 = 0. Podemos
enunciar y probar el teorema de Pitágoras en IRn: sean u,v ∈ IRn, entonces ‖u + v‖2 =
‖u‖2 + ‖v‖2 si y sólo si 〈u,v〉 = 0.

La desigualdad de Cauchy-Schwarz-Bunjakowski permite además demostrar la desigualdad
triangular.

1.3. Usos geométricos del producto escalar

La noción de norma de vectores permite hablar de la distancia d(a,b) entre dos puntos
a,b ∈ IRn.

Hacemos algunos ejemplos de problemas geométricos concretos relativos a distancia y
ángulos en IR3, en donde el uso del producto escalar mecaniza los cálculos (la mayoŕıa están
sacados del primer caṕıtulo de [55]). Al igual que hemos hecho con la geometŕıa af́ın, podemos
incluir, si el nivel de la clase lo permitiera, algunos ejemplos o problemas guiados sobre algunos
teoremas de la geometŕıa eucĺıdea. Por ejemplo, los siguientes (véase la figura 1.6):
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1. Geometŕıa de IR2 y IR3

a) Si u y v son dos vectores, entonces ‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2 (La ley del
paralelogramo).

b) Las tres alturas de un triángulo son concurrentes (en un punto llamado ortocentro).

c) Las tres mediatrices de un triángulo son concurrentes (en un punto llamado circuncen-
tro).

d) El baricentro g, el ortocentro h y el circuncentro q están alineados (en la llamada recta
de Euler). Además, se cumple g = 1

3h + 2
3q.
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Figura 1.6.: Algunos teoremas de la geometŕıa eucĺıdea.

Las demostraciones son casi triviales usando vectores como entidades fundamentales (las
demostraciones de b) y d) se han obtenido de [33]).

a) Basta desarrollar y simplificar ‖u + v‖2 + ‖u− v‖2 = 〈u + v,u + v〉+ 〈u− v,u− v〉.

b) Basta comprobar que para todo h se cumple

〈a− b, c− h〉+ 〈b− c,a− h〉+ 〈c− a,b− h〉 = 0,

y observar que si se anulan dos sumandos, entonces se anula el tercero.

c) Si q está en la mediatriz del lado ab entonces 〈a−b, a+b
2 −q〉 = 0. Esta igualdad equivale

a d(a,q) = d(b,q).

d) Sumando 〈a−b, c−h〉 = 0 y 〈a−b,a+b−2q〉 = 0 se tiene 〈a−b,a+b+c−h−2q〉 = 0,
es decir, 〈a−b, 3g−h−2q〉 = 0, luego 3g−h−2q es perpendicular al lado ab. Razonando
de forma análoga para los otros lados, 3g−h−2q es perpendicular a todos los lados, luego
3g − h− 2q = 0.

Quienquiera que haya intentado probar d) usando coordenadas se dará cuenta de la ele-
gancia del método vectorial. También podemos citar algunos teoremas sobre circunferencias
(véase la figura 1.7):

a) Si ab es un diámetro de una circunferencia, entonces el ángulo acb es recto para cualquier
punto c de la circunferencia.
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Figura 1.7.: Dos teoremas sobre circunferencias.

b) Sea r una recta que pasa por un punto a y sean b y c los dos puntos de corte de r con
una circunferencia de centro p y radio R. Entonces d(a,b) d(a, c) = |d(a,p)2 − R2|. En
particular se sigue que d(a,b) d(a, c) no depende de la recta trazada por a.

Las demostraciones son de nuevo muy fáciles:

a) Basta observar 〈a− c, c− b〉 = 〈(a− p) + (p− c), (p− b)− (p− c)〉 y a− p = p− b.

b) La ecuación de la circunferencia es ‖x−p‖2 = R2. Sea v̂ un vector de norma 1 y λ, µ tales
que b = a+λv̂ y c = a+µv̂. Puesto que b, c están en la circunferencia, es fácil ver que λ
y µ son ráıces de la ecuación R2 = ‖a−p‖2 +2x〈a−p, v̂〉+x2. Luego λµ = ‖a−p‖2−R2.
Ahora la conclusión es trivial de obtener.

1.4. El producto vectorial

Definimos (sólo en IR3) el producto vectorial de los vectores u = (u1, u2, u3) y v =
(v1, v2, v3) como

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

Decimos que una forma de acordarse de la definición es usando el siguiente determinante
simbólico:

u× v =

∣∣∣∣∣∣

x̂ ŷ ẑ
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
, (1.1)

donde x̂ = (1, 0, 0), ŷ = (0, 1, 0) y ẑ = (0, 0, 1). Aunque en este momento no se haya definido
el concepto de determinante, la mayor parte de los alumnos śı que lo saben (aunque no la
supieran, la definición es totalmente independiente del concepto de determinante). Asimismo,
observamos que la expresión (1.1) no es rigurosa, puesto que las entradas del determinante
deben ser números y no vectores.

Enunciamos las propiedades básicas: Si u,v,w son vectores de IR3 y si α ∈ IR entonces

a) u× v = −v × u.
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1. Geometŕıa de IR2 y IR3

b) u× (v + w) = u× v + u×w.

c) u× u = 0.

d) (αu)× v = α(u× v).

e) u× v es perpendicular a u y a v.

f) ‖u× v‖2 + 〈u,v〉2 = ‖u‖2‖v‖2. De donde se deduce que ‖u× v‖ = ‖u‖‖v‖ sen θ, siendo
θ el ángulo que forman u y v.

No demostramos ninguna propiedad pues son absolutamente rutinarias y no aportan mucho.
Aplicamos el producto vectorial para hacer algunos problemas geométricos, como calcular

un vector perpendicular a dos vectores dados o calcular el área de un triángulo. También se
puede demostrar o poner como ejercicio no rutinario demostrar el teorema de los senos de
trigonometŕıa: si en la figura 1.5 llamamos w = v − u y si multiplicacmos vectorialmente
por u tenemos w × u = v × u. Aplicando las propiedades anteriores del producto vectorial
debeŕıa ser fácil probar este teorema.

1.5. Ecuaciones de rectas y planos

La experiencia docente nos muestra que si bien un alumno medio sabe manejar algu-
nas ecuaciones de rectas en el plano el conocimiento de las rectas y planos en el espacio es
prácticamente nulo. Por esta razón incluimos este punto en el temario dando un breve repaso.

1.5.1. Rectas en IR2

Un dibujo muestra bastante bien la deducción de la ecuación paramétrica (o ecuación
vectorial). Si la recta pasa por x0 = (x0, y0) y tiene un vector director u = (u1, u2), entonces

x = x0 + λu, (x, y) = (x0, y0) + λ(u1, u2), (1.2)

para λ ∈ IR.
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Figura 1.8.: Una recta en IR2.

De (1.2) se obtiene fácilmente la ecuación de la recta que pasa por dos puntos: basta hacer
v = b − a y x0 = a. Observamos que de esta manera se puede parametrizar el segmento
orientado ab de la forma siguiente: x(λ) = (1− λ)a + λb para λ ∈ [0, 1].
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1.5. Ecuaciones de rectas y planos

Si en (1.2) se multiplica escalarmente por un vector normal a la recta, sea n, se tiene que
〈x,n〉 = 〈x0,n〉 o desarrollando, ax + by = c, de donde se sigue que (a, b) es perpendicular
a la recta. Otra forma de obtener esta última forma es a partir de (1.2) despejar λ (siempre
que u1 6= 0 6= u2).

1.5.2. Rectas en IR3

La forma más útil es la paramétrica. La ecuación de rectas como intersecciones de planos
la vemos más adelante cuando estudiemos los planos en IR3 (puesto que si n1 y n2 son vectores
normales a los planos π1 y π2 respectivamente, entonces un vector normal a π1∩π2 es n1×n2).

1.5.3. Planos en IR3

El tratamiento es muy similar a las rectas en IR2: si u = (u1, u2, u3) y v = (v1, v2, v3) son
dos vectores directores del plano linealmente independientes y x0 = (x0, y0, z0) es un punto
del plano, entonces la ecuación paramétrica o vectorial del plano es (véase la figura 1.9)

x = x0 + λu + µv, (x, y, z) = (x0, y0, z0) + λ(u1, u2, u3) + µ(v1, v2, v3). (1.3)
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Figura 1.9.: Un plano en IR3.

Multiplicando escalarmente (1.3) por un vector perpendicular a u y v, digamos n (se puede
calcular por medio de n = u×v), se tiene 〈x,n〉 = 〈x0,n〉, o de otro modo, ax+ by + cz = d,
de donde (a, b, c) es un vector normal al plano. Si se observa la figura 1.9 se ve que los
vectores u,v,x − x0 son linealmente dependientes, por lo que los alumnos que conozcan los
determinantes pueden comprender que otra ecuación del plano es det(u,v,x− x0) = 0.

Hacemos algunos problemas (hay miles de libros llenos de problemas de esta clase). El
cálculo de la distancia entre las variedades lineales vistas hasta el momento preferimos dejarlo
hasta cuando estudiemos mı́nimos cuadrados, ya que en ese momento se verá una forma
general de calcular estas distancias.
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Contenido del Caṕıtulo 1

1. La geometŕıa y el álgebra de vectores.

• Definición de IR2 y IR3.

• Suma de vectores, producto por escalares. Combinación lineal, independencia
lineal, sistemas generadores, bases.

• Vector que une dos puntos. Ejemplos geométricos.

2. El producto escalar.

• Definición. Propiedades elementales.

• Norma de vectores. Propiedades.

• Ángulo de vectores en IR2. Desigualdad de Cauchy-Schwarz-Bunjakowsky. Desi-
gualdad triangular. Perpendicularidad. Teorema de Pitágoras.

3. Usos geométricos del producto escalar.

• Problemas geométricos.

• Algunos teoremas de la geometŕıa eucĺıdea.

4. El producto vectorial.

• Definición y propiedades elementales.

• Ejemplos geométricos.

5. Ecuaciones de rectas y planos.

• Rectas en IR2.

• Rectas en IR3.

• Planos en IR3.
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2. Matrices

OBJETIVOS:

Efectuar con fluidez las operaciones básicas entre matrices. Estudiar las prin-
cipales propiedades de las matrices y sus operaciones. Conocer el concepto de
determinante y su relación con el problema de la invertibilidad matricial. Saber
pasar de un sistema de ecuaciones lineales a una ecuación matricial. Modelar
matricialmente algunos problemas extráıdos de otras asignaturas.

Los determinantes surgieron cuando se empezaron a resolver los sistemas de ecuaciones
lineales. En 1693, Leibniz (1646–1716) usó un conjunto sistemático de ı́ndices para los coefi-
cientes de un sistema de tres ecuaciones lineales con tres incógnitas obteniendo un determi-
nante. La solución de ecuaciones lineales fue obtenida por Maclaurin (1698–1746) publicada
en 1748 en su Treatise of algebra. Cramer (1704–1752) publicó en 1750 el libro Introduc-
tion à l’analyse des lignes courbes algébriques la regla para determinar los coeficientes de
una cónica general pasando por 5 puntos dados utilizando determinantes. En 1776 Bezout
(1730–1783) demostró que la anulación del determinante de un sistema de dos ecuaciones con
dos incógnitas homogéneo es una condición necesaria y suficiente para que haya soluciones no
nulas. Vandermonde (1735–1796), en 1776, fue el primero en dar una exposición coherente y
lógica de la teoŕıa de los determinantes como tales, aplicándolos a los sistemas de ecuaciones
lineales. Se le considera como fundador de la teoŕıa.

La palabra determinante, usada por primera vez por Gauss, la aplicó Cauchy (1789–1857)
a los determinantes ya aparecidos en el siglo XVIII en un art́ıculo publicado en 1815. La
disposición de los elementos en tabla y la notación de sub́ındices dobles se le debe a él. Binet
(1786–1856), en 1812, enunció el teorema de multiplicación, demostrado correctamente por
Cauchy, que en notación moderna es det(AB) = det(A) det(B).

Diŕıamos que el campo de las matrices estuvo bien formado aún antes de crearse. Los
determinantes fueron estudiados a mediados del siglo XVIII. Un determinante contiene un
cuadro de números y parećıa deducirse de la inmensa cantidad de trabajos sobre los determi-
nantes que el cuadro pod́ıa ser estudiado en śı mismo y manipulado para muchos propósitos.
Quedaba por reconocer que al cuadro como tal se le pod́ıa proporcionar una identidad in-
dependiente de la del determinante. El cuadro por śı mismo es llamado matriz. La palabra
matriz fue usada por primer vez por Sylvester (1814–1897) en 1850.

Es cierto, como dice Cayley (1821–1895), que la idea de matriz es lógicamente anterior
a la de determinante, pero históricamente el orden fue el inverso. Cayley fue el primero en
desarrollar de modo independiente el concepto de matriz en un art́ıculo publicado en 1855, A
memoir on the theory of matrices. Definió las matrices nula y unidad, la suma de matrices
y señala que esta operación es asociativa y conmutativa. Cayley toma directamente de la
representación del efecto de dos transformaciones sucesivas la definición de multiplicación de
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2. Matrices

dos matrices. Cayley señala que una matriz m×n puede ser multiplicada solamente por una
matriz n× p. En este mismo art́ıculo establece la fórmula de la inversa de una matriz y que
una matriz tiene inversa si y sólo si su determinante es nulo.

A partir de este momento los trabajos sobre matrices se disparan. Debemos citar los
trabajos de Jordan (1838–1922), Rouché (1832–1910) y a Frobenius (1849–1917). En el siglo
XX es rara la rama de la matemática aplicada que no use la teoŕıa de matrices. Podemos
citar una afirmación profética hecha por el f́ısico Tait (1831–1901) a mediados del siglo XIX:
“Cayley está forjando las armas para las futuras generaciones de f́ısicos”.

2.1. Primeras definiciones

Definimos matriz como un conjunto de n×m elementos de IR o de C (en lo sucesivo el
cuerpo base se denotará IK) dispuestos en una tabla que denotaremos usualmente con letras
mayúsculas y sus entradas con letras minúsculas con dos sub́ındices denotando la fila y la
columna. Definimos los tipos más importantes de matrices: cuadrada, vector fila, vector
columna, diagonal, triangular superior y triangular inferior.

La introducción del significado de matriz se hace señalando desde el principio la relación
de éstas con los sistemas de ecuaciones lineales. Por ejemplo los sistemas

2x + 3y = 5
5x − 2y = 3

}
2u + 3v = 5
5u − 2v = 3

}

tienen evidentemente las mismas propiedades y deben ser considerados los mismos.
El siguiente paso es definir la suma y la multiplicación por escalares. Introducimos la

matriz nula de orden n ×m denotada por On×m (en lo sucesivo se denotará simplemente O
cuando el orden sea evidente por el contexto). Enunciamos las propiedades básicas de estas
dos operaciones que se pueden resumir diciendo que el conjunto de matrices n × m es un
espacio vectorial1.

Para hacer más intuitiva la definición, a primera vista extraña, de la multiplicación ma-
tricial explicamos el siguiente ejemplo: Consideremos los dos sistemas siguientes:

a11y1 + a12y2 = z1

a21y1 + a22y2 = z2

}
b11x1 + b12x2 + b13x3 = y1

b21x1 + b22x2 + b23x3 = y2

}

Al substituir los valores de yi en el primer sistema vemos que las zi se pueden expresar en
función de las xi obteniendo

c11x1 + c12x2 + c13x3 = z1

c21x1 + c22x2 + c23x3 = z2

}

tras hallar expĺıcitamente los coeficientes cij . Definimos el producto de dos matrices de modo
que (aij)(bij) = (cij). Indicamos que en este caso particular hemos obtenido que esta matriz
(cij) se ha obtenido “multiplicando las filas de (aij) por las columnas de (bij)”. A continuación
definimos el producto de una matriz A de orden n ×m por otra matriz B de orden m × p,
obteniendo una matriz AB = C de orden n× p como sigue

cij =
m∑

k=1

aikbkj .

1Aunque no se menciona el tecnicismo espacio vectorial ya que su definición se posterga al Caṕıtulo 4.
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2.2. Potencias de matrices

A continuación escribimos un sistema de ecuaciones lineales como Ax = b, siendo A una
matriz n×m, x ∈ IKm y b ∈ IKn. Siendo ésta una conversión muy importante.

Algunas propiedades de las operaciones matriciales son análogas a las correspondientes
de las operaciones escalares: si A,B, C son matrices de órdenes apropiados y λ es un escalar
entonces

• A(BC) = (AB)C.

• (A + B)C = AC + BC.

• A(B + C) = AB + AC.

• λ(AB) = (λA)B = A(λB).

• Si In es la matriz cuadrada de orden n formada por ceros salvo por unos en la diagonal
principal (en lo sucesivo se denotará simplemente I cuando el orden sea evidente por el
contexto), entonces AI = A, IB = B.

Señalamos tres propiedades, dando ejemplos, válidas para escalares y no para matrices:

• AB no es siempre igual a BA.

• AB = O no implica que alguna de las matrices sea nula.

• Si AB = AC y A 6= O no implica que B = C.

Definimos la transposición de matrices y la conjugación de matrices, enunciamos
las propiedades más importantes y definimos las matrices simétricas y antisimétricas. Y
si consideramos las matrices complejas definimos las matrices hermı́ticas y antihermı́ticas.
Dos ejemplos importantes son los siguientes: si u,v son dos vectores columna de IRn, entonces
〈u,v〉 = utv = vtu es un escalar y uvt es una matriz cuadrada de orden n.

Aparte de [37], aunque el álgebra matricial aparece en todos los libros de álgebra lineal,
recomendamos [46, 51, 55].

2.2. Potencias de matrices

La potenciación matricial se define de manera obvia. Hacemos notar que las siguientes
propiedades no son ciertas, dando ejemplos:

• Si existe n ∈ IN tal que An = O entonces A = O.

• (A + B)2 = A2 + 2AB + B2 (en general la fórmula del binomio de Newton no es válida,
a no ser que A y B conmuten).

Usamos la potenciación matricial en los dos ejemplos siguientes extráıdos de la práctica:
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2. Matrices

1. Aunque no mencionamos el tecnicismo procesos de Márkov, enunciamos el siguiente
problema:

Supongamos que los N habitantes de una cierta ciudad realizan sus compras en una
de las tres cadenas de alimentación existentes X, Y, Z. Se observa un movimiento de
clientes de una cadena a otra. Concretamente, cada mes la cadena X conserva el 80%
de sus clientes, atrae el 20% de los de Y y el 10% de los de Z. Análogamente, Y conserva
el 70% de sus clientes, atrae el 10% de X y el 30% de Z. Finalmente Z atrae el 10% de
los clientes de X y el 10% de los de Y. Encontrar el número de habitantes que compran
en cada una de las cadenas tras el mes n-ésimo.

En este momento definimos las matrices estocásticas y proponemos como ejercicio
la propiedad más importante: Si A y B son estocásticas, entonces AB también es
estocástica. Como consecuencia de este hecho se tiene que si A es estocástica, entonces
Ak lo es también.

2. Introducimos muy brevemente al alumno en la teoŕıa de grafos definiendo lo que es
un grafo dirigido y la matriz de adyacencia de un grafo. Enunciamos el siguiente
teorema. Si A = (aij) es la matriz de adyacencia de un grafo dirigido y a

(k)
ij es el

elemento (i, j) de Ak, entonces a
(k)
ij es el número de caminos de longitud k que hay

entre Pi y Pj . A continuación vemos un ejemplo sencillo que aclara este teorema.

Unos libros donde se pueden encontrar ejemplos y problemas resueltos son [41, 68].

2.3. Determinante de una matriz cuadrada

Son varias las formas de introducir el concepto de determinante. Algunos libros, como
[31], lo hacen desde el concepto de aplicación multilineal. La definición más extendida es
usando permutaciones. Son formas rigurosa de hacerlo, pero si tenemos en cuenta el enfoque
de la asignatura, nos parece más pedagógico ofrecer la definición de determinante en forma
recursiva tal como aparece en [37]. Esta definición es incómoda si se pretende a partir de ella
calcular determinantes. Hay que esperar al algoritmo de eliminación de Gauss para ver un
modo efectivo. Enunciamos la regla de Sarrus para el cálculo de determinantes de órdenes 2
y 3.

A continuación enunciamos sin demostrar las principales propiedades de los determinantes:

• El determinante de una matriz coincide con el de su transpuesta. A partir de ahora
todas las propiedades que se refieran a filas, son válidas para columnas.

• Si B se obtiene de A multiplicando una fila por λ, entonces det(B) = λdet(A). En
general det(λA) = λn det(A), siendo n el orden de la matriz A.

• Si la matriz B se obtiene intercambiando dos filas de la matriz A, entonces det(B) =
−det(A).

• Si una matriz tiene dos filas iguales, entonces su determinante es nulo.
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2.4. Inversa de una matriz cuadrada

• El determinante de una matriz que tenga una de sus filas como suma de dos se puede
descomponer como suma de dos determinantes del modo siguiente:

det




a11 · · · a1n

· · · · · · · · ·
ai1 + bi1 · · · ain + bin

· · · · · · · · ·
an1 · · · ann




= det




a11 · · · a1n

· · · · · · · · ·
ai1 · · · ain

· · · · · · · · ·
an1 · · · ann




+det




a11 · · · a1n

· · · · · · · · ·
bi1 · · · bin

· · · · · · · · ·
an1 · · · ann




.

El alumno no tiene que confundir esta propiedad con la siguiente igualdad, que es falsa
en general: det(A + B) = det(A) + det(B).

• Si una matriz tiene una fila de ceros, entonces su determinante es nulo.

• Si B se obtiene de A sumándole o restándole una fila de A un múltiplo de otra fila,
entonces det(A) = det(B).

• Si A es una matriz triangular entonces el determinante de A es el producto de los
términos de su diagonal principal. En particular el determinante de I es 1.

• det(AB) = det(A) det(B).

2.4. Inversa de una matriz cuadrada

Motivamos al alumno el concepto de matriz inversa con el caso escalar: Para resolver
ax = b, donde a, x, b ∈ IR y a 6= 0, despejamos x = a−1b, siendo a−1 un número tal que
a−1a = 1.

Desgraciadamente, el producto de matrices no es conmutativo, por lo que debemos tener
cuidado con la definición. Decimos que una matriz A es invertible si existe otra matriz B
tal que AB = BA = I. Observamos que de la definición se deduce que sólo las matrices
cuadradas pueden ser invertibles (pero no todas las matrices cuadradas son invertibles como
veremos a continuación). Asimismo, demostramos que la inversa de una matriz invertible A
es única, esta matriz única se denotará A−1. Debido a la no conmutatividad del producto,
hacemos énfasis en que la división matricial no tiene sentido: ¿qué es A/B? ¿es B−1A ó
AB−1? Enunciamos el resultado central que une los determinantes con el cálculo matricial:
Una matriz A es invertible si y sólo si det(A) 6= 0.

Observamos que la fórmula clásica que han visto los alumnos en años anteriores:

A−1 =
1

det(A)
Adj(At), (2.1)

siendo Adj(B) la matriz cuadrada del mismo orden que B cuyo elemento (i, j) es el deter-
minante de la submatriz que resulta de quitar la fila i y la columna j de B, es altamente
costosa en número de operaciones y en la práctica resulta altamente inoperativa. Señalamos
al alumno que ha de esperar al Caṕıtulo 3 para ver un método eficaz de calcular inversas de
matrices. Vamos comentando que siempre que se pueda, se ha evitar este cálculo prefiriendo
otras alternativas.

Las siguientes propiedades que demostramos son:

33



2. Matrices

• Si A y B son invertibles entonces (A−1)−1 = A.

• Si A y B son invertibles entonces AB es invertible y (AB)−1 = B−1A−1.

• Si A es invertible y λ 6= 0 entonces λA es invertible y (λA)−1 = λ−1A−1.

• Si A es invertible, entonces At es invertible y (At)−1 = (A−1)t.

Demostramos la llamada fórmula de Sherman-Morrison: Si A es una matriz invertible
de orden n y c, d son vectores columna de orden n tales que 1+dtA−1c 6= 0 entonces A+cdt

es invertible y

(A + cdt)−1 = A−1 − 1
1 + dtA−1c

(A−1cdtA−1).

Antes de hacer la demostración, resaltamos la utilidad práctica de la fórmula: Supongamos
que A−1 es conocido; pero ahora una entrada de A debe ser actualizada. No es necesario
calcular la nueva inversa de nuevo, basta aplicar la fórmula de Sherman - Morrison. Sean
c = ei y d = αej , donde ei y ej son los i-ésimo y j-ésimo vectores (columna) de la base
canónica2 de IRn. La matriz cdt tiene α en la posición (i, j) y ceros en el resto. Luego
B = A + cdt es la matriz actualizada.

Para la demostración observamos que dtA−1c es un escalar y conmuta con cualquier
matriz:

(A + cdt)
(

A−1 − A−1cdtA−1

1 + dtA−1c

)
= I + cdtA−1 − cdtA−1 + cdtA−1cdtA−1

1 + dtA−1c

= I + cdtA−1 − (1 + dtA−1c)cdtA−1

1 + dtA−1c
= I.

Aunque la bibliograf́ıa existente es muy extensa (prácticamente cualquier libro de álgebra
lineal podŕıa servir) y los libros mencionados en las secciones anteriores podŕıan valer per-
fectamente, creemos que la bibliograf́ıa que consideramos más ajustada para esta sección es
[37, 46, 51, 55, 68].

2.5. Matrices por bloques

Enseñamos a los alumnos que el procedimiento de partir una matriz en bloques puede
ser de gran utilidad y permite en ocasiones operar cómodamente con matrices de orden
considerablemente grande. Para esto desarrollamos con claridad este ejemplo. Calcular la
potencia n-ésima de la siguiente matriz de orden n + 1:

B =
(

1 v
0 A

)
,

en donde v ∈ IRn (fila), 0 ∈ IRn (columna) y A es una matriz de orden n. Si además A es
invertible, proponemos hallar la inversa de B.

2Aunque no se haya definido lo que es una base en IRn, simplemente decimos que ei es el vector de IRn con
un uno en la posición i y ceros en el resto de sus componentes. A partir de ahora, siempre denotaremos
por {e1, . . . , en} la base canónica de IKn, en donde cada vector ei es una columna.

34



2.5. Matrices por bloques

Para mostrar la utilidad de trabajar con matrices por bloques demostramos el siguiente
teorema: Sea A una matriz triangular con elementos no nulos en la diagonal, entonces la
inversa de A es triangular.
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Contenido del Caṕıtulo 2

1. Primeras definiciones.

• Definición de matriz. Orden de una matriz.

• Tipos básicos de matrices: cuadrada, vector fila, vector columna, diagonal, trian-
gular.

• Definición de suma de matrices y producto por escalares. Propiedades.

• Introducción al producto matricial. Definición de producto matricial. Propieda-
des. Propiedades que son ciertas en IK y que con matrices no son ciertas. Matriz
identidad. Conversión de un sistema de ecuaciones lineales en un producto matri-
cial.

• Definición de la transposición y conjugación matricial. Propiedades. Matrices
simétricas, antisimétricas, hermı́ticas y antihermı́ticas.

2. Potenciación de matrices.

• Definición y ejemplos.

• Dos problemas donde surge la potencia de una matriz: procesos de Márkov (ma-
trices estocásticas), introducción a la teoŕıa de grafos.

3. Determinante de una matriz cuadrada.

• Definición. Reglas de Sarrus para calcular determinantes de órdenes 2 y 3.

• Propiedades de los determinantes. Ejemplos.

4. Inversa de una matriz cuadrada.

• Introducción al concepto de matriz inversa. Definición.

• Una matriz es invertible si y sólo si su determinante no es nulo.

• Propiedades de la inversión matricial.

• Fórmula de Sherman-Morrison.

5. Matrices por bloques.

• Introducción a las matrices de bloques.

• Ejemplos.
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3. Sistemas de ecuaciones lineales

OBJETIVOS:

Saber resolver un sistema de ecuaciones lineales por el método de Gauss. Entender
que el número de operaciones es un factor esencial a la hora de evaluar la eficacia
de un algoritmo. Saber hallar la inversa de una matriz por el método de Gauss-
Jordan. Modelar problemas en forma de sistemas de ecuaciones. Conocer el
mecanismo de la pivotación parcial para minimizar los errores de redondeo.

Como ya mencionamos en la introducción del Caṕıtulo 2, los sistemas de ecuaciones li-
neales comenzaron a ser estudiados sistemáticamente por Leibniz y Cramer a mediados del
siglo XVIII. Este último matemático, expuso lo que hoy conocemos como regla de Cramer
para los sistemas de orden 3. A mediados del siglo XIX fue Cayley, al estudiar las matrices,
quien dedujo la fórmula general de la regla de Cramer y quien expuso claramente la condición
necesaria y suficiente para que un sistema cuadrado de ecuaciones lineales tuviera solución
única, a saber, que la matriz de los coeficientes del sistema fuera invertible.

Frobenius introdujo la noción de rango de una matriz en 1879, aunque en relación con
los determinantes. Esta definición permitió generalizar el teorema que hoy conocemos como
teorema de Rouché-Frobenius.

Gauss dedujo a principios del siglo XIX un método que permite resolver cualquier sistema
de ecuaciones lineales. Este método cayó en el olvido pues es más engorroso que la presentación
matricial hecha por Cayley y por Frobenius. Jordan1 dedujo un algoritmo alternativo a la
fórmula presentada por Cayley para calcular la inversa de una matriz. Hoy conocemos este
método como el algoritmo de Gauss-Jordan.

A medida que en otras disciplinas cient́ıficas se iba encontrando que los problemas se
pod́ıan plantear en términos de sistemas de ecuaciones lineales los matemáticos se empezaron
a preocupar de aspectos como el número de operaciones en un algoritmo. Pronto se dieron
cuenta que la fórmula (2.1) para el cálculo de la inversa es muy costosa por el número de
operaciones, mientras que el método de Gauss exiǵıa un número considerablemente menor.

Un problema muy complicado es el siguiente: ¿De qué forma contribuyen los errores de
redondeo individuales al error total? Fue atacado por primera vez por Von Neumann, si
bien sólo encontró estimaciones muy complicadas. Actualmente se utiliza el método de la
pivotación parcial, una ligera variante del método de Gauss, para intentar que los errores
parciales sean los menores posibles.

1Aunque ha habido confusión sobre qué Jordan debe recibir el mérito por este algoritmo, ahora parece claro
que este método fue introducido por Wilhem Jordan (1842–1899) y no por el más conocido Marie Ennemond
Camile Jordan.
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3. Sistemas de ecuaciones lineales

3.1. Sistemas lineales

Como introducción señalamos las diferentes formas de soluciones de un sistema de dos
ecuaciones con dos incógnitas basándonos en el modelo geométrico. Estudiaremos esta clasi-
ficación más rigurosamente en breve; pero conviene que el alumno se vaya familiarizando con
los sistemas incompatibles, compatibles determinados e indeterminados.

Vemos tres ejemplos que muetran la utilidad de los sistemas de ecuaciones y en donde apa-
recen sistemas de gran tamaño: Un modelo de red de tráfico, la distribución de la temperatura
estacionaria en una placa metálica y un circuito eléctrico.

Introducimos las definiciones preliminares: Un sistema de ecuaciones lineales con n
incógnitas y m ecuaciones es

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . .
am1x1 + am2x2 + · · ·+ amnxn = bm





donde aij , bi ∈ IK. Cuando b1 = · · · = bn = 0 el sistema se llama homogéneo. Enfatizamos
la forma matricial del sistema Ax = b, donde A es una matriz m× n, x ∈ IKn y b ∈ IKm.

Enunciamos la clasificación de los sistemas en base a las soluciones.

• El sistema no tiene solución. El sistema es incompatible.

• El sistema tiene una única solución. El sistema es compatible determinado.

• El sistema tiene infinitas soluciones. El sistema es compatible indeterminado.

Si un sistema tiene más de una solución diferente, entonces tiene infinitas. En efecto, si
x e y son dos soluciones del sistema Ax = b, entonces x + λ(y − x) con λ ∈ IK también es
solución. La demostración muestra la potencia del cálculo matricial y la utilidad de razonar
geométricamente.

Al escribir el sistema como x1a1 + · · ·+xnan = b, donde a1, . . . ,an son las columnas de A
observamos inmediatamente que el sistema es compatible si y sólo si b es combinación lineal
de las columnas de A.

3.2. El método de eliminación de Gauss

Empezamos explicando cómo se resuelven los sistemas triangulares superiores: por subs-
titución regresiva.

A continuación planteamos la pregunta si cualquier sistema se puede expresar como un
sistema triangular. La respuesta es afirmativa y la forma de hacerlo es eliminar la primera
variable de todas las ecuaciones excepto de la primera, la segunda variable de todas excepto la
primera y segunda ecuación y aśı sucesivamente. Este método se le conoce como algoritmo
de eliminación de Gauss. Hacemos un ejemplo concreto.

Indicamos qué hacer cuando algún término de la diagonal principal es nulo y no se puede
hacer ceros por debajo de este elemento. En este caso hay que recurrir a intercambiar filas.
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3.3. Factorización LU de una matriz

Si no se pudiese intercambiar filas porque debajo de este pivote todas las entradas son nulas,
entonces seguimos en la misma fila y nos ocupamos de la siguiente variable.

Una vez reducido el sistema es fácil investigar si el sistema es compatible determinado,
compatible indeterminado o incompatible, simplemente mirando las ecuaciones del sistema
reducido. Hacemos varios ejemplos de estos tipos y también uno con variables simbólicas para
resaltar la supremaćıa de este método frente al teorema de Rouché-Frobenius, ya que permite
clasificar el sistema en un número óptimo de operaciones y además hallar las soluciones.
También podemos definir el rango de una matriz como el número de filas no nulas de la
matriz reducida; sin embargo preferimos no hacerlo, ya que el concepto de rango tiene poca
utilidad dentro del proyecto que se presenta.

3.3. Factorización LU de una matriz

Haciendo un estudio detallado de las operaciones hechas en los ejemplos observamos que
sólo hacemos dos tipos de operaciones sobre las matrices:

• Sumar a una fila otra fila multiplicada por un escalar.

• Intercambiar dos filas.

La representación matricial de estas dos operaciones permite encontrar una forma útil de
factorización de matrices, la llamada factorización LU . A partir de ahora ei denotará el
i-ésimo vector columna de IKn

En vez de demostrar lo siguiente para una matriz de orden arbitrario, lo haremos con una
matriz de orden fijo, para que el alumno no se pierda con los muchos sub́ındices y puntos
suspensivos que aparecen. Pensamos que con una 2× 3 es suficiente

• La substitución de la fila i de una matriz por la fila i más λ veces la fila j 6= i equivale
a multiplicar por la izquierda por la matriz I + λeiet

j .

• El intercambio de las filas i, j de una matriz equivale a multiplicar por la izquierda la
matriz I − (ei − ej)(ei − ej)t (llamadas matrices permutaciones).

Si en una matriz A (que por simplicidad la supondremos cuadrada) hacemos ceros por
debajo de la entrada (1, 1) obtenemos la matriz

(I + λ21e2et
1) · · · (I + λn1enet

1)A = (I + (λ21e2 + · · ·+ λn1en)et
1)A = (I + c1et

1)A.

Si triangularizamos A hasta obtener U tenemos

(I + cn−1et
n−1)(I + cn−2et

n−2) · · · (I + c2et
2)(I + c1et

1)A = U,

en donde c2 = λ32e3 + · · ·+ λn2en, ..., cn−1 = λn,n−1en. Ahora por la fórmula de Sherman-
Morrison, cada matriz I + cket

k es invertible y (I + cket
k)
−1 = I − cket

k. Por tanto,

A = (I − c1et
1)(I − c2et

2) · · · (I − cn−1et
n−1)U

= (I − c1et
1 − · · · − cn−1et

n−1)U.
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3. Sistemas de ecuaciones lineales

Puesto que la matriz I − c1et
1 − · · · − cn−1et

n−1 es triangular inferior, hemos obtenido la
factorización LU siempre que no se necesiten permutaciones de filas en el proceso de triangu-
larización. Enseñamos un ejemplo en donde se ve cómo se construye la matriz L. Indicamos
que el coste de cálculo de la matriz L es nulo si se ha efectuado el proceso de Gauss.

Si se necesitan permutaciones de filas, es posible dar una factorización similar aunque cree-
mos que no es necesario en este curso introductorio. Aunque vemos como un simple ejercicio
(por la fórmula de Sherman-Morrison) el cálculo de la inversa de una matriz permutación.

Explicamos la utilidad de la factorización LU cuando se resuelven varios sistemas Ax1 =
b1, ..., Axk = bk. Si ya hemos factorizado A = LU , estos k sistemas se reducen a 2k sistemas
triangulares rápidos de resolver: Lyi = bi, Uxi = yi, para i = 1, . . . , k.

Insistimos que la regla de Cramer no es eficaz. Esta regla permite resolver un sistema
de orden n mediante n + 1 determinantes de orden n y n divisiones, número excesivamente
grande.

El desarrollo de esta sección se ha obtenido de [51].

3.4. Algoritmo de Gauss-Jordan para el cálculo de la inversa de
una matriz

Una operación fundamental es una de las siguientes operaciones

• Sumar a una fila otra fila multiplicada por un escalar.

• Intercambiar dos filas.

• Multiplicar una fila por un escalar no nulo.

Vemos que la tercera operación equivale a multiplicar por la izquierda por I + (α − 1)eiet
i

(de nuevo la fórmula de Sherman-Morrison permite calcular la inversa de esta matriz). A
continuación demostramos que si A es una matriz cuadrada y si con operaciones elementales
transformamos A en I, entonces estas mismas operaciones aplicadas a I proporcionan A−1.
En la práctica se trabaja con la matriz [A|I]. La diferencia con el método de Gauss estriba en
que hemos de intentar hacer ceros por debajo y por encima de la diagonal principal. Hacemos
dos ejemplos para ilustrar el método, uno donde la matriz sea invertible y otro donde no lo
sea.

También señalamos que el número de operaciones es menor con este método de que si se
aplica (2.1) para calcular la inversa.

3.5. Pivotación parcial

Ahora consideraremos factores que afectan a la precisión de la solución del sistema Ax = b.
El siguiente ejemplo aclara la situación. Si

A =




3.021 2.714 6.913
1.013 −4.273 1.121
5.084 −5.832 9.155


 , b =




12.648
−2.121
8.407


 ,
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3.5. Pivotación parcial

entonces el sistema Ax = b tiene por solución x = (1, 1, 1)t. Si se cambia la entrada (2, 2) de la
matriz A al valor −4.275, la solución del sistema perturbado es x = (−1.7403, 0.6851, 2.3212)t.
Es decir, se trata de un sistema donde se cambia en un 0.1% el valor de un coeficiente y las
soluciones que aparecen son totalmente diferentes.

Al mostrar este ejemplo vemos cómo pueden aparecer soluciones muy poco parecidas si
modificamos ligeramente la matriz. Un sistema de ecuaciones lineales se dice que está mal
condicionado si un pequeño cambio en las componentes de la matriz causa un gran cambio
en la solución. En caso contrario se dice que está bien condicionado.

Es fácil ver lo que provoca que un sistema 2×2 sea mal condicionado. Las dos ecuaciones
con dos incógnitas representan dos rectas y el punto de corte es la solución. Un sistema mal
condicionado representa dos rectas casi paralelas. Véase la figura 3.1.

-

6
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©©©©©©©©©©

d

Figura 3.1.: Un pequeño cambio en las rectas provoca un gran movimiento en el punto de
corte.

Se puede demostrar que para que un sistema esté bien o mal condicionado es indiferente
el valor que tome el vector b (en el caso de sistemas de orden 2 esto debeŕıa ser intuitivo).
Aśı pues, se habla en realidad de matrices mal o bien condicionadas.

La pivotación parcial resuelve parte de este problema. Como la aparición en el proceso
de eliminación un elemento ak,k nulo obliga a intercambiar las ecuaciones, en la práctica un
pivote muy pequeño va a producir una considerable inestabilidad numérica en el sistema. La
pivotación parcial es la variante del método de eliminación en la cual se elige el pivote como
el mayor, en valor absoluto, de todos los coeficientes de una columna. Explicamos un ejemplo
concreto. También mostramos como ejemplo la matriz de Hilbert, que es el ejemplo t́ıpico
de matriz mal condicionada. Con este ejemplo vemos que la pivotación parcial no arregla el
problema del mal condicionamiento inherente a las matrices de Hilbert.

Todo lo mencionado en este caṕıtulo puede verse con todo detalle en [37, 51, 68]. En
cuanto a consultar colecciones de problemas extras, aparte de los mencionados, podemos
citar [41], en donde se tratan todas las aplicaciones mencionadas en este tema y otras que por
cuestiones de tiempo no hemos incluido.
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Contenido del Caṕıtulo 3

1. Sistemas lineales.

• Introducción. Ejemplos. Definición. Sistemas homogéneos.

• Clasificación de los sistemas de ecuaciones lineales.

2. El método de eliminación de Gauss.

• Substitución regresiva.

• Triangularización. Ejemplos.

3. Factorización LU de una matriz.

• Operaciones elementales.

• Representación matricial de las operaciones elementales. Matrices elementales.

• Propiedades de las matrices elementales.

• Obtención de las matrices L y U en la descomposición LU de una matriz.

• Utilidad de la factorización LU . Resolución simultánea de ecuaciones lineales.
Ejemplos.

4. Algoritmo de Gauss-Jordan para el cálculo de la inversa de una matriz.

• Descripción. Ejemplo.

5. Pivotación parcial.

• Un ejemplo de una matriz donde una ligera perturbación de sus entradas produce
soluciones muy diferentes. Matrices mal y bien condicionadas.

• Descripción de la pivotación parcial. Ejemplo.
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4. Espacios vectoriales

OBJETIVOS:

Entender las propiedades básicas de los espacios vectoriales. Conocer los ejem-
plos más importantes de espacios vectoriales: IRn,Cn, Pn y C([a, b]). Manejar
con fluidez la idea de dependencia e independencia lineal, sistemas generadores y
bases. Comprender la noción de dimensión y saber diferenciar los espacios vecto-
riales de dimensión finita de los de infinita. Comprender el significado del cálculo
coordenado.

Como ya se vió en el Caṕıtulo 1, la idea de vector de IRn entró en las matemáticas
de forma callada. Más aún, podemos decir que la idea de vector abstracto fue introducida
por Euler (1707–1783) sin que éste se diera cuenta: al resolver la ecuación diferencial que
hoy llamamos lineal de orden n homogénea de coeficientes constantes, Euler indica que la
solución general ha de contener n constantes arbitrarias y que dicha solución vendŕıa dada
por la suma de n soluciones particulares independientes. Euler no aclara lo que para él
son funciones independientes. En trabajos posteriores, Lagrange (1736–1813) extendió este
resultado a ecuaciones lineales homogéneas de coeficientes variables. Fue Cauchy quien aisló la
noción de independencia lineal y la aplicó al estudio de ecuaciones diferenciales. Curiosamente
se desarrollaron los conceptos básicos en el espacio de las funciones continuas antes que en
IRn.

En 1844 Grassmann, en el libro Die lineale ausdehnungslehre, axiomatizó el concepto de
independencia lineal aplicándolo a los elementos de IRn. La exposición de Grassmann estaba
ligada con ideas geométricas, pero a él se le deben los conceptos claves de la teoŕıa de espacios
vectoriales. El primero en dar la definición axiomática actual de espacio vectorial fue Peano
(1858–1932) en su libro Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann
preceduto dalle operazioni della logica deduttiva publicado en 1888.

4.1. Definiciones y primeras propiedades

Damos la definición de espacio vectorial sobre un conjunto de escalares IK (que señala-
mos que es IR ó C): Es un conjunto V que cumple

1. Existe una regla que asocia dos elementos u,v de V (su suma) y se denota u + v, que
es también un elemento de V , que cumple las siguientes propiedades:

a) u + v = v + u, ∀ u,v ∈ V .

b) u + (v + w) = (u + v) + w,∀ u,v,w ∈ V .
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4. Espacios vectoriales

c) Existe un elemento de V denotado 0 (vector cero) que cumple u+0 = u, ∀ u ∈ V .

d) Para todo v ∈ V existe v′ ∈ V (opuesto de v, que se denota −v) tal que
v + v′ = 0.

2. Existe una regla que asocia a un escalar α y a un vector v ∈ V (su producto) y se
denota αv, que es también un elemento de V , que verifica

a) α(βv) = (αβ)v, ∀ α, β ∈ IK, ∀ v ∈ V .

b) 1v = v,∀ v ∈ V .

c) (α + β)v = αv + βv, ∀ α, β ∈ IK, ∀ v ∈ V .

d) α(v + w) = αv + αw, ∀ α ∈ IK, ∀ v,w ∈ V .

A continuación damos ejemplos para afianzar la idea de espacio vectorial. Entre ellos
los más conocidos por los alumnos: IRn y Cn, pero también hacemos énfasis en otros menos
conocidos como Pn y C([a, b]). Creemos que tenemos que detallar estos ejemplos, ya que el
alumno frecuentemente encuentra éstos más complicados de entender.

Enunciamos y demostramos las propiedades inmediatas que se deducen de la definición y
que resultan absolutamente imprescindibles:

• En cada espacio vectorial existe un único vector cero.

• Todo elemento de un espacio vectorial posee un único elemento opuesto.

• 0v = 0, ∀ v ∈ V . 1

• (−1)v = −v, ∀v ∈ V .

4.2. Subespacios vectoriales

Tras comentar la idea geométrica de que un plano de IR3 pueda tener “estructura de IR2”,
definimos un subespacio vectorial de un espacio vectorial como un subconjunto de éste que
por śı mismo es un espacio vectorial (véase la figura 4.1).

¡
¡

¡
¡

¡
¡

U

IR3

Figura 4.1.: Un plano U en IR3. Si U pasa por el origen, entonces U es un subespacio de IR3.
1Es interesante hacer notar que el 0 de la izquierda es un escalar y el 0 de la derecha es un vector.
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4.3. Bases en un espacio vectorial

En un principio damos ejemplos geométricos hablando de planos, rectas, etc. A continua-
ción explicamos la siguiente cadena:

Pn ⊂ P ⊂ C∞([a, b]) ⊂ Cn([a, b]) ⊂ C1([a, b]) ⊂ C([a, b]).

Caracterizamos los subespacios: Para que un subconjunto U de un espacio vectorial V sea
subespacio es necesario y suficiente que dados x,y ∈ U , α, β ∈ IK, entonces αx + βy ∈
U . Utilizamos esta caracterización para demostrar que la intersección de subespacios es un
subespacio vectorial. Creemos que la noción de suma de subespacios no tiene cabida en este
curso, ya que el objetivo de este caṕıtulo es introducir el lenguaje apropiado de la asignatura
y no despistar al alumno con unos conceptos que en una ingenieŕıa tienen poca utilidad.

4.3. Bases en un espacio vectorial

El concepto de combinación lineal es básico en la teoŕıa de espacios vectoriales. Deci-
mos que v es combinación lineal de {v1, . . . ,vn} si existen escalares αi tales que v =
α1v1 + · · · + αnvn. Damos ejemplos y decimos que la suma ha de ser finita. Definimos la
envoltura lineal de {v1, . . . ,vn}, denotada por L({v1, . . . ,vn}), como el conjunto de todas
las combinaciones lineales de v1, . . . ,vn. Utilizamos la caracterización de subespacio para
probar que este conjunto es un subespacio vectorial. Ahora es fácil definir el concepto de
sistema generador: S es un conjunto generador del subespacio U si L(S) = U . Mostramos
varios ejemplos.

Mediante varios ejemplos geométricos definimos el concepto de dependencia lineal: Un
conjunto de vectores es linealmente dependiente si existe una combinación lineal no trivial
de éstos igual a 0. Es linealmente independiente en caso contrario. Hacemos varios
ejemplos en IKn y en el espacio de las funciones continuas.

El criterio de invertibilidad permite demostrar el siguiente teorema: Si existe x0 ∈]a, b[
tal que

det




f1(x0) f2(x0) · · · fn(x0)
f ′1(x0) f ′2(x0) · · · f ′n(x0)
· · · · · · · · · · · ·

f
(n−1)
1 (x0) f

(n−1)
2 (x0) · · · f

(n−1)
n (x0)


 6= 0,

entonces las funciones fi (derivables hasta orden n−1 en ]a, b[) son linealmente independientes.
El determinante que aparece en este teorema se llama wronskiano de las funciones f1, . . . , fn

evaluado en x0.
La definición de base de un espacio vectorial es una de las nociones más importantes

del álgebra lineal. Una base de un espacio vectorial es un conjunto de vectores linealmente
independiente y sistema generador. Damos los ejemplos más importantes en IKn y en Pn: las
bases canónicas de estos espacios. Hacemos énfasis también en un hecho que a veces olvida
el alumno: en un espacio vectorial hay infinitas bases diferentes.

Enunciamos, dependiendo del nivel de la clase, el tiempo disponible u otros factores se
demuestra o no (una demostración sencilla se puede encontrar en [37]), que si una base de
un espacio vectorial tiene n elementos, entonces todas las bases de este espacio vectorial
también poseen n elementos. Este número, que es una caracteŕıstica intŕınseca de cada
espacio vectorial, se llama dimensión. Explicamos los ejemplos clásicos: IKn, Pn. También
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4. Espacios vectoriales

demostramos y explicamos la utilidad del siguiente teorema: si en un espacio de dimensión
n hay n vectores linealmente independientes, entonces estos vectores forman base (también
hay un resultado análogo que resulta de substituir linealmente independiente por sistema
generador; pero esto no es tan útil y no lo mencionamos).

También señalamos que hay espacios que no tienen dimensión finita, dando como ejemplos
P y C([a, b]). La teoŕıa de los espacios vectoriales de dimensión infinita es sutil y delicada.
Advertimos a los alumnos que haremos incursiones en los espacios de dimensión infinita para
poder apreciar la riqueza de las aplicaciones del álgebra lineal.

4.4. Cálculo coordenado en un espacio vectorial de dimensión
finita

Finalizamos este tema con un concepto práctico. Si v es un vector de un espacio vectorial
V con una base B = {v1, . . . ,vn}, entonces existen escalares únicos αi tales que v = α1v1 +
· · · + αnvn. El vector (α1, . . . , αn)t de IKn se llama coordenadas de v en la base B. Lo
denotamos [v]B.

Enunciamos (la demostración se puede dejar como ejercicio) las siguientes propiedades:

• Si u,v ∈ V cumplen [u]B = [v]B entonces u = v.

• Dado x vector de IKn, existe un único vector v ∈ V tal que [v]B = x.

• [αv + βw]B = α[v]B + β[v]B.

Explicamos la utilidad que tienen estas propiedades. Se pueden resolver problemas y
deducir propiedades de los espacios vectoriales de dimensión finita simplemente trabajando
con las coordenadas de los vectores, es decir en IKn.

El libro [37] contiene un caṕıtulo dedicado a los espacios vectoriales, si bien el tratamiento
es rápido. Dos libro interesantes son [2, 32], que poseen ejemplos prácticos y ejercicios. En
cuanto a la bibliograf́ıa de problemas, aparte de los anteriores conviene mencionar [56].

Somos conscientes que hemos dejado sin explicar cierto número de resultados importantes
dese el punto de vista teórico, como por ejemplo el teorema de equicardinalidad de bases
en espacios de dimensión infinita, el teorema de la base incompleta o la matriz cambio de
base; pero se ha sacrificado algo de contenido teórico en aras de contenidos más aplicados en
caṕıtulos posteriores.
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• Definición de espacio vectorial. Ejemplos: IRn, Cn, Pn, P, Cn([a, b]).

• Propiedades elementales.

2. Subespacios vectoriales.

• Definición de subespacios vectoriales. Ejemplos. Pn ⊂ P ⊂ C([a, b]).

• Caracterización de subespacios vectoriales.

• Intersección de subespacios vectoriales.

3. Bases en un espacio vectorial.

• Definición de combinación lineal. Ejemplos.

• Definición de envoltura lineal. Ejemplos. Toda envoltura lineal es un subespacio
vectorial. Definición de sistemas generadores.

• Dependencia e independencia lineal.

• Definición de wronskiano. Relación del wronskiano con la independencia lineal de
funciones.

• Bases en un espacio vectorial. Ejemplos. Bases canónicas de IKn, Pn.

• Si una base de un espacio vectorial tiene n elementos, entonces todas las bases
tienen n elementos. Dimensión de un espacio vectorial.

• Introducción a los espacios vectoriales de dimensión infinita.

4. Cálculo coordenado en un espacio vectorial de dimensión finita.

• Coordenadas de un vector respecto de una base en espacios vectoriales de dimensión
finita.

• Propiedades. Consecuencias.
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4. Espacios vectoriales
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5. Aplicaciones lineales

OBJETIVOS:

Saber hallar y operar con la matriz asociada a una aplicación lineal. Relacionar los
conceptos de inyectividad, sobreyectividad y biyectividad con el núcleo e imagen de
una aplicación lineal. Modelar distintos tipos de problemas mediante aplicaciones
lineales.

Descartes, en uno de sus intentos por algebrizar la geometŕıa plana estudió la relación
entre (x, y) y (x′, y′) si el segundo se obtiene girando un ángulo α el primer punto. Jean
Bernouilli (1667–1748) en una carta a Leibniz en 1715 introdujo los planos coordenados en
IR3 tal como los conocemos hoy en d́ıa. Rápidamente se empezaron a estudiar las ecuaciones
de las principales transformaciones geométricas en el espacio: proyecciones, simetŕıas y giros.

Los siguientes pasos los dieron Euler y Lagrange desde dos puntos de vista: el geométrico
y el anaĺıtico. Euler, al estudiar la ecuación general de segundo grado en tres coordenadas
cambió los ejes para que la expresión resulte lo más sencilla posible, de esta manera, fue capaz
de clasificar todas las cuádricas1. Lagrange, en un ensayo sobre la atracción de los esferoides,
proporcionó la forma general de los movimientos que conservan distancias:

x = a11x
′ + a12y

′ + a13z
′

y = a21x
′ + a22y

′ + a23z
′

z = a31x
′ + a32y

′ + a33z
′

donde los coeficientes aij verifican

a2
11 + a2

21 + a2
31 = 1

a2
12 + a2

22 + a2
32 = 1

a2
13 + a2

23 + a2
33 = 1





a11a12 + a21a22 + a31a32 = 0
a11a13 + a21a23 + a31a33 = 0
a12a13 + a22a23 + a32a33 = 0





La relación entre matriz y aplicación lineal se hizo más patente cuando Cayley escribió
de forma matricial las ecuaciones de los diferentes tipos de transformaciones geométricas.
También escribió de forma matricial las ecuaciones obtenidas por Lagrange obteniendo un
tipo particular de matrices: las ortogonales. El concepto de aplicación lineal en su forma
actual se le debe a Peano cuando axiomatizó la definición de espacio vectorial.

Hoy en d́ıa las aplicaciones lineales son importantes en las matemáticas y en las ciencias
aplicadas. Las aplicaciones lineales modelan las transformaciones geométricas aśı como las
ecuaciones lineales. Muchos problemas de la ingenieŕıa se plantean usando matrices, y por
tanto, de las aplicaciones lineales. Muchos problemas complicados se aproximan mediante la
linealización prefiriendo estudiar los problemas lineales que surgen. Incluso en la mecánica
cuántica un observable es un operador lineal hermı́tico en un espacio vectorial complejo.

1Al hacer esta clasificación Euler descubrió el paraboloide hiperbólico, superficie desconocida para los griegos.
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5. Aplicaciones lineales

5.1. Definición y ejemplos

Sean U y V espacios vectoriales sobre el mismo cuerpo IK. Una aplicación lineal f :
U → V es una aplicación que satisface:

• f(u1 + u2) = f(u1) + f(u2), ∀ u1,u2 ∈ U .

• f(λu) = λf(u), ∀ λ ∈ IK,u ∈ U .

Entre los ejemplos de aplicaciones lineales citamos los siguientes:

1. Sea A una matriz m×n con coeficientes en un cuerpo IK. Definimos f : IKn → IKm por
medio de f(u) = Au. Este ejemplo muestra que si podemos representar una aplicación
de esta manera, entonces es lineal. Aplicaremos este ejemplo en adelante.

2. La proyección P en IR3 sobre el plano z = 0. Geométricamente es evidente (véase la
figura 5.1, en donde sólo se muestra la propiedad P (u + v) = P (u) + P (v)). Pero
usamos además el primer ejemplo al tener P ((x, y, z)t) = (x, y, 0)t.

3. El giro en IR2 de ángulo α y centro el origen. También debe ser evidente observando la
figura 5.1; pero además demostramos que

(
cosα − senα
sen α cosα

)(
x
y

)

es el vector que se obtiene tras girar (x, y)t un ángulo α respecto al origen.

4. Si V es un espacio vectorial de dimensión n y B una base de V , definimos Φ : V → IKn

dada por Φ(v) = [v]B.

5. T : C([a, b]) → IR dada por T (f) =
∫ b
a f(x) dx.

6. D : C1(]a, b[) → C(]a, b[) dada por D(f) = f ′.
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Figura 5.1.: Izquierda: La proyección P sobre el plano horizontal. Derecha: El giro G de
ángulo α (en este dibujo se ha tomado α = π/2).
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5.2. La matriz asociada a una aplicación lineal

Si el alumno conoce algo de cálculo vectorial se puede decir que otros ejemplos importantes
son los siguientes operadores: el gradiente, el rotacional y la divergencia.

Vemos las propiedades básicas de las aplicaciones lineales: Si f : U → V es una aplicación
lineal, entonces

• f(0) = 0.

• Si A ⊂ U , entonces f(L(A)) = L(f(A)).

5.2. La matriz asociada a una aplicación lineal

A veces, operar directamente con aplicaciones lineales puede resultar complicado. Hay
un mecanismo que permite trabajar en IKn y matrices en vez de en espacios vectoriales
“complicados”y aplicaciones lineales “complicadas”.

En esta sección construimos la matriz de una aplicación lineal f : U → V entre
espacios vectoriales de dimensión finita fijadas dos bases B y B′ de U y V respectivamente.
Indicamos como se construye y la relación fundamental:

[f(u)]B′ = M(f)B,B′ [u]B. (5.1)

Mostramos que la matriz M(f)B,B′ juega el mismo papel que la aplicación f , con la salvedad
que mientras f actúa sobre vectores abstractos, la matriz actúa sobre elementos de IKn,
de aqúı la utilidad de esta matriz. Incluimos varios ejemplos concretos. Desde luego, que si
f : IRn → IRm es lineal entonces la matriz de f en las bases canónicas es A = [f(e1), . . . , f(en)]
y se cumple que f(x) = Ax.

Creemos importante hacer los siguientes ejemplos por dos motivos: muestran la utilidad
de las aplicaciones lineales y explican el uso de la matriz de una aplicación lineal.

1. La proyección isométrica es muy usada en el diseño gráfico (véase la figura 5.2).
Geométricamente es evidente que es una aplicación lineal (en la sección siguiente se
demostrará de forma rigurosa). Esta aplicación P : IR3 → IR2 cumple P (e1) =
(−√3/2,−1/2)t, P (e2) = (

√
3/2,−1/2)t y P (e3) = (0, 1)t. Ahora, usando (5.1) de-

be ser trivial calcular P ((x, y, z)t), es decir, dónde debe ser dibujado en el plano el
punto (x, y, z)t. En [10] se puede encontrar más información.

6

HHHHj

©©©©¼

2π/3

P (e1) P (e2)

P (e3)

Figura 5.2.: La proyección isométrica.
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5. Aplicaciones lineales

2. Hallar la proyección P sobre un plano concreto que pasa por el origen. Puesto que
calcular P (ei) es complicado, en este caso es más fácil utilizar la base de IR3 formada por
{u,v,n}, siendo {u,v} una base del plano y n un vector normal al plano. Este problema
es fácil si se usan matrices por bloques, puesto que si A es la matriz de P en las canónicas,
y como Au = u, Av = v y An = 0, entonces A[u,v,n] = [Au, Av, An] = [u,v,0]. De
aqúı no tenemos más que despejar A. Obsérvese que planteado de esta manera, resulta
ahora trivial calcular, por ejemplo, la simetŕıa respecto a este plano.

Si se hubiesen cogido los vectores u y v perpendiculares entre śı y de norma 1, como



ut

vt

nt


 [

u v n
]

=




1 0 0
0 1 0
0 0 1


 = I,

entonces

A = [u,v,0][u,v,n]−1 = [u,v,0]




ut

vt

nt


 = uut + vvt,

lo que aparte de su elegancia, es mucho más rápido de calcular que si la base {u,v}
no fuera ortonormal, al evitar calcular de forma expĺıcita [u,v,n]−1. De esta manera
comenzamos a introducir la importancia de las bases ortonormales desde el punto de
vista del análisis numérico.

3. Hallar todos los polinomios p ∈ P2 que cumplen p′′(x) − 2xp′(x) + 4p(x) = x2 − 1 (el
planteamiento, como se verá, permite substituir x2 − 1 por cualquier otro polinomio
de P2). Este problema se plantea de la forma siguiente: se define Φ : P2 → P2 como
Φ(y) = y′′(x) − 2xy′(x) + 4y(x). Si A es la matriz de Φ en las canónicas, y si p(x) =
a + bx + cx2 es el (o los) polinomio buscado, entonces A(a, b, c)t = (−1, 0, 1)t es un
sistema lineal cuya solución proporciona la incógnita.

4. ¿Qué debe verificar q ∈ P2 para que exista p ∈ P2 tal que p′′(x)−2xp′(x)+4p(x) = q(x)?
Claramente, si las coordenadas de q en la canónica son b = (a, b, c)t y si A es la matriz
del ejemplo previo, el problema se reduce a investigar cuándo el sistema Ax = b es
compatible.

5. Hallar todos los polinomios p ∈ P2 tales que p(1) = y1, p(2) = y2 y p(3) = y3 para
y1, y2, y3 ∈ IR dados. Si se define Φ : P2 → IR3, como Φ(q) = (q(1), q(2), q(3))t, el
problema equivale a resolver Φ(p) = (y1, y2, y3)t. De nuevo usando técnicas matriciales,
el problema debeŕıa ser fácil. En este ejemplo, la base {1, x− 1, (x− 1)(x− 2)} es más
cómoda de usar que la base canónica de P2.

6. Se definen

Ln : Pn → IR, Ln(p) =
∫ 1

−1
p(x) dx, Tn : Pn → IR, Tn(p) = w0p(x0) + · · ·wkp(xk),

donde w0, . . . , wk ∈ IR y x0, . . . , xk ∈ [−1, 1]. Se hallan las matrices de Ln y Tn en las
canónicas y denotadas respectivamente por M(Ln) y M(Tn). En los casos

a) n = 2, k = 2, x0 = −1, x1 = 0, x2 = 1,
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5.3. Aplicaciones afines

b) n = 3, k = 1,

si se fuerza M(Ln) = M(Tn) se obtienen, respectivamente, las fórmulas de cuadratura
de Simpson y Gauss.

5.3. Aplicaciones afines

Las aplicaciones lineales no cubren todas las transformaciones geométricas interesantes,
puesto que éstas fijan el punto 0. Un tipo más general de aplicaciones son las que conservan la
razón simple. Una aplicación T : IRn → IRm es af́ın cuando T ((1−λ)x+λy) = (1−λ)Tx+λTy
para todo λ ∈ IR y x,y ∈ IRn (los casos más importantes son, desde luego n,m ∈ {2, 3}).

El siguiente teorema clasifica las aplicaciones afines y muestra la relación con las aplica-
ciones lineales: Sean T : IRn → IRm y f : IRn → IRm definida por f(v) = T (v) − T (0),
entonces T es af́ın si y sólamente si f es lineal. De esta manera si T es af́ın observamos que
T es “la aplicacón lineal f seguida de la traslación de vector T (0)”.

La demostración es como sigue: si f es lineal es prácticamente trivial demostrar que T es
af́ın. El rećıproco es un poco más complicado e ilustra la conveniencia de razonar con figuras
(véase la figura 5.3): Si se desarrollan las expresiones

T ((1− λ)0 + λv) = (1− λ)T (0) + λT (v), T (
1
2
u +

1
2
v) =

1
2
T (u) +

1
2
T (v)

se obtienen respectivamente f(λv) = λf(v) y f(u + v) = f(u) + f(v).

c¢
¢
¢
¢̧

¢
¢
¢
¢
¢
¢
¢
¢̧

0

λv

v
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c

u

(u + v)/2

v

Figura 5.3.: Demostración del teorema fundamental de las aplicaciones afines.

Como ejemplos de IR2 a IR2 citamos los siguientes:

a) La traslación de vector v0 es T (x) = x + v0.

b) El giro de ángulo α y centro p es T (x) = G(x− p) + p, en donde G es el giro de ángulo
α centrado en el origen (véase la figura 5.4).

c) Un shear de factor k se define mediante
(

x
y

)
7→

(
1 k
0 1

)(
x
y

)
.

Esta aplicación se usa cuando se “italiza” una letra (por ejemplo A → A).
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5. Aplicaciones lineales

d) La simetŕıa axial respecto de la recta r de ecuación ntx = c se construye como sigue (véase
la figura 5.4). Como S(x) − x es perpendicular a r entonces S(x) = x + λn para algún
λ ∈ IR. Como el punto medio de x y S(x) está en r entonces nt(S(x) + x) = 2c. De
aqúı se sigue que λ = 2(c − ntx)/(ntn). Operando de forma matricial y observando que
ntxn = nntx ya que ntx es un escalar y por tanto conmuta con todas las matrices:

S(x) = x +
2(c− ntx)

ntn
n = x +

2c

ntn
n− 2nnt

ntn
x =

(
I − 2nnt

ntn

)
x +

2c

ntn
n.

Fácilmente el alumno comprende que puede modificar este ejemplo para tratar la proyec-
ción sobre una recta. Asimismo se pueden demostrar muy fácilmente propiedades a partir
de la expresión matricial sin usar coordenadas.

e) La homotecia de razón k 6= 0 centrada en p se define como H(x) = p + k(x− p).
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(x + S(x))/2

x

r
n

Figura 5.4.: El giro centrado en p y la simetŕıa respecto a la recta r.

En IR3 la teoŕıa es análoga y no insistimos.
Las transformaciones geométricas pueden servir también para demostrar resultados geo-

métricos. Como problema guiado incluimos el siguiente teorema (de Von Aubel): Si sobre los
lados de un cuadrilátero se levantan cuadrados y se unen los centros correspondientes a los
lados no adyacentes se obtienen dos segmentos perpendiculares y de la misma longitud (véase
la figura 5.5). Sea J el giro de ángulo π/2 centrado en el origen y sean a,b, c,d los vértices
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Figura 5.5.: El teorema de Von Aubel.
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5.4. El núcleo y la imagen de una aplicación lineal

del cuadrilátero. Los centros de los cuadrados son

p =
b + a + J(b− a)

2
, q =

c + b + J(c− b)
2

, r =
d + c + J(d− c)

2
, s =

a + d + J(a− d)
2

.

(5.2)
Basta probar J(q− s) = p− r. Pero esto es fácil si se usa (5.2) y J2 = −I.

5.4. El núcleo y la imagen de una aplicación lineal

Introducimos dos conjuntos importantes en el estudio de las aplicaciones lineales. Sea
f : U → V una aplicación lineal.

• Llamamos núcleo de f , denotado por ker f , al subconjunto de U formado por todos
los vectores cuya imagen es el vector nulo de V .

• Llamamos imagen de f , denotado por Im f , al subconjunto de V formada por todos
los vectores que tienen antiimagen.

Observamos que estos conjuntos nunca son vaćıos pues el vector nulo pertenece a ambos.
Damos ejemplos geométricos en IR3 y en espacios menos familiares al alumno como el de los
polinomios o el de las funciones continuas.

A continuación demostramos que si f : U → V es una aplicación lineal entonces

• f es inyectiva si y solamente si ker f = {0}.
• f es sobreyectiva si y solamente si Im f = V .

Enunciamos, sin demostrar, la fórmula de las dimensiones2: Sea f : U → V una aplicación
lineal y U un espacio de dimensión finita, entonces

dim(ker f) + dim(Im f) = dimU.

Como corolario importante dejamos como ejercicio el siguiente resultado: Sea f : U → V una
aplicación lineal, si dimU = dim V < ∞, entonces

f es inyectiva ⇔ f es sobreyectiva ⇔ f es biyectiva.

Asimismo demostramos que una aplicación lineal f es biyectiva si y sólo si la matriz de f en
cualquier par de bases es invertible. Como conclusión resolvemos el siguiente ejercicio: Hallar
los valores de α de modo que la ecuación (de Hermite) y′′(x) − 2xy′(x) + αy(x) = 0 admita
soluciones polinómicas no nulas.

El libro principal de consulta en todo el caṕıtulo es [37], aunque como referencia extra se
puede consultar los textos [2, 46]. En cuanto a los libros de problemas, además de los citados
en caṕıtulos previos, podemos añadir [41] en el que se combinan las matrices y aplicaciones
lineales para plantear problemas.

2La demostración rigurosa requiere haber demostrado, por lo menos, el teorema de completación de la base.
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Contenido del Caṕıtulo 5

1. Definición y ejemplos.

• Definición de aplicación lineal.

• Ejemplos: f : IKn → IKm, f(x) = Ax, proyección en IR3, giro en IR2, cálculo
coordenado, integración y derivación.

• Propiedades básicas.

2. La matriz asociada a una aplicación lineal.

• Definición. Construcción.

• Ejemplos.

3. Aplicaciones afines.

• Definición y caracterización.

• Ejemplos en IR2.

4. El núcleo y la imagen de una aplicación lineal.

• Definición del núcleo y de la imagen de una aplicación lineal.

• Relación del núcleo y de la imagen con los conceptos de inyectividad y sobreyecti-
vidad.

• Fórmula que relaciona las dimensiones del núcleo y la imagen.

• Caracterización de las aplicaciones lineales biyectivas.
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6. Curvas de Bézier

La representación de curvas más usada en el diseño por ordenador fue descubierta de
manera independiente por Bézier (1910–1999) y por de Casteljau (quienes trabajaron para
las empresas automoviĺısticas de Rénault y Citröen respectivamente). En 1959 de Casteljau
redactó un informe confidencial en donde apareció un algoritmo con el fin de generar por
ordenador curvas sencillas e intuitivas de manipular. Bézier en el principio de la década de
los 60 derivó de forma diferente el mismo tipo de curvas.

Los trabajos de Bézier y de Casteljau estaban orientados a la industria automoviĺıstica.
Ahora las curvas de Bézier (en su versión plana) son la base de muchos programas informáticos
de diseño gráfico (como Adobe Illustrator o Corel Draw) y del diseño de tipos de fuentes de
letras (como PostScript o TrueType).

Las ideas fundamentales de este caṕıtulo han sido extraidas de [24, 30].

6.1. El algoritmo de De Casteljau

Comencemos con el siguiente algoritmo que genera una curva: Sean p0,p1,p2 tres puntos
en IR3 y t ∈ [0, 1]. Construimos los siguientes dos puntos:

b1
0(t) = (1− t)p0 + tp1, b1

1(t) = (1− t)p1 + tp2.

A continuación construimos un último punto más:

b2
0(t) = (1− t)b1

0(t) + tb1
1(t).

Véase la parte izquierda de la figura 6.1. A medida que t vaŕıa entre 0 y 1, el punto b2
0(t)

describe una curva, como se puede ver en la parte derecha de la figura 6.1. La curva b2
0(t) se

llama curva de Bézier asociada a los puntos p0,p1,p2.
Escribimos este algoritmo de forma matricial: si p0,p1,p2 son filas, entonces

[
1− t t

] [
1− t t 0

0 1− t t

] 


p0

p1

p2


 , (6.1)

lo que proporciona
b2

0(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2.

Las parábolas son curvas planas; sin embargo es interesante en las aplicaciones construir
curvas tridimensionales. Esto se logra modificando el algoritmo anterior:

Dados los n + 1 puntos p0,p1, . . . ,pn y t ∈ [0, 1], en primer lugar se calculan n puntos

b1
i (t) = (1− t)pi + tpi+1, i = 0, . . . , n− 1.
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6. Curvas de Bézier
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Figura 6.1.: Se muestra a la izquierda el algoritmo de de Casteljau. A la derecha se muestra
la curva de Bézier que resulta tras aplicar el algoritmo.

A continuación se calculan n− 1 puntos

b2
i (t) = (1− t)b1

i (t) + tb1
i+1(t), i = 0, . . . , n− 2.

Y aśı progresivamente hasta calcular

bn
0 (t) = (1− t)bn−1

0 (t) + tbn−1
1 (t).

Este algoritmo se ve mejor si se pone en forma triangular, como se ve en la tabla siguiente
con cuatro puntos iniciales en donde se ha escrito br

i por br
i (t).

p0

↘
p1 → b1

0 = (1− t)p0 + tp1

↘ ↘
p2 → b1

1 = (1− t)p1 + tp2 → b2
0 = (1− t)b1

0 + tb1
1

↘ ↘ ↘
p3 → b1

2 = (1− t)p2 + tp3 → b2
1 = (1− t)b1

1 + tb1
2 → b3

0 = (1− t)b2
0 + tb2

1

Los puntos p0, . . . ,pn se llaman puntos de control y la curva final se llama cur-
va de Bézier asociada a los puntos p0, . . . ,pn, la cual será denotada en lo sucesivo por
B[p0, . . . ,pn](t).

c

c c

c¡
¡

¡
¡

¡
¡

¡
¡

c

c

c©©©©©©©©@
@
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c cs

Figura 6.2.: Una cúbica de Bézier.

La representación matricial es análoga a (6.1). Escribimos sólo cuando hay tres puntos
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6.2. Curvas de Bézier y polinomios de Bernstein

iniciales y el alumno comprende fácilmente la generalización.

[
1− t t

] [
1− t t 0

0 1− t t

]



1− t t 0 0
0 1− t t 0
0 0 1− t t
0 0 0 1− t







p0

p1

p2

p3


 . (6.2)

Si el alumno conoce algo de programación, se puede mostrar un código que permite dibujar
las curvas de Bézier: el siguiente programa es una función de Matlab:

function cast(P)
[m,n]=size(P);
for t=0:0.05:1
B=P;
for k=m-1:-1:1
ceros = zeros(k,1);
C=[(1-t)*eye(k),ceros] + [ceros,t*eye(k)];
B=C*B;
end
plot(B(1),B(2),’o’)
hold on
end

6.2. Curvas de Bézier y polinomios de Bernstein

Como hemos visto, las curvas de Bézier se dibujan de forma recursiva mediante el algorit-
mo de de Casteljau; sin embargo es conveniente tener una forma expĺıcita para estudiar las
propiedades de estas curvas. Esta forma no recursiva fue descubierta por Bézier independien-
temente de de Casteljau.

Aunque en (6.1) y en (6.2) se ha visto una representación matricial, desde el punto de
vista teórico, la aparición de matrices no cuadradas hace dif́ıcil el estudio. Sea t ∈ [0, 1] y se
definen las siguientes matrices:

C(t) =




1− t t 0 · · · 0 0
0 1− t t · · · 0 0
0 0 1− t · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1− t t
0 0 0 · · · 0 1− t




= tU + (1− t)I, P =




p0

p1

p2

· · ·
pn−1

pn




,

en donde la matriz I es la identidad de orden n + 1 y U es la matriz cuadrada de orden
n + 1 con unos en la diagonal superior a la principal y el resto de sus entradas nulas. Las
n primeras filas de CP producen los n puntos tras la primera etapa en el algoritmo de de
Casteljau. Las n − 1 primeras filas de C(CP ) = C2P producen los n − 1 puntos tras dos
estapas del algoritmo. Y aśı sucesivamente. Por tanto la primera fila de CnP es el punto
final. Pero ahora

CnP = (tU + (1− t)I)nP =
n∑

k=0

(
n

k

)
tkUk(1− t)n−kIn−kP =

n∑

k=0

Bn
k (t)UkP.
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6. Curvas de Bézier

en donde se ha denotado Bn
k (t) =

(
n
k

)
tk(1 − t)n−k. Pero es fácil comprobar que la primera

fila de UkP es justamente pk para todo k ∈ {0, . . . , n}. Esto permite probar que la curva
generada por el algoritmo de De Casteljau con puntos de control p0, . . . ,pn es

B[p0, . . . ,pn](t) =
n∑

k=0

Bn
k (t)pk.

Emplear que B[p0, . . . ,pn](t) es la primera fila de CnP no es computacionalmente ade-
cuado, pues es preferible el uso de matrices no cuadradas como en (6.1) y en (6.2).

Los polinomios Bn
k (t) que han aparecido han sido muy estudiados y se llaman polinomios

de Bernstein1. Dos propiedades importantes de estos polinomios son

a)
∑n

i=0 Bn
i (t) = 1.

b) {Bn
0 , · · · , Bn

n} es una base de Pn.

Las demostraciones son fáciles: la primera se logra aplicando el binomio de Newton a
1 = (t + (1− t))n. La segunda es más fácil aún.

6.3. Propiedades de las curvas de Bézier

Vamos a ver por qué son importantes las curvas de Bézier desde el punto de vista del
diseño por ordenador.

6.3.1. Invarianza af́ın

Las aplicaciones afines juegan un papel importante en el diseño de objetos, pues a menudo,
éstos deben ser trasladados, girados, escalados, ...

Supongamos que hemos dibujado la curva de Bézier B[p0, . . . ,pn]. A continuación nos
piden que dibujemos la imagen de esta curva mediante una aplicación af́ın T : IR2 → IR2;
es decir, tenemos que dibujar la curva T (B[p0, . . . ,pn]). La invarianza af́ın permite resolver
este problema de dos modos:

1. Calcular la imagen por T de los puntos de la curva ya dibujada.

2. Primero calcular T (p0), . . . , T (pn) y luego dibujar la curva de Bézier asociada a los
puntos de control T (p0), . . . , T (pn).

p0, . . . ,pn −−−−→ B[p0, . . . ,pn]y
y

T (p0), . . . , T (pn) −−−−→ T (B[p0, . . . ,pn]) =
= B[T (p0), . . . , T (pn)]

Probar la invarianza af́ın es fácil.
1Estos polinomios fueron introducidos por Bernstein (1880–1968) en 1913 al demostrar el Teorema de apro-

ximación de Weierstrass.
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6.4. Vectores tangentes

6.3.2. La propiedad de la envoltura convexa

La curva de Bézier siempre está contenida en el poĺıgono cuyos vértices son los puntos
de control (como se ve en las figuras 6.1 y 6.2). No damos una demostración formal de esta
propiedad, sino que de manera intuitiva decimos que el algoritmo de de Casteljau produce
puntos que están entre los puntos de control.

Esta propiedad es útil por lo siguiente: en muchas ocasiones es deseable saber si dos
curvas de Bézier se cortan o no. Esto computacionalmente es costoso (hay que decidir si
existen t, s ∈ [0, 1] tales que α(t) = β(s)). Si comprobamos que los poĺıgonos no se solapan,
que es menos costoso, entonces seguro que las curvas no se cortan (sin embargo, si los poĺıgonos
se solapan, no podemos concluir nada).

6.3.3. Interpolación inicial y final

La curva de Bézier pasa por el primer y último punto de control.

6.3.4. Pseudocontrol local

¿Qué tenemos que hacer para modificar una curva de Bézier? ¿Qué ocurre si se mueve un
punto de control? Sean las curvas

α(t) = B[p0, . . . ,pk−1,p,pk+1, . . . ,pn](t), β(t) = B[p0, . . . ,pk−1,q,pk+1, . . . ,pn](t).

Es muy fácil probar que α(t)− β(t) = Bn
k (t)(p− q).

Por tanto, si movemos un punto de control, la variación de la curva se hace máxima
cuando t = k/n y esto ocurre aproximadamente alrededor del punto de control que movemos.
Además la curva modificada se diferencia de la curva original en la dirección p− q.

6.4. Vectores tangentes

En el diseño gráfico es importante saber calcular tangentes a las curvas de Bézier, es decir
hemos de saber simplificar

d
dt

B[p0, . . . ,pn](t)

Si nos fijamos en la figura 6.1 observamos que el segmento que une b1
0(t) con b1

1(t) es tangente
a la parábola en B[p0,p1,p2](t). Algo similar ocurra para cúbicas (véase la figura 6.2).
Explicamos que por esta razón, el propio algoritmo de de Casteljau calcula la tangente sin
coste adicional. La demostración es fácil e instructiva si se usan matrices. Recordamos que

B[p0, . . . ,pn](t) = et
1C

n(t)P = [Bn
0 (t), . . . , Bn

n(t)]P.

Por lo que hay que mostrar previamente cómo se derivan matrices. En concreto mostramos
que (An)′ =

∑n
k=1 Ak−1A′An−k y en particular si A y A′ conmutan entonces (An)′ = nAn−1A′.

Como C(t) = tU + (1− t)I, entonces C conmuta con C ′ = U − I, por lo que

d
dt

B[p0, . . . ,pn](t) = et
1(nCn−1(U − I)P ) = n[et

1C
n−1UP − et

1C
n−1P ],
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6. Curvas de Bézier

que prueba lo afirmado previamente.
Éste no es momento para profundizar más en esta teoŕıa, ya que el objetivo de la asignatura

es mostrar alguna aplicación sencilla del álgebra matricial. Lo único que hacemos es señalar
algunos defectos de la teoŕıa expuesta y cómo se han resuelto para indicar algunos esbozos
de una teoŕıa más avanzada.

• Si una curva tiene un trozo recto, entonces toda la curva debe ser recta. Por tanto,
es imposible diseñar una curva que contenga partes rectas y no rectas. La solución es
sencilla: diseñar por separado trozos de curvas que se unen de manera adecuada.

• Si se desea generar curvas complicadas, el grado del polinomio debe ser elevado y por
tanto los cálculos se ralentizan. La solución es la misma que la del punto previo: diseñar
curvas de grado bajo que se ensamblan de forma adecuada.

• Es imposible usar curvas de Bézier para dibujar circunferencias o hipérbolas. Hay dos
posibles soluciones: una es aproximar un trozo de circunferencia mediante una cúbica
y la otra solución es usar las curvas racionales de Bézier.

Proponemos el siguiente problema:
En este ejercicio se buscará una cúbica de Bézier para aproximar un cuarto de circunfe-

rencia. Por simplicidad se supondrá que la circunferencia está centrada en el origen y que el
cuarto de la circunferencia esté en el primer cuadrante. Sea r el radio de la circunferencia. El
objetivo es hallar los puntos b0,b1,b2,b3 tales que r(t) = B[b0,b1,b2,b3](t) sea la cúbica
buscada (véase la figura 6.3). Ya que el cuarto de circunferencia debe pasar por (r, 0)t y por
(0, r)t, se exige que que b0 = (r, 0)t y b3 = (0, r)t.

tb0 = (r, 0)t

tb1

tb2tb3 = (0, r)t

@
@

@
@@

dr(1/2)

Figura 6.3.: Aproximación de una circunferencia por una cúbica de Bézier.

a) Como la tangente en (r, 0)t es vertical se exige α′(0) = (0, λ)t para algún λ > 0 y por
idéntico motivo se exige α′(1) = (−µ, 0)t para µ > 0. Por cuestión de simetŕıa, se toma
λ = µ. Pruébese que b1 = (r, λ/3)t y que b2 = (λ/3, r)t.

b) Por tanto, sólo hace falta determinar λ. Forzamos que el punto que está en la mitad
de la curva de Bézier pase por la mitad del cuarto de circunferencia. Hágase r(1

2) =
(r
√

2/2, r
√

2/2)t para hallar λ.
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6.4. Vectores tangentes

Por curiosidad, las circunferencias dibujadas en este proyecto se han dibujado usando este
problema.

Mostramos ahora una utilidad de la invarianza af́ın: Sean

b0 = (1, 0)t, b1 = (s, t)t, b2 = (t, s)t, b3 = (0, 1)t

los puntos de control para dibujar de forma aproximada la porción de la circunferencia x2 +
y2 = 1 contenida en el primer cuadrante (véase la figura 6.4).

tb0

tb1

tb2tb3

tc0

tc1

tc2tc3

Figura 6.4.: Una aplicación de la invarianza af́ın para dibujar elipses. En este dibujo se ha
tomado la aplicación A(x, y) = (x, y/2).

Como la transformación lineal A : IR2 → IR2 dada por A(x, y) = (ax, by) transforma la
circunferencia mencionada en la elipse x2

a2 + y2

b2
= 1, entonces esta elipse se puede dibujar de

forma aproximada como la curva de Bézier cuyos puntos de control son

c0 = (a, 0)t, c1 = (as, bt)t, c2 = (at, bs)t, c3 = (0, b)t.
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7. Espacio vectorial eucĺıdeo

OBJETIVOS:

Conocer las propiedades de los espacios eucĺıdeos y los ejemplos más importantes.
Saber aplicar el teorema de la mejor aproximación. Apreciar las ventajas que
supone trabajar con una base ortogonal. Efectuar con fluidez el proceso de Gram-
Schmidt y la factorización QR de una matriz.

Cuando los matemáticos posteriores a Descartes desarrollaron la geometŕıa anaĺıtica no
se dieron cuenta que el concepto de perpendicularidad era independiente del concepto de
paralelismo. Los desarrollos obtenidos por los matemáticos en los siglos XVIII y principios
del XIX los consideraron como parte del mismo tipo de geometŕıa.

Fue a principios del siglo XIX, con el estudio de la geometŕıa proyectiva y las geometŕıas
no eucĺıdeas cuando se observó que las ideas de paralelismo e incidencia son conceptos in-
dependientes de la métrica del espacio. El desarrollo de la teoŕıa que hoy conocemos como
producto interno vino de dos caminos diferentes: el álgebra y el análisis.

Grassmann definió en su libro Die lineale ausdehnungslehre lo que llamó cantidad extensiva
(un tipo de hipernúmero con n componentes). Para Grassmann un hipernúmero es una
expresión del tipo

α = α1e1 + α2e2 + · · ·+ αnen,

donde los αi son números reales y donde ei son unidades cualitativas representadas geométri-
camente por segmentos de ĺınea dirigidos (de una unidad de longitud) trazados desde un origen
común determinando un sistema de ejes ortogonal. Las αiei son múltiplos de las unidades
primarias y están representadas por longitudes αi a lo largo de los ejes respectivos, mientras
que α está representado por un segmento de ĺınea dirigido en el espacio cuyas proyecciones
sobre los ejes son las longitudes αi. Grassmann define la suma y el producto por escalares

(α1e1 + · · ·+ αnen) + (β1e1 + · · ·+ βnen) = (α1 + β1)e1 + · · ·+ (αn + βn)en,

λ(α1e1 + · · ·+ αnen) = (λα1)e1 + · · ·+ (λαn)en

Grassmann introdujo dos clases de productos, el interno y el externo. Para el primero
Grassmann postuló ei|ej = δij , la propiedad distributiva con respecto a la suma, la conmuta-
tiva y (αe)|f = α(e|f), siendo e y f dos hipernúmeros. Grassmann define el valor numérico
de un hipernúmero (lo que hoy llamamos norma) y ángulo entre dos hipernúmeros.

Desde el punto de vista del análisis, ya Euler se dio cuenta, al estudiar el desarrollo de
una función en serie trigonométrica, la relación

∫ π

−π
fi(x)fj(x) dx = 0, i 6= j,
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7. Espacio vectorial eucĺıdeo

siendo fi, fj cualesquiera funciones del llamado sistema trigonométrico:

{1, cosx, senx, cos(2x), sen(2x), . . . }.

Legendre (1752–1833) obtuvo, al estudiar la ecuación diferencial que hoy lleva su nombre,
una serie de polinomios pi que satisfacen

∫ 1

−1
pi(x)pj(x) dx = δij .

Sturm (1803–1855) y Liouville (1809–1882) generalizaron este tipo de funciones (véase la
introducción al Caṕıtulo 6 del programa de Matemáticas) y establecieron una clara analoǵıa
del comportamiento de todas estas funciones con el desarrollo hecho por Grassmann. La
teoŕıa tuvo que esperar a los trabajos de Hilbert (1862–1943) sobre las ecuaciones integrales
definiendo con claridad un producto interno en el espacio de las funciones que generaliza al
producto de Grassmann.

Aunque Hilbert no desarrolló un lenguaje geométrico puso los fundamentos para el des-
arrollo de la teoŕıa general que fue hecha por Schmidt (1876–1959) a principios del siglo XX.
Consideraba las funciones como elementos de un espacio de dimensión infinita, introdujo la
notación que hoy utilizamos, definió el concepto de perpendicularidad, norma y dedujo los
principales teoremas: Pitágoras, desigualdad de Bessel, desigualdad de Cauchy-Schwarz y la
desigualdad triangular.

7.1. Producto escalar

En esta sección empezamos definiendo un producto interior en un espacio vectorial real
V . Es una regla que asocia dos elementos u,v ∈ V a un escalar denotado 〈u,v〉 que cumple
para todos u,v,w ∈ V y λ ∈ IR.

a) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉.

b) 〈u,v〉 = 〈v,u〉.

c) 〈λu,v〉 = λ〈u,v〉.

d) 〈u,u〉 ≥ 0.

e) 〈u,u〉 = 0 ⇔ u = 0.

Un espacio vectorial eucĺıdeo es un espacio vectorial con un producto interior.
Explicamos los ejemplos más importantes con los productos escalares usuales:

a) IRn: 〈u,v〉 =
∑n

i=1 uivi = utv.

b) C([a, b]): 〈f, g〉 =
∫ b
a f(x)g(x) dx.

c) C([a, b]): 〈f, g〉 =
∫ b
a w(x)f(x)g(x) dx, donde w : [a, b] → IR+ es continua.
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Podemos dotar a un espacio vectorial de varios productos escalares, por ejemplo, conside-
ramos Pn con los siguientes productos escalares diferentes:

a) 〈p, q〉 =
∫ 1
−1 p(x)q(x) dx.

b) 〈p, q〉 =
∫ 1
0 p(x)q(x) dx.

7.2. Norma y ángulo en un espacio eucĺıdeo

La norma de un vector v de un espacio eucĺıdeo se define como ‖v‖ =
√
〈v,v〉. Hay que

recordar la idea geométrica que subyace a esta definición (véase el caṕıtulo 1). A continuación
se demuestran las siguientes propiedades de la norma: sean u,v ∈ V , siendo V un espacio
eucĺıdeo y λ un escalar, entonces

1. ‖v‖ ≥ 0.

2. ‖v‖ = 0 ⇔ v = 0.

3. ‖λv‖ = |λ|‖v‖.

4. |〈u,v〉| ≤ ‖u‖‖v‖.

5. ‖u + v‖ ≤ ‖u‖+ ‖v‖. (Desigualdad triangular).

Es conveniente, en la medida que sea posible, realizar dibujos en la pizarra para propor-
cionar al alumno una mayor base intuitiva.

La desigualdad de Cauchy-Schwarz-Bunjakovski permite definir el ángulo θ ∈ [0, π] entre
dos vectores no nulos u, v por medio de

cos θ =
〈u,v〉
‖u‖‖v‖ .

En particular podemos definir el concepto de perpendicularidad. Dos vectores son perpen-
diculares u ortogonales cuando su producto escalar es nulo. A continuación demostramos
el teorema de Pitágoras en un espacio eucĺıdeo. Insistimos en representar gráficamente los
resultados.

7.3. Proyecciones sobre subespacios

Un concepto originado de la geometŕıa, que tiene importantes aplicaciones, es el de com-
plemento ortogonal de un subespacio. Si U es un subespacio de un espacio eucĺıdeo V ,
entonces definimos este subconjunto como

U⊥ = {v ∈ V : 〈v,u〉 = 0, ∀u ∈ U}.

Enunciamos los siguientes hechos básicos (las demostraciones de las dos primeras se pueden
dejar como ejercicios):
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7. Espacio vectorial eucĺıdeo

a) U⊥ es un subespacio de V .

b) Si {u1, . . . ,un} es una base de U , entonces v ∈ U⊥ si y sólo si 〈v,ui〉 = 0 para todo
i = 1, . . . , n.

c) Si U es un subespacio vectorial de dimensión finita de un espacio vectorial eucĺıdeo V ,
entonces todo vector v de V se puede expresar de manera única como v = u + w, siendo
u ∈ U , w ∈ U⊥ (véase la figura 7.1).

¡
¡

¡
¡

¡
¡

U⊥

¡
¡µ

HHj

6HH
w

u

v

U

V

Figura 7.1.: La proyección sobre U y sobre U⊥.

Esta última afirmación se puede enunciar como V = U ⊕ U⊥. No la hacemos aśı al no
haber definido la suma de subespacios ni la suma directa.

Es necesaria hacer la demostración de la última propiedad, ya que la prueba proporciona
un método para hallar la proyección de un vector v sobre un subespacio U conocida una base
{u1,u2, . . . ,un}. Si suponemos que existe u ∈ U tal que v − u ∈ U⊥, si u =

∑n
i=1 αiui,

obtenemos el siguiente sistema de n ecuaciones lineales con n incógnitas:

n∑

i=1

αi〈ui,uj〉 = 〈v,uj〉, j = 1, . . . , n. (7.1)

Demostramos que este sistema es compatible determinado. Esta propiedad nos permite definir
las proyecciones ortogonales sobre subespacios (denotaremos PU la proyección ortogonal
sobre el subespacio U).

Enunciamos el teorema de la mejor aproximación: Sean U un subespacio de dimensión
finita de un espacio eucĺıdeo V y v ∈ V . Si u ∈ U cumple v − u ∈ U⊥ (es decir, u = PU (v))
entonces se verifica

‖v − u‖ ≤ ‖v − u′‖, ∀ u′ ∈ U.

Es interesante hacer la demostración del teorema, al mismo tiempo que se ilustra en la
pizarra la figura correspondiente (véase la figura 7.2), ya que esta figura nos proporciona casi
automáticamente la la demostración: el teorema de Pitágoras aplicado al triángulo de vértices
u, u′ y v. También la siguiente definición es intuitiva si se hace este dibujo: La distancia de
un vector v a un subespacio U es ‖v − PU (v)‖.

Hacemos el ejemplo concreto de aproximar una función f ∈ C([0, 1]) mediante polinomios
de grado menor o igual que 2 en el intervalo [0,1]. Es conveniente representar f con un
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7.4. Bases ortogonales y proceso de Gram-Schmidt
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Figura 7.2.: El teorema de la mejor aproximación.

ordenador y su aproximación para convencer al alumno de la bondad del método. En este
ejemplo ha surgido la matriz de Hilbert de orden 3. Esta matriz es el ejemplo clásico de
las matrices mal condicionadas. Posteriormente describiremos una serie de conceptos para
mejorar la situación.

La siguiente observación ayuda a introducir el siguiente punto. ¿Qué condiciones tiene
que cumplir la base {u1,u2, . . . ,un} para que el sistema (7.1) sea lo más sencillo posible de
resolver, es decir, diagonal? Fácilmente vemos que esta condición debe ser 〈ui,uj〉 = 0, si
i 6= j, concepto éste con claras connotaciones geométricas.

7.4. Bases ortogonales y proceso de Gram-Schmidt

Decimos que {u1, . . . ,un} es un sistema ortogonal si los vectores u1, . . . ,un son per-
pendiculares dos a dos. Si además tienen norma uno se dice que el sistema es ortonormal.
Demostramos que todo sistema ortogonal de vectores no nulos es linealmente independiente.
Para establecer que el rećıproco no es cierto, mediante la intuición geométrica, instamos al
alumno a buscar un contraejemplo.

Una de las ventajas de trabajar con bases ortogonales es que el sistema (7.1) es diagonal.
Al resolverlo, si una base ortogonal de U es {u1, . . . ,un}, obtenemos

PU (v) =
n∑

i=1

〈v,ui〉
‖ui‖2

ui.

Ahora las siguientes propiedades son fáciles de demostrar y se pueden dejar como ejercicios.
Conviene efectuar dibujos en la pizarra explicando intuitivamente las propiedades:

a) PU es lineal.

b) kerPU = U⊥; ImPU = U .

Es fácil ahora probar la identidad de Parseval y la desigualdad de Bessel. En este momento
introducimos los coeficientes de Fourier1 de una función f ∈ C([−π, π]). Es conveniente
aclarar que sólo vamos a trabajar con sumas finitas y subespacios de dimensión finita y que

1Para una mayor información de las series de Fourier véase el Caṕıtulo 5 del temario de Matemáticas.
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7. Espacio vectorial eucĺıdeo

la teoŕıa completa no se podrá ver hasta segundo curso de la carrera, ya que ahora el alumno
no dispone de las herramientas necesarias.

Utilizando el hecho de que el sistema trigonométrico

{1, cosx, senx, cos(2x), sen(2x), . . . , cos(nx), sen(nx)}

es ortogonal respecto al producto usual en C([−π, π]), obtenemos que de todas las funciones
que pertenecen a la envoltura lineal del sistema trigonométrico, la más “próxima” a f(x) es
el polinomio trigonométrico

〈f, 1〉
‖1‖2

+
n∑

i=1

〈f, cos kx〉
‖ cos kx‖2

cos kx +
〈f, sen kx〉
‖ sen kx‖2

sen kx =
a0

2
+

n∑

i=1

ak cos(kx) + bk sen(kx),

donde
ak =

1
π

∫ π

−π
f(x) cos(kx) dx; k = 0, 1, 2, . . .

bk =
1
π

∫ π

−π
f(x) sen(kx) dx; k = 1, 2, 3, . . .

Entendemos por más “próxima”, la función g(x) ∈ L{1, cosx, sen x, . . . , cosnx, sen nx} de
modo que minimice el valor de la integral

‖f − g‖2 =
∫ π

−π
(f(x)− g(x))2 dx.

Este valor se llama error cuadrático medio y mide si la aproximación es buena o no.
Cuanto menor sea este valor, mejor será la aproximación. Conviene hacer un ejemplo concreto
y dibujar las gráficas para que el alumno se familiarice con esta técnica.

Debido a las ventajas de tener bases ortogonales es preciso incitar al alumno a preguntarse
si hay un proceso que permita hallar bases ortogonales. La respuesta es śı. Enseñamos en
este punto el proceso de ortogonalización de Gram-Schmidt. Si {u1, . . . ,un} es una
base de U , entonces los siguientes vectores definidos de forma recursiva (véase la figura 7.3)
forman una base ortogonal.

q1 = u1, qn = un − PL{q1,...,qn−1}(un), n > 1.
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­
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PL{q1}(u2)
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q2

u2
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q1

PL{q1,q2}(u3)

q2

u3

Figura 7.3.: Proceso de ortogonalización de Gram - Schmidt.

Creemos que es conveniente dar dos tipos de ejemplos, en IRn y hallar una base de Pn,
(con n = 2 ó 3) con el producto escalar usual en C([−1, 1]), introduciendo los polinomios de
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7.5. Matrices ortogonales. Factorización QR

Legendre. Nos detenemos un poco en este ejemplo, efectuando un problema de aproximación.
Además, explicamos que mediante un cambio t 7→ ax + b, podemos trabajar en cualquier
intervalo cerrado y acotado usando los polinomios de Legendre ya tabulados.

De paso conviene explicar que hemos obtenido el siguiente importante resultado teórico:
Todos los espacios eucĺıdeos de dimensión finita poseen una base ortogonal.

7.5. Matrices ortogonales. Factorización QR

Geométricamente interesa definir aquellas aplicaciones que conservan el producto escalar
en IRn puesto que son transformaciones geométricas que conservan las distancias. Fácilmente
demostramos la equivalencia

〈x,y〉 = 〈Ax, Ay〉 ∀ x,y ∈ IRn ⇐⇒ AtA = I.

Este tipo de matrices se llaman ortogonales. Se observa fácilmente que los vectores columna
de una matrices ortogonal forman un sistema ortonormal. También se deduce que si A es
ortogonal, entonces At también, y por tanto los vectores fila de A son ortonormales.

Si se aplica el proceso de Gram-Schmidt a las columnas de una matriz A, si son linealmente
independientes, entonces se obtienen una matriz Q del mismo tamaño que A cuyas columnas
son ortonormales y una matriz R cuadrada triangular superior cumpliendo A = QR. Ésta es
la factorización QR de la matriz A. Si A es cuadrada, entonces Q es ortogonal. Creemos
conveniente efectuar un ejemplo con una matriz concreta.

La bibliograf́ıa para este tema es muy extensa y el tratamiento es prácticamente similar en
los libros de álgebra lineal, aunque nos hemos ceñido al texto [37]. También puede consultarse
[32]. El texto [41] es adecuado para problemas. Para una introducción a los espacios de
dimensión infinita, en especial a una introducción a las series de Fourier resulta útil [2].
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Contenido del Caṕıtulo 7

1. Producto escalar.

• Definición de producto escalar y de espacio eucĺıdeo.

• Ejemplos: IRn,C([a, b]). Un espacio vectorial puede tener varios productos escala-
res.

2. Norma y ángulo en un espacio eucĺıdeo.

• Definición de norma. Propiedades.

• Definición de ángulo. Perpendicularidad. Teorema de Pitágoras.

3. Proyecciones sobre subespacios.

• Complemento ortogonal de un subespacio. Propiedades.

• Proyecciones sobre subespacios. Propiedades.

• Teorema de la mı́nima aproximación. Distancia de un vector a un subespacio.

4. Bases ortogonales. Coeficientes de Fourier. Proceso de Gram-Schmidt.

• Sistemas ortogonales y ortonormales. Todo sistema ortogonal es un sistema lineal-
mente independiente.

• Fórmula de la proyección de un vector sobre un subespacio con base ortogonal.
Ejemplos geométricos y en C([a, b]).

• Coeficientes de Fourier de f ∈ C([−π, π]). Polinomios trigonométricos.

• Proceso de ortogonalización de Gram-Schmidt. Ejemplos. Polinomios de Legendre.

5. Matrices ortogonales. Factorización QR.

• Matrices ortogonales. Propiedades.

• Factorización QR. Ejemplos.
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8. Aproximación por ḿınimos cuadrados

OBJETIVOS:

Conocer la técnica de los mı́nimos cuadrados, en particular resolver de manera
aproximada sistemas incompatibles, aproximar por rectas, parábolas, polinomios,
modelos lineales y exponenciales una nube de puntos. Calcular la distancia entre
variedades lineales.

En el primer d́ıa del año 1801, un cuerpo, posteriormente identificado como un asteroide
y llamado Ceres, fue descubierto mientras que se aproximaba al Sol. Los astrónomos fueron
incapaces de calcular su órbita, a pesar de que pudieron observar este cuerpo durante 40 d́ıas
seguidos hasta que lo perdieron de vista. Después de sólo tres observaciones Gauss desarrolló
una técnica para calcular su órbita con tal precisión que los astrónomos a finales de 1801
y principios de 1802 pudieron localizar Ceres sin ninguna dificultad. Con este avance en
astronomı́a, Gauss logró un rápido reconocimiento en el ámbito cient́ıfico. Su método, que no
fue descrito hasta 1809 en el libro Theoria motus corporum coelestium, todav́ıa es usado hoy
en d́ıa y sólo requiere unas pocas modificaciones para adaptarse a los ordenadores modernos.

Tres años antes y de modo independiente, Legendre en su Nouvelles méthodes pour la
détermination des orbites des comètes, desarrolló el primer tratamiento del método de los
mı́nimos cuadrados.

En esencia el método de Gauss fue como sigue. Si se obtiene una tabla de medidas entre
las variables x e y ligadas por medio de la relación y = a + bx:

x x1 x2 · · · xn

y y1 y2 · · · yn

Y se busca la recta y = a + bx que mejor se “ajusta” a esta tabla de puntos, se debe intentar
hacer mı́nima la función de dos variables

f(a, b) =
n∑

i=1

(a + bxi − yi)2,

Para ello se iguala ∂f/∂a y ∂f/∂b a cero obteniendo un sistema de ecuaciones. Modernamente
se prefiere deducir este sistema por métodos algebraicos, ya que si lo que se pretende es
minimizar la norma de cierto vector de IRn, parece claro que podemos utilizar técnicas de
producto interior.

8.1. Método de los ḿınimos cuadrados

Comenzamos enunciando con generalidad el método de mı́nimos cuadrados cuyo ob-
jetivo es “resolver” de manera aproximada sistemas incompatibles.
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8. Aproximación por mı́nimos cuadrados

Consideremos el sistema incompatible Ax = b, siendo A una matriz m × n, x ∈ IRn y
b ∈ IRm. Es claro que Ax − b 6= 0 para cualquier x ∈ IRn. Pero nos interesa encontrar
x0 ∈ IRn de modo que Ax0 − b sea lo más próximo posible a 0, es decir hay que encontrar
x0 ∈ IRn tal que ‖Ax0 − b‖ sea lo menor posible (véase la figura 8.1).

¡
¡

¡
¡

¡
¡

c

cAx0

b

{Ax : x ∈ IRn}

IRm

Figura 8.1.: Deducción de las ecuaciones normales.

Por el teorema de la mejor aproximación obtenemos que x0 cumple 〈Ax0 − b, Ax〉 = 0
para todo x ∈ IRn. De aqúı es fácil deducir las ecuaciones normales:

AtAx0 = Atb.

La solución x0 se llama solución óptima y la cantidad ‖Ax0−b‖ se llama error cuadrático.
Esta cantidad mide la bondad del ajuste.

Finalizamos la sección indicando que si las filas de A son independientes (lo que ocurre
en prácticamente todas las situaciones interesantes), entonces disponemos de la factorización
QR de la matriz A. Ahora el sistema de las ecuaciones normales se reduce a Rx = Qtb. Esta
factorización permite probar que si las filas de A son linealmente independientes, el sistema
de las ecuaciones normales tiene solución única.

En cursos posteriores, cuando el alumno disponga del concepto de número de condición
de una matriz, se estudiarán las ecuaciones normales desde el punto de vista del cálculo
numérico, llegando a la conclusión de que la matriz AtA suele estar mal condicionada. Para
arreglar esta deficiencia se utiliza precisamente la factorización QR de la matriz A.

Preferimos no dar ejemplos concretos en esta sección ya que en la sección siguiente se
encontrarán numerosos ejemplos de aplicación de las ecuaciones normales.

8.2. Ajuste de datos

El primer ejemplo que desarrollamos es el ajuste por rectas. Sea la tabla de valores
obtenida emṕıricamente que relaciona las variables x e y:

x x1 x2 · · · xn

y y1 y2 · · · yn
(8.1)

Deseamos encontrar los valores a0, a1 tales que la recta y = a0 + a1x se ajusta mejor a los
datos. Esta recta se llama recta de regresión. Si forzamos que los datos pasen por la recta
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8.2. Ajuste de datos

planteamos el siguiente sistema:



1 x1

· · · · · ·
1 xn




(
a0

a1

)
=




y1

· · ·
yn


 .

El sistema es compatible si y sólo si los puntos (x1, y1), . . . , (xn, yn) están alineados, lo que
normalmente no ocurre en la práctica. Las ecuaciones normales del sistema anterior son

(
1 · · · 1
x1 · · · xn

) 


1 x1

· · · · · ·
1 xn




(
a0

a1

)
=

(
1 · · · 1
x1 · · · xn

) 


y1

· · ·
yn


 ,

es decir, (
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x2
i

)(
a0

a1

)
=

( ∑n
i=1 yi∑n

i=1 xiyi

)
,

que proporcionan las fórmulas para calcular los coeficientes de la recta buscada.
Las fórmulas son mucho más sencillas si trabajamos en un sistema de referencia diferente.

En efecto, vamos a hallar la recta y = c + d(x − x) que mejor ajusta a los datos de la tabla
(8.1), siendo x la media aritmética de los valores x1, x2, . . . , xn. Forzando a que los puntos
(xi, yi) pasen por la recta obtenemos el sistema




1 x1 − x
· · · · · ·
1 xn − x




(
c
d

)
=




y1

· · ·
yn




y las ecuaciones normales son

(
1 · · · 1

x1 − x · · · xn − x

)


1 x1 − x
· · · · · ·
1 xn − x




(
c
d

)
=

(
1 · · · 1

x1 − x · · · xn − x

)


y1

· · ·
yn


 .

Teniendo en cuenta que
n∑

i=1

(xi − x) = 0,
n∑

i=1

(xi − x)yi =
n∑

i=1

xiyi − nx · y,

siendo y la media aritmética de y1, y2, . . . , yn, las ecuaciones normales se reducen a
(

n 0
0

∑n
i=1(xi − x)2

)(
c
d

)
=

( ∑n
i=1 yi∑n

i=1 xiyi − nx · y
)

,

por lo que la recta buscada es

y = y +
∑n

i=1 xiyi − nx · y∑n
i=1(xi − x)2

(x− x).

Es conveniente introducir las siguientes cantidades (estos valores son importantes en es-
tad́ıstica). Si nos fijamos en la pendiente de la recta de regresión, dividiendo el numerador y
el denominador por n y denotando E(z) la media aritmética de la variable z, obtenemos

d =
E(xy)−E(x)E(y)

E((x− x)2)
.
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8. Aproximación por mı́nimos cuadrados

El denominador mide cuán dispersas están distribuidas las medidas de la variable x, este
valor se llama varianza de x y se denota σ(x)2. En general, dada la variable z, la varianza
de z es σ(z)2 = E[(z − E(z))2].

Por otra parte, si la pendiente es nula entonces la recta de regresión es una constante (la
media de las yi), esto quiere decir que las xis no han influido para nada en los valores de las
yis, por tanto el numerador mide el grado de dependencia entre las variables x e y. Se llama
covarianza entre x e y y se denota σ(x, y). Por tanto la recta de regresión es

y = y +
σ(x, y)
σ(x)2

(x− x).

La fórmula del error cuadrático para este ajuste es

E =
n∑

i=1

(c + d(xi − x)− yi)2,

siendo c y d los valores obtenidos. Esta expresión se puede simplificar:

E = n
σ(x)2σ(y)2 − σ(x, y)2

σ(x)2
.

Observamos que de paso hemos obtenido σ(x)σ(y) ≥ σ(x, y), al ser el error una cantidad
mayor o igual que cero.

Pero esta forma de medir el error no es buena porque, si por ejemplo aumentamos el
número de experimentos, es decir, incrementamos el valor de n, el error aumenta, lo que no
es lógico. Introducimos el ı́ndice de determinación como otra medida de la bondad de un
ajuste con el cual se corrige este defecto:

R =
σ(x, y)2

σ(x)2σ(y)2
.

Es trivial que 0 ≤ R ≤ 1. Cuanto más próximo esté R a 1, σ(x)σ(y) − σ(x, y) será más
cercano a 0, por lo que el error cometido es más pequeño y mejor es el ajuste.

El siguiente ajuste que hacemos es por parábolas. Dada la tabla (8.1), deseamos encontrar
los valores a0, a1, a2 tales que la parábola y = a0 + a1x + a2x

2 se ajusta mejor a los datos.
Si forzamos que los datos pasen por la parábola entonces planteamos el siguiente sistema
matricial: 



1 x1 x2
1

1 x2 x2
2

· · · · · · · · ·
1 xn x2

n







a0

a1

a2


 =




y1

y2

· · ·
yn


 ,

El sistema es compatible si y sólo si los puntos (x1, y1), . . . , (xn, yn) yacen en una única
parábola, lo que normalmente no ocurre en la práctica. Las ecuaciones normales del sistema
anterior son




n
∑n

i=1 xi
∑n

i=1 x2
i∑n

i=1 xi
∑n

i=1 x2
i

∑n
i=1 x3

i∑n
i=1 x2

i

∑n
i=1 x3

i

∑n
i=1 x4

i







a0

a1

a2


 =




∑n
i=1 yi∑n

i=1 xiyi∑n
i=1 x2

i yi


 .
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8.2. Ajuste de datos

Considerando los ejemplos previos inducimos el caso general. El polinomio p(x) = a0 +
a1x + · · ·+ amxm de grado n que mejor ajusta a los datos debe cumplir




n
∑n

i=1 xi · · · ∑n
i=1 xm

i∑n
i=1 xi

∑n
i=1 x2

i · · · ∑n
i=1 xm+1

i

· · · · · · · · · · · ·∑n
i=1 xm

i

∑n
i=1 xm+1

i · · · ∑n
i=1 x2m−2

i







a0

a1

· · ·
am


 =




∑n
i=1 yi∑n

i=1 xiyi

· · ·∑n
i=1 xm

i yi


 .

Los ajustes anteriores son sólo casos particulares del ajuste por modelos lineales. Dada
la tabla (8.1) deseamos encontrar una función de la forma

y = a0φ0(x) + a1φ1(x) + · · · amφm(x)

que mejor ajusta a los datos. En este caso las incógnitas son a0, a1, . . . , am y las funciones
φi(x) son conocidas. En primer lugar forzamos a que los puntos de la tabla verifiquen la
ecuación de la curva:




y1

· · ·
yn


 =




φ0(x1) · · · φm(x1)
· · · · · · · · ·

φ0(xn) · · · φm(xn)







a0

· · ·
am


 ⇒ b = Ax.

Las ecuaciones normales son como antes: Atb = AtAx0. Ilustramos el ejemplo con dos tipos
de modelos lineales: aex + be−x, a + b/x.

A veces los datos responden a un comportamiento que no se puede modelar linealmente.
El ejemplo más importante es el ajuste exponencial. Supongamos que disponemos de una
tabla como las anteriores y que los datos siguen una relación de tipo y = a exp(bx). Si
forzamos a que los puntos (xi, yi) verifiquen la ecuación obtenemos





y1 = a exp(bx1)
· · · = · · ·
yn = a exp(bxn)

Obviamente este sistema (las incógnitas son a y b) no es lineal; pero lo podemos linealizar
tomando logaritmos: 




log(y1) = log(a) + bx1

· · · = · · ·
log(yn) = log(a) + bxn

obtenemos un sistema lineal cuyas incógnitas son log(a), b. Escribimos este sistema en forma
matricial, planteamos las ecuaciones normales y hallamos los valores óptimos. Explicamos
el siguiente ejemplo concreto: En un caldo de cultivo se halla una colonia de bacterias en
crecimiento. Para averiguar el ritmo de crecimiento se cuenta el número de bacterias en el
tiempo t, obteniéndose esta tabla:

t (tiempo) 0 1 2 3 4
n (bacterias) 20 41 83 170 331

por razones teóricas1 se supone que las variables n y t están relacionadas por la ley n =
α exp(βt).

1Cuando se estudian problemas de poblaciones donde la razón de crecimiento es proporcional al número de
habitantes surge la ecuación diferencial y′(t) = ky(t).

77



8. Aproximación por mı́nimos cuadrados

8.3. Mı́nimos cuadrados ponderados

Empezamos esta sección con un ejercicio sencillo: Si obtenemos una serie de medidas
y1, · · · , yn, ¿cuál será el valor más probable? Planteando las ecuaciones normales obtenemos
que este valor es la media aritmética de y1, · · · , yn.

De alguna manera este valor es el esperado, puesto que los datos y1, . . . , ym juegan un
papel simétrico. Pero puede pasar que no todas las medidas estuviesen hechas con la misma
precisión. Por lo que tenemos que dar mayor “peso” a las medidas más precisas. Esto mismo
puede pasar cuando estamos ajustando por una recta o cualquier curva a una tabla de puntos.
Esta situación se corrige utilizando un producto escalar que no es el usual de IRn. El ajuste
que efectuamos se llama por mı́nimos cuadrados ponderados.

Si x = (x1, . . . , xn)t, y = (y1, . . . , yn)t, definimos el siguiente producto escalar:

〈x,y〉 = w1x1y1 + · · ·+ wnxnyn = xtWy,

siendo wi números positivos (llamados pesos) y W una matriz diagonal cuyas componentes
de la diagonal principal son wi. El significado intuitivo de wi es que si la medida i es más
precisa que la medida j, entonces debemos de dar a wi un valor mayor que wj .

Sea A una matriz n ×m, b ∈ IRn. Queremos hallar el vector x0 ∈ IRm que minimiza el
valor de ‖Ax−b‖. Este vector debe cumplir Ax0−b ⊥ Ax para todo x ∈ IRm. Utilizando el
producto escalar definido en esta sección deducimos las ecuaciones normales ponderadas:

AtWAx0 = AtWb.

Crremos conveniente repetir el ejemplo hecho al principio de esta sección, obteniendo en este
momento que el mejor valor debe ser

w1y1 + · · ·+ wnyn

w1 + · · ·+ wn
.

8.4. Distancia entre variedades lineales

Como una aplicación geométrica, explicamos un método general para calcular la distancia
entre dos variedades afines de IRk (véase [6]). Sean las variedades lineales de ecuaciones

p +
n∑

i=1

λiui, q +
m∑

j=1

µjvj .

Tenemos que encontrar λi, µj que minimicen

‖p +
n∑

i=1

λiui − (q +
m∑

j=1

µjvj)‖ = ‖(u1 · · ·unv1 · · ·vm)




λ1

· · ·
λn

−µ1

· · ·
−µm



− (q− p)‖ = ‖Ax− b‖,
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8.4. Distancia entre variedades lineales

donde A = (u1, . . . ,un,v1, . . . ,vm), x = (λ1, . . . , λn, µ1, . . . , µm)t y b = q−p. Por tanto hay
que resolver

AtAx = Atb. (8.2)

Este sistema proporciona un método general para calcular la distancia entre variedades (y los
puntos que minimizan la distancia). Hacemos un ejemplo concreto.

Además, observamos que este método proporciona un corolario: el vector que une los
puntos de mı́nima distancia es perpendicular a los subespacios soporte de las variedades. En
efecto, si denotamos

U = (u1, . . . ,un), V = (v1, . . . ,vm), L = (λ1, . . . , λn)t, M = (µ1, . . . , µm)t,

entonces (8.2) puede escribirse como
(

U tU U tV
V tU V tV

)(
L
−M

)
=

(
U tb
V tb

)
,

de donde
U t(UL− V M − b) = V t(UL− V M − b) = O.

Luego el vector

UL− V M − b =
n∑

i=1

λiui −
m∑

j=1

µjvj − (q− p) = (p +
n∑

i=1

λiui)− (q +
m∑

j=1

µjvj)

es perpendicular a {u1, . . . ,un,v1, . . . ,vm}. Vemos que cuando las bases de los subespacios
soporte son ortogonales, el sistema (8.2) se simplifica.

Este caṕıtulo se halla desarrollado en [37], si bien añadimos [51, 55, 68] por el estudio
detallado que hace del método de los mı́nimos cuadrados. Los problemas planteados en [41]
son un buen complemento de los libros anteriores.
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Contenido del Caṕıtulo 8

1. Método de los mı́nimos cuadrados.

• Ecuaciones normales. Solución óptima. Error cuadrático.

• Propiedades de las ecuaciones normales.

2. Ajuste de datos.

• Ajuste por rectas. Varianza, covarianza, ı́ndice de determinación. Propiedades del
ı́ndice de determinación. Ejemplo.

• Ajuste por parábolas. Ejemplo.

• Ajuste por polinomios. Ejemplo.

• Ajuste por modelos lineales. Ejemplo.

• Ajuste exponencial. Ejemplo.

3. Mı́nimos cuadrados ponderados.

• Introducción a los mı́nimos cuadrados ponderados.

• Ecuaciones normales ponderadas.

4. Distancia entre variedades lineales.

• Planteamiento y resolución del problema.

• Ejemplo. Consecuencia geométrica.
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9. Teoŕıa espectral

OBJETIVOS:

Saber calcular valores y vectores propios. Entender y aplicar las caracterizaciones
de las matrices diagonalizables. Encontrar la factorización espectral de una matriz
diagonalizable. Saber las propiedades de las matrices simétricas y encontrar una
base ortonormal de vectores propios.

El tema de los valores propios apareció cuando Euler, en el primer tercio del siglo XVIII,
estudió sistemáticamente la ecuación general de segundo grado en dos y tres variables en
el plano y en el espacio respectivamente. Demuestra que existen unos ejes perpendiculares
donde la expresión de la cónica o cuádrica es especialmente sencilla. Posteriormente en 1760
en su libro Recherches sur la courbure des surfaces, al estudiar las secciones normales de una
superficie en un punto encuentra que hay dos planos mutuamente ortogonales cuyas secciones
proporcionan las curvas de máxima y mı́nima curvatura. Posteriormente se vio que estas dos
situaciones son casos particulares del hecho de que un operador autoadjunto es ortogonalmente
diagonalizable. La noción de polinomio caracteŕıstico aparece expĺıcitamente en el trabajo
de Lagrange sobre sistemas de ecuaciones diferenciales en 1774 y en el trabajo de Laplace
(1749–1827) en 1775.

Cauchy reconoció el problema del valor caracteŕıstico común en la obra de Euler, Lagrange
y Laplace. En 1826 tomó el problema de la reducción de la forma cuadrática en tres variables
y demostró que la ecuación caracteŕıstica es invariante para cualquier cambio en los ejes
rectangulares. En 1829 Cauchy prueba que los valores propios de una matriz simétrica son
reales. Las matrices hermı́ticas fueron introducidas por Hermite (1822–1901). Frobenius
en 1878 prueba la diagonalizabilidad de las matrices ortogonales, extendiendo en 1883 la
demostración a matrices unitarias. El teorema espectral para operadores normales es debido
a Toeplitz (1881–1940).

Jacobi (1804–1851) dio la solución del sistema de ecuaciones diferenciales Y ′ = AY , siendo
A una matriz diagonalizable. Jordan resolvió el caso no diagonalizable usando los conceptos
de matrices similares y de ecuación caracteŕıstica. En el libro Traité des substitutions (1870)
demostró que una matriz puede ser transformada a una forma canónica hoy llamada forma
canónica de Jordan.

Un paso simultáneo hacia el concepto de valor y vector propio en un espacio vectorial
abstracto lo dieron Sturm y Liouville al estudiar las ecuaciones que hoy llevan su nombre
(véase el caṕıtulo 6 de Matemáticas). Observaron que si φ es cierto operador diferencial,
entonces existe una cantidad numerable de valores λn tales que existen funciones yn no nulas
ortogonales entre śı verificando φ(yn) = λnyn.

Desde 1904 hasta 1910, Hilbert estudió la ecuación integral u(x) = λ
∫ b
a K(x, y)u(y) dy.

Supone que K es simétrico y define lo que es un operador autoadjunto para un espacio de
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9. Teoŕıa espectral

funciones, lo que le permite hacer uso de las propiedades de las matrices simétricas en el caso
finito. En concreto demuestra que el operador φ(u)(x) =

∫ b
a K(x, y)u(y) dy es autoadjunto.

Las autofunciones asociadas a los distintos autovalores son perpendiculares dos a dos. Con
estos resultados Hilbert puede demostrar lo que se conoce como el teorema de los ejes princi-
pales generalizado en espacios de dimensión infinita. Hilbert llevó a cabo un proceso de paso
al ĺımite que le permitió generalizar resultados sobre sistemas finitos de ecuaciones lineales.
Sobre esta base decidió que un tratamiento de las formas cuadráticas infinitas “vendŕıa a
completar de una manera esencial la teoŕıa bien conocida de las formas cuadráticas con un
número finito de variables”.

9.1. Conceptos básicos

Sea A una matriz cuadrada cuyas entradas están en C. Decimos que λ ∈ C es un valor
propio si existe v ∈ V no nulo tal que Av = λv. Decimos que v ∈ V es un vector
propio asociado al valor propio λ si Av = λv. Creemos que es conveniente abstenerse de
hacer ejemplos porque el siguiente teorema proporciona un método fácil para calcular valores
y vectores propios. Sea A una matriz cuadrada, entonces λ es valor propio si y sólo si
det(A − λI) = 0. El polinomio det(A − λI) = 0 (no demostramos que es un polinomio de
grado igual al orden de A) se llama polinomio caracteŕıstico.

Además es evidente que el conjunto de vectores propios asociados a λ se obtiene resolviendo
el sistema indeterminado (A − λI)x = 0. Estos resultados proporcionan un método para
calcular valores y vectores propios: primero calculamos los valores propios y para cada valor
propio calculamos el subespacio de vectores propios correspondientes.

También señalamos que una matriz real puede tener valores y vectores propios complejos.
Se tiene el siguiente resultado importante: vectores propios correspondientes a valores propios
diferentes son linealmente independientes.

9.2. Diagonalización de matrices

Definimos la multiplicidad algebraica de λ, denotada por ma(λ), como la multiplicidad
de λ como ráız del polinomio caracteŕıstico. La multiplicidad geométrica de λ, denotada
por mg(λ), es la dimensión de las soluciones del sistema (A− λI)x = 0. Fácilmente se puede
probar que mg(λ) ≤ ma(λ).

Una matriz cuadrada A es diagonalizable si tiene una base de vectores propios. Enun-
ciamos sin demostrar una equivalencia útil para comprobar si una matriz es diagonalizable:
una matriz es diagonalizable si y sólo si mg(λ) = ma(λ) para todo valor propio λ. De aqúı
se puede deducir fácilmente que si una matriz cuadrada de orden n tiene n valores propios
diferentes entonces es diagonalizable. El rećıproco es falso, como puede verse tomando la
matriz identidad. Hacemos un par de ejemplos concretos.

Uno de los resultados más importantes del tema es el siguiente resultado, llamado factori-
zación espectral de una matriz, sencillo de demostrar con las herramientas desarrolladas
hasta ahora: Si una matriz A es diagonalizable, entonces A = SDS−1, siendo S la matriz
cuyas columnas son los vectores propios de A y D la matriz diagonal cuyas entradas son los
valores propios de la diagonal. Hacemos un ejemplo.
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9.3. Diagonalización de matrices hermı́ticas

9.3. Diagonalización de matrices herḿıticas

Esta sección completa los resultados sobre diagonalización de las secciones anteriores.
Recordamos que una matriz real simétrica A cumple A = At. Esta definición es equivalente
a decir que con el producto usual de IRn se verifica

〈Ax,y〉 = 〈x, Ay〉, ∀ x,y ∈ IRn.

Las propiedades más importantes de las matrices simétricas son:

a) Todo valor propio de una matriz simétrica es real.

b) Si v y w son vectores propios asociados a dos valores propios diferentes de una matriz
simétrica, entonces v y w son ortogonales.

c) Toda matriz simétrica tiene una base ortonormal de vectores propios.

Creemos conveniente probar los dos primeros, mientras que la prueba del tercero (que
usualmente es por inducción sobre el orden de la matriz y usa el teorema fundamental del
álgebra, véase por ejemplo [51, 55]) no es constructiva. Este último enunciado traducido a
una matriz simétrica A es que existe U ortogonal y D diagonal tal que A = UDU t. Hacemos
varios ejemplos concretos de obtención de estas matrices, uno de éstos cuando la multiplicidad
geométrica de algún valor propio es mayor que 1, en donde hay que acudir al proceso de
ortogonalización de Gram-Schmidt.

Para calcular los valores propios de una matriz de orden elevado nos vemos obligados a
recurrir a métodos numéricos, los cuales necesitan una aproximación inicial. A continuación
describimos un método para encontrar estas aproximaciones iniciales para matrices simétricas.
Sea A una matriz simétrica de orden n, llamamos cociente de Rayleigh a la siguiente función
definida en IRn\{0}

R(v) =
〈v, Av〉
‖v‖2

.

Es trivial, y se deja como ejercicio, probar que si v es un vector propio asociado a λ, entonces
R(v) = λ. El siguiente resultado muestra la utilidad de este cociente. Si A es una matriz
simétrica, λmı́n es el menor valor propio y λmáx es el mayor valor propio, entonces

λmı́n ≤ R(v) ≤ λmáx; ∀ v ∈ IRn.

Efectuamos un ejemplo sobre cómo se utilizan estas desigualdades para encontrar estimaciones
del menor valor y valor propio.

Somos conscientes de que dejamos sin explicar la forma canónica de Jordan. Debido
a la dificultad del tema, la falta de tiempo disponible y a que en la mayor parte de problemas
prácticos es suficiente manejar matrices diagonalizables1, creemos oportuno no mencionar este
delicado asunto. Para estudiar la forma canónica de Jordan se puede consultar [51, 68].

Para este tema hemos seguido fundamentalmente [37]. Recomendamos al alumno [68]
por su carácter aplicado y sus numerosos ejemplos. Como texto de problemas podemos citar
[41, 56].

1De hecho el conjunto de matrices diagonalizables de orden n es denso en el conjunto de las matrices cuadradas
de orden n (véase [34]).
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Contenido del Caṕıtulo 9

1. Conceptos básicos.

• Introducción. Valores y vectores propios.

• Cálculo práctico de valores y vectores propios. Polinomio caracteŕıstico. Ejemplos.

• Vectores propios asociados a valores propios diferentes son independientes.

2. Diagonalización de matrices cuadradas.

• Multiplicidades geométrica y algebraica. Propiedades.

• Diagonalizabilidad de matrices. Caracterización.

• Factorización espectral de una matriz.

3. Diagonalización de matrices simétricas.

• Propiedades de los vectores y valores propios de las matrices hermı́ticas.

• Cociente de Rayleigh. Estimación de los valores propios de una matriz simétrica.
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10. Aplicaciones de la teoŕıa espectral.

OBJETIVOS:

Conocer algunas aplicaciones de la teoŕıa de vectores y valores propios como el
cálculo de potencias de matrices, estudio de las ecuaciones en diferencias, procesos
de Márkov, cónicas y cuádricas.

Como se vio en la introducción histórica del caṕıtulo anterior, Cauchy se dio cuenta de la
estrecha relación entre los valores y vectores propios de una matriz simétrica con las direcciones
principales y las longitudes de los ejes de la cónica asociada a esta matriz simétrica. El motivo
de introducir el concepto de ortogonalmente diagonalizable fue precisamente éste.

Una de las primeras aplicaciones de la teoŕıa de los valores y vectores propios fue el
estudio de las sucesiones dadas por recurrencia lineales, por ejemplo la sucesión de Fibonacci.
La técnica que aún usamos hoy en d́ıa se reduce al cálculo de la potencia de una matriz.

Márkov (1856–1922) fue el primero en estudiar los procesos estocásticos no dependientes
del tiempo, llamados hoy cadenas de Márkov. Una cadena de Márkov es una sucesión de va-
riables dependientes X(ti) = (x1(ti), . . . , xn(ti)) identificadas por valores discretos crecientes
de ti (usualmente el tiempo) con la propiedad de que cualquier predicción de X(ti) es sólo
función de X(ti−1). Esto es, el valor futuro de la variable X depende sólo del valor presente
y no de los valores en el pasado. Utilizando la teoŕıa de diagonalización de matrices Márkov
pudo estudiar completamente las cadenas de Márkov donde la relación entre X(ti) y X(ti−1)
es lineal. Su trabajo además ha sido aplicado a la bioloǵıa. En [55] se describen las matrices
de Leslie (introducidas en 1945) con el fin de estudiar problemas de evolución de poblaciones
de animales.

10.1. Potencias de matrices

La utilidad del cálculo de la potencia de una matriz ya se vio en el Caṕıtulo 2. Aqúı
presentamos un método para calcular la potencia de una matriz diagonalizable. Esta matriz
puede escribirse como SDS−1, siendo S invertible y D diagonal, por lo que An = SDnS−1.
Realizamos el ejemplo del cálculo de An, siendo

A =
(

a b
b a

)
,

donde a, b ∈ IR, b 6= 0. En este ejemplo observamos que al ser A simétrica, normalizando los
vectores propios, podemos escribir A = SDSt, lo que es mejor que A = SDS−1.
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10. Aplicaciones de la teoŕıa espectral.

10.2. Cálculo de sucesiones dadas por recurrencia lineal

Una sucesión (un)n∈IN está dada por recurrencia lineal si existen escalares α1, . . . , αk

tales que
un = α1un−1 + · · ·+ αkun−k; n > k

y además se conocen los primeros k términos de la sucesión. Presentamos la forma de hallar
la fórmula de un con un caso concreto: la sucesión de Fibonacci.

un = un−1 + un−2; n > 2 u0 = u1 = 1.

La técnica estriba en definir el vector de IR2 (en el caso general de IRk) vn = (un+1, un)t y
encontrar una matriz A de orden 2 (en el caso general de orden k) constante de modo que
vn = Avn−1. El ejemplo se termina expresando vn = Anv0 y hallando An mediante la técnica
descrita en la sección previa.

10.3. Cadenas de Márkov lineales

Tras recordar el concepto de matriz estocástica, decimos que una cadena de Márkov
lineal es una sucesión de vectores (xn)n∈IN de IRk, de modo que existe una matriz estocástica
A tal que xn = Axn−1. Ilustramos la definición con un ejemplo concreto y hallamos la
solución.

Es conveniente definir el término estacionario, es decir el ĺımite de xn cuando n →∞
y explicar el significado intuitivo de esta expresión. En muchas ocasiones es útil encontrar
el término estacionario de una cadena de Márkov sin hallar de forma expĺıcita xn. Para
encontrar este término sin tener que hallar la fórmula general es conveniente enunciar los
siguientes hechos:

a) λ = 1 es valor propio de toda matriz estocástica A (se propone como ejercicio dando como
ayuda que demuestren (1, . . . , 1)t es vector propio asociado a λ = 1 de At).

b) Si λ es un valor propio de una matriz estocástica, entonces |λ| ≤1 (ni lo proponemos
como ejercicio ni lo demostramos puesto que la demostración requiere herramientas que
no podemos incluir en este curso1).

c) Si A es una matriz diagonalizable y estocástica y ningún valor propio tiene módulo 1 (salvo
λ = 1), entonces existe estado estacionario y es un vector propio asociado a 1.

Presentamos un ejemplo concreto y otro ejemplo de una cadena de Márkov que no tiene
estado estacionario. Además hacemos el siguiente problema relacionado con las cadenas de
Márkov (pero donde la matriz que se obtiene no es estocástica):

Un modelo energético (muy simplificado) es el siguiente: hay dos tipos de enerǵıa, la
fósil y la eléctrica. Tras cada año, las reservas energéticas se modifican, la fósil se puede
transformar en eléctrica, mientras que al contrario no. Asimismo, debido a las reservas
hidráulicas podemos suponer que hay un incremento constante de enerǵıa eléctrica. También
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10.4. Identificación de cónicas y cuádricas

F E

Año n

F E

Año n + 1

6
-

c

? ?

-

¾x

a b

Figura 10.1.: Un modelo simple para la enerǵıa.

suponemos que hay unos porcentajes que se pierden debido a que el rendimiento nunca es del
100 %. Las conversiones se muestran en la figura 10.1

Los números a, b y c son tantos por uno y están en ]0, 1[. La cantidad x es fija y
estrictamente positiva. Sean en y fn las cantidades de enerǵıa eléctrica y fósil tras n años.
Sea vn = (en, fn)t.

a) Halle una matriz A y un vector u tales que vn+1 = Avn + u para todo n ∈ IN.

b) Pruebe que vn = Anv0 + (I −An)(I −A)−1u.

c) Describa cuándo la matriz A es diagonalizable.

d) Calcule An.

e) Dé una expresión para las cantidades de enerǵıa tras n años. Calcule el término estacio-
nario. ¿Con este modelo, se agotará algún tipo de enerǵıa?

10.4. Identificación de cónicas y cuádricas

La ecuación general de una cónica es

a11x
2 + 2a12xy + a22y

2 + b1x + b2y + c = 0,

que se puede escribir de forma matricial

xtAx + btx + c = 0,

siendo

A =
(

a11 a12

a12 a22

)
, b = (b1, b2)t, x = (x, y)t.

Como A es simétrica, existen S ortogonal y D diagonal de modo que A = SDSt, por lo que
la cónica es

(Stxt)D(Stx) + btS(Stx) + c = 0.

A continuación mediante la técnica de completar cuadrados se halla la ecuación reducida de
la cónica. Presentamos un ejemplo concreto con una serie de preguntas: identificar la curva,

1Por ser A estocástica se cumple ‖A‖1 = 1. Ahora se tiene que si v es un vector propio no nulo asociado a λ
entonces |λ|‖v‖1 = ‖λv‖1 = ‖Av‖1 ≤ ‖A‖1‖v‖1 = ‖v‖1, de donde |λ| ≤ 1.

87



10. Aplicaciones de la teoŕıa espectral.

las longitudes y direcciones de los ejes, el centro, ... Muchos de estos problemas se hallan
directamente y otros deshaciendo los cambios de variables.

El problema de la identificación de cuádricas es análogo al caso de las cónicas.
La bibliograf́ıa para este tema es muy extensa, como cabŕıa esperar. Mencionaremos

los textos [37, 41, 68]. Para una introducción sencilla a las cadenas de Márkov, sobre todo
pensando en aplicaciones a la probabilidad y estad́ıstica, puede consultarse [26].
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Contenido del Caṕıtulo 10

1. Potencias de matrices.

• Potencia de una matriz diagonalizable. Ejemplo.

2. Cálculo de sucesiones dadas por recurrencia lineal.

• Recurrencia lineal. Cálculo de la fórmula en función de n. Ejemplo: La sucesión
de Fibonacci.

3. Cadenas de Márkov lineales.

• Cadenas de Márkov lineales. Ejemplo.

• Término estacionario.

• Matrices estocásticas. Propiedades. Ejemplo.

4. Identificación de cónicas y cuádricas.

• Cónicas. Ejemplo.

• Cuádricas. Ejemplo.
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90



Parte II.

Programa de Ecuaciones Diferenciales
Ordinarias
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Introducción

A la hora de elaborar un proyecto docente para esta asignatura hay que tener en cuenta la
relación con otras asignaturas y la carrera universitaria en la que se ubica. Recordemos que
esta asignatura está en el primer cuatrimestre del segundo curso de una ingenieŕıa, por lo que
el alumno domina, en cierta medida, el álgebra lineal y las funciones diferenciables de varias
variables. Además, hemos procurado dar a la asignatura un enfoque eminentemente práctico,
desentendiéndonos, hasta cierto punto, de resultados interesantes pero excesivamente teóricos.

Hemos distribuido la asignatura en estos cinco grandes bloques temáticos:

Caṕıtulo 1 Ecuaciones diferenciales de primer orden. Aplicaciones.

Caṕıtulo 2 Ecuaciones diferenciales lineales de orden n.

Caṕıtulo 3 Aplicaciones de las ecuaciones diferenciales lineales de orden n.

Caṕıtulo 4 Sistemas lineales de ecuaciones diferenciales.

Caṕıtulo 5 Cálculo variacional.

El objetivo del Caṕıtulo 1 es saber clasificar y resolver los diferentes tipos de ecuaciones
diferenciales de primer orden más comunes. Todo esto se usará para resolver problemas
extráıdos de la f́ısica y de la geometŕıa. Entre otros, hallamos la temperatura de un cuerpo
caliente en un medio fŕıo, la desintegración de un cuerpo radiactivo y resolvemos el problema
de las trayectorias ortogonales.

En el Caṕıtulo 2 estudiamos las ecuaciones diferenciales lineales de orden n. Hacemos
énfasis cuando los coeficientes son constantes.

En el Caṕıtulo 3 vemos cómo las ecuaciones diferenciales lineales de orden n sirven para
estudiar los muelles y los circuitos RLC.

En el Caṕıtulo 4 estudiamos los sistemas de ecuaciones diferenciales lineales y más con-
cretamente lo de coeficientes constantes. Estos sistemas surgen de forma natural al estudiar
sistemas de muelles acoplados y redes eléctricas. Aplicamos la teoŕıa espectral de matrices.
Evitamos en este tema hacer uso de la exponencial matricial, ya que consideramos que es-
to obligaŕıa al estudio de las normas matriciales y conceptos de convergencia relativamente
complicados.

El objetivo del Caṕıtulo 5 es estudiar el cáculo de variaciones. Sin profundizar mucho
en la teoŕıa, explicamos las ecuaciones que surgen y aplicamos estas ecuaciones para resolver
varios problemas extráıdos de la f́ısica y de la geometŕıa.

El libro básico que damos como bibliograf́ıa es [37] para los caṕıtulos 1, 2, 3 y 4. Para el
quinto hemos seguido [18, 22].
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1. Ecuaciones diferenciales de primer orden

OBJETIVOS:

Saber resolver las ecuaciones más importantes de primer orden. Aplicar las ecua-
ciones de primer orden para resolver problemas geométricos y f́ısicos.

Los intentos para resolver problemas f́ısicos mediante el cálculo diferencial llevaron gra-
dualmente a crear una nueva rama de las matemáticas, a saber, las ecuaciones diferenciales.
A mediados del siglo XVIII las ecuaciones diferenciales se convirtieron en una rama indepen-
diente y su resolución un fin en śı mismo.

Desde el punto de vista de la concepción de función de la época, se dispońıa, a partir
de Newton (1643–1727), de un método general de integración de ecuaciones diferenciales
mediante el desarrollo de funciones en forma de serie. Sin embargo a los matemáticos de
la época les interesa obtener soluciones en forma de funciones elementales. Los Bernouilli
atacaron el problema de estudiar las ecuaciones lineales de primer orden. Ricatti (1707–775)
en 1722 estudia la ecuación que hoy lleva su nombre. Es Clairaut (1713–1765) en 1734 el
que introduce la idea de los factores integrantes para conseguir que una ecuación diferencial
de primer orden sea la diferencial exacta de una función U(x, y), de la cual las funciones
impĺıcitas U(x, y) = C sean las soluciones de la ecuación. Fue el mismo Clairaut quien se
planteó el problema de la “solución singular”.

Euler desarrolla un método en 1743 para resolver las ecuaciones lineales de orden n de
coeficientes constantes. D’Alembert (1717–1783) observa que el conocimiento de una solución
particular y de la solución general de la homogénea conduce, por adición, a la solución general
de la no homogénea. Lagrange estudia cómo obtener soluciones particulares y a él se le debe
también el método de variación de parámetros.

A principios del siglo XIX se desarrolló una fase importante en la que se trataba de
demostrar algunos hechos dados por válidos en el siglo anterior. En 1820 Cauchy probó
la existencia de soluciones de la ecuación diferencial y′ = f(t, y) bajo ciertas condiciones.
En 1890 Picard (1856–1941) estableció un método de aproximaciones sucesivas que permite
establecer con precisión el teorema de existencia y unicidad de las ecuaciones diferenciales de
orden n.

Las investigaciones de Poincaré (1854–1912) sobre la estabilidad del sistema solar le con-
dujeron al inicio de la teoŕıa de las ecuaciones diferenciales no lineales. Obtuvo a finales del
siglo XIX una serie de resultados de ı́ndole topológico que fueron mejorados por Bendixson
(1861–1935) y por Liapunov (1857–1918).

Las ecuaciones diferenciales es hoy un tema importante dentro de la matemática y de las
ciencias aplicadas pudiendo decir que no hay ninguna ciencia en donde no aparezca alguna
ecuación diferencial.
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1. Ecuaciones diferenciales de primer orden

1.1. Ecuaciones separables y reducibles a separables

La forma general de una ecuación diferencial de orden 1 es1

f(t, y, y′) = 0, (1.1)

donde el objetivo es hallar la(s) funciones y(t) que cumplen (1.1). En muchos problemas que
surgen de la f́ısica se suele conocer la condición inicial, esto es y(t0). De forma análoga
definimos una ecuación diferencial de orden n como una expresión de la forma

f(t, y, y′, ..., y(n)) = 0.

En este caso las condiciones iniciales son los valores que toman y, y′, ...y(n−1) en t0.
Es interesante enunciar el teorema de Picard de existencia y unicidad local de los problemas

de valor inicial. Creemos que su demostración, que requiere herramientas poderosas del
cálculo infinitesimal, nos desvia excesivamente de los objetivos. La demostración que se suele
encontrar en los textos hace uso del teorema del punto fijo de Banach. En [18] se puede
consultar una demostración que no usa este teorema aunque śı usa la sucesión de Picard.
Para ver otra demostración que hace uso de las quebradas de Euler, véase [22]. Pese a que se
puede enunciar el teorema de Picard de forma más general, preferimos enunciar este teorema
como sigue. Si las funciones f, ∂f/∂y son continuas en un rectángulo R de IR2 y si (t0, y0)
está en el interior de R existe una y sólo una función y(t) definida en ]t0−ε, t0 +ε[ para algún
ε > 0 que cumple y′ = f(y, t) e y′(t0) = y0.

El tipo de ecuaciones más sencillas de resolver son las ecuaciones de variables sepa-
rables. Son las que pueden ser escritas de la forma

a(t) dt = b(y) dy,

su forma de resolución es simplemente integrando a ambos lados. Proporcionamos un ejemplo
concreto.

Como se ve, estamos haciendo un uso totalmente informal de los diferenciales. Esto
no es riguroso; pero es la práctica común en otras asignaturas y aśı lo haremos durante
el curso. Obsérvese que la forma rigurosa es la siguiente. En primer lugar, la ecuación
diferencial anterior es a(t) = b(y)y′. Resolver esta ecuación diferencial es encontrar una
función φ(t) tal que a(t) = b(φ(t))φ′(t) = (b ◦ φ)′(t). Si A(t) y B(t) son primitivas de a(t) y
b(t) respectivamente, entonces integrando se obtiene A(t) = B(φ(t)) + C que proporciona la
solución. Esto es más laborioso que el procedimento informal de operar con dy ó dt como si
fuesen entidades numéricas.

Otro tipo importante son las ecuaciones homogéneas. Una ecuación es de este tipo si
se puede escribir como

dy

dt
= f

(y

t

)
,

que se puede resolver mediante el cambio u = y/t. Hacemos un ejemplo concreto. Hemos de
señalar que es imposible que en una ecuación diferencial se hallen más de 2 variables.

1En todo la parte dedicada a las ecuaciones diferenciales se usará el convenio de que t es la variable indepen-
diente. Se trata de una notación inspirada en la f́ısica, ya que t suele denotar al tiempo. Utilizaremos las
notaciones dy/ dt ó y′ por igual.
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1.2. Ecuaciones exactas y reducibles a exactas

Un tipo importante de ecuaciones reducibles a homogéneas son las ecuaciones racionales:

dy

dt
= F

(
at + by + c

dt + ey + f

)
.

1.2. Ecuaciones exactas y reducibles a exactas

El objetivo de esta sección es encontrar soluciones en forma impĺıcita F (t, y(t)) = C de
una ecuación diferencial. Recordamos a los alumnos la utilización la regla de la cadena de
varias variables obteniendo

∂F

∂t
+

∂F

∂y

dy

dt
= 0.

Esto motiva a la siguiente definición: Una ecuación diferencial M(t, y) + N(t, y)y′(y) = 0 es
exacta si existe F (t, y) tal que ∂F/∂t = M y ∂F/∂y = N . En este caso la resolución es fácil:
F (t, y) = C.

Enunciamos el siguiente teorema. Si M, N, ∂M/∂t, ∂N/∂y son continuas en un rectángulo
R del plano, entonces la ecuación M dt + N dy = 0 es exacta si y sólo si en R se cumple
∂M/∂y = ∂N/∂t.

Una implicación es trivial y la demostramos: si la ecuación es exacta, entonces

∂M

∂y
=

∂

∂y

∂F

∂t
=

∂

∂t

∂F

∂y
=

∂N

∂t
.

Demostramos la otra implicación sólo si los alumnos conocen las caracterizaciones de los
campos conservativos. Si ∂M/∂y = ∂N/∂t entonces el campo G = (M, N) es conservativo,
por lo que existe un campo escalar F tal que ∇F = G. Resolvemos un ejemplo concreto.

Tenemos que decir que las ecuaciones exactas son realmente raras, pero más fácil es
encontrar una función µ(t, y) no nula de modo que la ecuación Mµdt + Nµ dy = 0 śı sea
exacta. En este caso µ se llama factor integrante. Deducimos la fórmula de los factores
integrantes: µ = µ(v) es un factor integrante si y solamente si

∂M

∂y
− ∂N

∂t
∂v

∂t
N − ∂v

∂y
M

es función solo de v. En este caso

dv

∂M

∂y
− ∂N

∂t
∂v

∂t
N − ∂v

∂y
M

=
dµ

µ
.

Buscar factores integrantes por medio de esta fórmula es más complicado que el problema
original; sin embargo, en muchos casos se puede encontrar un factor integrante que depende
de y, de t, ó de at + by en donde a, b ∈ IR. Hacemos para cada uno de estos casos un ejemplo
concreto.
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1. Ecuaciones diferenciales de primer orden

1.3. Ecuaciones lineales de primer orden

La forma general de una ecuación lineal de primer orden es

y′ + p(t)y = q(t).

Es fácil ver que esta ecuación tiene un factor integrante que depende sólo de t. Utilizando la
fórmula de los factores integrantes tenemos que este factor es

µ(t) = exp(
∫

p(t) dt).

Multiplicando la ecuación lineal por µ y teniendo en cuenta que µ′ = µp, podemos resolver
la ecuación lineal. Preferimos exponer el método general a dar una fórmula memoŕıstica.
Cuando no es posible integrar µq en término de funciones elementales, es necesario escribir
la solución de

y′ + p(t)y = q(t), y(t0) = y0

usando integrales definidas. Resolvemos el siguiente ejemplo:

y′ + ty = sen t,
y(1) = 5.

}

En ocasiones una ecuación diferencial de segundo orden puede reducirse a una de primer
orden. Damos dos situaciones y un ejemplo en cada una de éstas:

a) F (t, y′, y′′) = 0. Cambio: u = y′.

b) F (y, y′, y′′) = 0. Cambio u = y′. En este caso se tiene

y′′ =
du

dt
=

du

dy

dy

dt
= u

du

dy
.

1.4. Algunos ejemplos de las ecuaciones diferenciales de primer
orden

Como ejemplos sencillos planteamos y resolvemos cuatro problemas sacados de la f́ısica y
de la geometŕıa. Hacemos énfasis en el significado f́ısico de la derivada como tasa de variación,
en el significado geométrico de la derivada como pendiente de la recta tangente, del signo de
la derivada y en la interpretación de las soluciones obtenidas.

1. La ley de enfriamiento de Newton afirma que un objeto se enfŕıa en razón pro-
porcional a la diferencia entre su temperatura y la temperatura ambiente. Hallamos
la temperatura T (t) del objeto en el tiempo t en términos de su temperatura T0 en el
tiempo 0, suponiendo que la temperatura ambiental, M , se mantiene constante.

2. En este ejemplo se va a encontrar el perfil del agua en un vaso que gira alrededor de su
eje con velocidad constante ω. Fijamos una part́ıcula de la superficie y denotamos T la
fuerza de la tensión superficial, Fc la centŕıfuga y P el peso. Colocamos el vaso en el
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1.4. Algunos ejemplos de las ecuaciones diferenciales de primer orden
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Figura 1.1.: Un vaso gira con velocidad angular constante.

sistema de referencia {i, j} como muestra la figura 1.1. Se tiene que P + Fc + T = 0.
Pero cada fuerza en el sistema {i, j} se descompone

P = −mgj, Fc = mRω2i, T = −T sen αi + T cosαj,

en donde T = ‖T‖ y α es el ángulo que forma la tangente a la curva con el eje horizontal.
Igualando términos y eliminando T se tiene que

Rω2

g
= tanα

Esto, aunque no lo parezca es una ecuación diferencial. Se explica a los alumnos con
detalle que esta última igualdad equivale a

ω2

g
x =

dy

dx
.

La solución de esta ecuación diferencial, fácil de resolver, es y(x) = ω2

2g x2 + C, donde C
es una constante arbitraria.

No terminamos aqúı el problema; sino que aprovechamos en interpretar la solución (una
parábola); discutir el comportamiento de ω, usar el análisis dimensional para verificar
la expresión final y el significado f́ısico que tiene C.

3. Una substancia radiactiva disminuye a un ritmo proporcional a la cantidad que de ella
queda (puesto que todos los átomos tienen la misma probabilidad de desintegrarse, la
desintegración total es proporcional al número de átomos remanentes). Si A(t) es la
cantidad de dicha materia en el tiempo t, hallamos A(t) en términos de la cantidad
A0 presente en el tiempo inicial y demostramos que existe θ (la vida media) con la
propiedad A(t + θ) = A(t)/2 para todo t.

4. Hallamos la curva y = y(x) con la siguiente propiedad: la distancia de cualquier punto
de la curva al eje X siguiendo la normal a la curva es constante. Véase la figura 1.2.
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1. Ecuaciones diferenciales de primer orden
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Figura 1.2.: Un problema geométrico.

Si ϕ es al ángulo que forma la recta tangente con el eje X, entonces y′ = tanϕ =
AB/BC =

√
R2 − y2/y. Esto último es una ecuación diferencial cuya solución es

R2 = (x + C)2 + y2. La obvia solución geométrica y = ±R no es obtenida.

5. Hallar la forma de un espejo que refleje paralelamente a una dirección dada todos los
rayos que salen de un punto fijo. Para plantear la ecuación, fijamos en el origen este
punto fijo y suponemos que la dirección dada es la horizontal. Sea P = (x, y(x)) un
punto de la curva y trazamos la tangente por P que corta al eje X en Q. Véase la figura
1.3.
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Figura 1.3.: El problema del espejo parabólico.

Por propiedades de la reflexión se tiene que ∠OPQ = ∠PQO, luego OQ = OP y por
consiguiente

y′ = tg φ =
y

x +
√

x2 + y2
.

Que es una ecuación homogénea o también, racionalizando el denominador, posee un
factor integrante de la forma µ = µ(v), donde v = x2 + y2.

6. La ecuación diferencial de un circuito en serie en donde hay una inductancia L, una
resistencia R y una fuerza electromotriz externa E(t) es

L
di

dt
+ Ri = E(t),

en donde i(t) es la intensidad en el tiempo t. Resolvemos esta ecuación diferencial
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1.5. Trayectorias ortogonales y oblicuas

cuando E(t) = A0 cos(ωt) y cuando

E(t) =
{

0 si 0 ≤ t ≤ t0;
E0 si t0 < t.

1.5. Trayectorias ortogonales y oblicuas

Definimos una familia de curvas uniparamétrica en el plano y damos algunos ejemplos
geométricos: rectas, rectas pasando por un punto fijo, circunferencias, circunferencias centra-
das en el origen, etc. A continuación damos un método para calcular la ecuación diferencial
de primer orden que verifica esta familia: despejar el parámetro y derivar.

Definimos lo que son las trayectorias perpendiculares de una familia de curvas, que
son de interés. Damos las fórmulas que permiten hallar estas trayectorias. Distinguimos los
casos en coordenadas cartesianas y polares. Damos ejemplos de cada tipo.

El siguiente punto es encontrar las trayectorias de la familia de curvas que corta a la dada
bajo un ángulo fijo. Resolvemos un ejemplo y representamos geométricamente los resultados.

Como referencias para todo el caṕıtulo proponemos [37, 62, 75].
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Contenido del Caṕıtulo 1

1. Ecuaciones separables y reducibles a separables.

• Definiciones preliminares. Teorema de Picard.

• Ecuaciones separables.

• Ecuaciones reducibles a separables, homogéneas y reducibles a homogéneas.

2. Ecuaciones exactas y reducibles a exactas.

• Ecuaciones diferenciales exactas.

• Caracterización de las ecuaciones diferenciales exactas. Ejemplos.

• Factores integrantes. Búsqueda de factores integrantes cuando el factor integrante
depende sólo de y, de t, de at + by. Ejemplos.

3. Ecuaciones lineales de primer orden. Ecuaciones reducibles a lineales.

• Definición. Resolución. Ejemplos

4. Algunos ejemplos de las ecuaciones diferenciales de primer orden.

5. Trayectorias ortogonales y oblicuas.

• Definición de familia de curvas. Ejemplos. Método para calcular la ecuación dife-
rencial satisfecha por una familia uniparamétrica de curvas.

• Expresión de las trayectorias ortogonales de una familia de curvas. Fórmula en
cartesianas y en polares. Ejemplos.

• Expresión de las trayectorias oblicuas de una familia de curvas. Fórmula en carte-
sianas. Ejemplos.
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2. Ecuaciones diferenciales lineales de orden n

OBJETIVOS:

Entender la estructura del conjunto de soluciones de una ecuación diferencial
lineal de orden n. Saber resolver completamente estas ecuaciones cuando sean de
coeficientes constantes y de Euler-Cauchy.

2.1. La ecuación lineal de orden n

Una ecuación de orden n es lineal si se puede escribir de la forma

y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y′ + a0(t)y = b(t). (2.1)

Cuando b(t) = 0 se dice que la ecuación es homogénea.
El objetivo de esta sección es describir cómo son las soluciones de una ecuación diferencial

lineal. El primer resultado básico es el teorema de existencia y unicidad de los problemas de
valor inicial que enunciamos, pero que no demostramos porque creemos que la prueba nos
desviaŕıa excesivamente de nuestros objetivos.

El siguiente resultado que śı demostramos, es básico para conocer la estructura del con-
junto de soluciones. Dado el siguiente operador

L(y) = y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y′ + a0(t)y,

se tiene:

• L es lineal.

• El conjunto de soluciones de L(y) = 0 es un espacio vectorial de dimensión n.

• Si yp verifica L(y) = b(t), entonces la solución general de L(y) = b(t) se obtiene sumando
la solución general de L(y) = 0 e yp.

Explicamos la utilidad de estos resultados: para resolver L(y) = 0 basta conocer n solu-
ciones independientes y para resolver L(y) = b(t) basta conocer n soluciones independientes
de la homogénea y una solución particular de la no homogénea. De momento creemos más
oportuno no proporcionar ejemplos porque todav́ıa no disponemos de métodos de encontrar
soluciones de una ecuación diferencial.

Del teorema de existencia y unicidad se establece el criterio del wronskiano para la inde-
pendencia de soluciones de una ecuación diferencial lineal. Recordamos que solo dispońıamos
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2. Ecuaciones diferenciales lineales de orden n

de una implicación; pero cuando las funciones son soluciones de la ecuación diferencial pode-
mos afirmar la otra implicación.

Terminamos la sección describiendo el método de reducción de orden de una ecuación
de segundo orden cuando se conoce una solución de la ecuación de la homogénea. Más
precisamente: dada la ecuación y′′ + ay′ + by = c, en donde a, b, c son funciones de t, si se
conoce una solución s(t) de la homogénea asociada, entonces el cambio y = us permite reducir
el orden de la ecuación diferencial dada.

2.2. La ecuación lineal homogénea de coeficientes constantes

Uno de los pasos para encontrar la solución general de la ecuación lineal no homogénea
es encontrar n soluciones independientes de la ecuación homogénea asociada. Esto es fácil de
hacer si la ecuación es de coeficientes constantes. Dada la ecuación

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0, (2.2)

en donde a0, . . . , an ∈ IR, definimos el polinomio caracteŕıstico de la ecuación como

p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ + a0.

Es fácil comprobar que λ es ráız de la ecuación caracteŕıstica si y sólo si eλt es solución de la
ecuación diferencial. Desarrollamos los diferentes tipos de soluciones posibles:

a) El polinomio caracteŕıstico tiene sólo ráıces reales simples.

b) El polinomio caracteŕıstico tiene ráıces reales múltiples.

c) El polinomio caracteŕıstico tiene ráıces complejas simples.

d) El polinomio caracteŕıstico tiene ráıces complejas múltiples.

Proporcionamos ejemplos en cada uno de los casos. Señalamos que si y(t) es solución de (2.2),
entonces la parte real e imaginaria de y(t) son también soluciones de (2.2), hecho que nos
permite pasar de funciones exponenciales complejas a funciones trigonométricas.

Para motivar el caso b) resolvemos el siguiente problema para ε ∈]0, 1[:

y′′ − 2y′ + (1− ε2)y = 0, y(0) = a, y′(0) = b.

Y a continuación hacemos tender ε a cero. Otras dos formas de motivar este caso son las
siguientes:

• La ecuación
y(n) + an−1y

(n−1) + · · ·+ ak+1y
(k+1) = 0,

obviamente tiene como soluciones independientes las funciones 1, t, . . . tk.

• Si reducimos el orden en la ecuación de coeficientes constantes y′′ + ay′ + by = 0, en
donde λ0 es ráız doble del polinomio λ2 + aλ + b, obtenemos una solución teλ0t.
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2.3. Búsqueda de soluciones particulares de la ecuación no homogénea

Como último problema hacemos el siguiente. Calcular los valores de k ∈ IR de modo que
el siguiente problema

y′′ + ky = 0, y(0) = y(π) = 0

tenga solución no trivial, encontrando además estas soluciones. Además de practicar, el
objetivo es mencionar que si bien (bajo determinadas hipótesis) todo problema de valor inicial
tiene solución única, no es cierto que un problema de frontera tenga solución única.

2.3. Búsqueda de soluciones particulares de la ecuación no
homogénea

La sección anterior “agotaba”la ecuación diferencial lineal homogénea de coeficientes cons-
tantes. Lo que falta es encontrar una solución particular de la ecuación no homogénea.

Enseñamos el método de los coeficientes indeterminados válido para cuando b(t) es
una función sencilla: polinomios, funciones exponenciales, trigonométricas o sumas de estas
funciones. Destacamos los casos especiales de cuando determinados valores son ráıces de la
ecuación caracteŕıstica, porque hay que tener más cuidado a la hora de conjeturar la solución
particular.

Cuando b(t) no está en los casos antes expuestos no hay más remedio que acudir al método
de variación de parámetros1 . Éste es un método general, pero hay que evitar siempre
que sea posible la búsqueda de soluciones particulares de esta forma, ya que es mucho más
complicada que el método de los coeficientes indeterminados. La existencia de esta solución
particular depende de la no anulación de cierto wronskiano, lo que demuestra la importancia
de este concepto. Debido a que la presentación que hacemos de este método creemos que es
original, se mostrará a continuación.

El objetivo es encontrar una solución de (2.1). Supongamos que hemos resuelto la ecuación
homogénea asociada. Sea esta solución

yh = C1y1 + · · ·+ Cnyn = (y1 · · · yn)




C1

· · ·
Cn


 = YC,

El método de variación de parámetros se basa en el siguiente resultado: Sea F(t) un vector
columna de funciones que cumple

Y(k)F′ = 0 para k = 0, . . . , n− 2, Y(n−1)F′ = b. (2.3)

Entonces la función y(t) = Y(t)F(t) cumple (2.1).
La demostración es muy sencilla. Además, si se escribe (2.3) de forma matricial se obtiene




Y
Y′

· · ·
Y(k−2)

Y(k−1)




F′ =




0
0
· · ·
0
b




.

Lo que justifica la aparición del wronskiano de las funciones y1, . . . , yn.
1Hay que observar que el método de variación de parámetros sirve también para ecuaciones lineales de

coeficientes no constantes.
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2. Ecuaciones diferenciales lineales de orden n

2.4. Ecuación de Euler-Cauchy

Éste es un caso particular de las ecuaciones lineales de orden n de coeficientes variables.
Una ecuación de Euler-Cauchy tiene la forma

tny(n) + an−1t
n−1y(n−1) + · · ·+ a1ty

′ + a0y = R(t),

Haciendo el cambio t = ex se convierte la ecuación en una lineal de coeficientes constantes.
Comprobamos el caso n = 2 y hacemos un ejemplo concreto. Es interesante hacer notar que
una vez que hagamos el cambio no debe aparecer t, es decir, sólo tiene que aparecer una
variable independiente.

Creemos necesario demostrar con detalle

y′ = e−x dy

dx
, y′′ = e−2x

(
d2y

dx2
− dy

dx

)
.

La demostración de la fórmula general,

y(k) = e−nxD(D − 1) · · · (D − (n− 1))y,

donde D denota el operador derivada respecto a x requiere el uso de inducción. No nos parece
oportuno demostrarla.

Para la bibliograf́ıa de todo el tema conviene consultar el libro [37] que proporciona la
teoŕıa básica y numerosos ejemplos que aclaran la metodoloǵıa. Los textos [13, 62, 75] pueden
consultarse para estudiar más problemas resueltos.
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Contenido del Caṕıtulo 2

1. La ecuación lineal de orden n.

• Definición. Ecuación lineal homogénea asociada.

• Teorema de existencia y unicidad de soluciones.

• El conjunto de soluciones de la ecuación diferencial homogénea de orden n es un
espacio vectorial de dimensión n. Relación de las soluciones de la ecuación lineal
con la homogénea asociada.

2. Ecuación lineal de orden n homogénea de coeficientes constantes.

• Definición de polinomio caracteŕıstico. Relación de las ráıces del polinomio carac-
teŕıstico con las soluciones de la ecuación diferencial.

• Formación de la base del conjunto de soluciones.

3. Búsqueda de soluciones particulares de la ecuación lineal no homogénea.

• Método de los coeficientes indeterminados.

• Método de variación de parámetros.

4. Ecuación de Euler-Cauchy.

• Reducción a una ecuación lineal de coeficientes constantes.
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2. Ecuaciones diferenciales lineales de orden n
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3. Aplicaciones de las ecuaciones diferenciales

OBJETIVOS:

Modelar en forma de ecuaciones de segundo orden problemas de circuitos eléctricos
RLC o problemas de resortes elásticos. Saber interpretar en términos f́ısicos la
solución matemática correspondiente.

3.1. Vibraciones en sistemas mecánicos y circuitos eléctricos

En esta sección modelamos el movimiento de una masa suspendida de un muelle. Empe-
zamos por el caso más sencillo posible: cuando no hay rozamiento y las únicas fuerzas que
actúan son la gravedad y la recuperadora del muelle. Deducimos que la ecuación diferencial
que rige el proceso es

d2y

dt2
+

K

m
y = 0,

donde m es la masa del muelle y K la constante de recuperación del muelle. La resolvemos
y transformamos la solución para expresarla como

y(t) = A cos(at− θ),

siendo a = (K/m)1/2.
A continuación estudiamos el sistema cuando se supone que hay fuerza de rozamiento. La

ecuación que hay que resolver es

d2y

dt2
+

C

m

dy

dt
+

K

m
y = 0,

siendo −Cy′ la fuerza de rozamiento. Dependiendo de la naturaleza de las ráıces del polino-
mio caracteŕıstico de la ecuación, las soluciones son de una manera u otra. Estudiamos las
soluciones, su gráfica y el significado f́ısico de los tres tipos diferentes de soluciones: Ráıces
reales, ráız doble real y ráıces complejas conjugadas.

Como último caso estudiamos cuando el muelle se haya sometido a una fuerza externa, en
este caso la ecuación lineal deja de ser homogénea:

d2y

dt2
+

C

m

dy

dt
+

K

m
y = R(t),

Estudiamos con detalle el caso R(t) = A cos(ωt), donde A y ω son ciertas constantes. La
ecuación homogénea ya está resuelta, por lo que hallamos una particular por el método de
los coeficientes indeterminados.
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3. Aplicaciones de las ecuaciones diferenciales

Observamos el comportamiento asintótico de la solución, lo que nos da pie a definir el
término estacionario. Y estudiamos el fenómeno de la resonancia.

A continuación estudiamos los circuitos eléctricos RLC. La ecuación diferencial que go-
bierna un circuito RLC es

d2I

dt2
+

R

L

dI

dt
+

1
CL

I =
1
L

dE

dt
,

siendo I(t) la intensidad que pasa por este circuito, R la resistencia, L la inductancia, C la
capacitancia y E(t) la fuerza electromotriz. Recordamos que I = dQ/dt, donde Q es la carga
que recorre el circuito.

Esta ecuación es exactamente la misma que la del movimiento oscilatorio del muelle con
resistencia y con una fuerza externa. Aśı el estudio sobre sistemas mecánicos se adapta al
estudio de los sistemas eléctricos. De este modo enseñamos al alumno que un mismo modelo
matemático puede resolver problemas f́ısicos en apariencia totalmente distintos.

Todo este caṕıtulo está sacado de [37, 75].
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Contenido del Caṕıtulo 3

1. Vibraciones en sistemas mecánicos y circuitos eléctricos.

• Ecuación diferencial del muelle sin rozamiento. Solución de la ecuación diferencial.

• Ecuación diferencial del muelle con rozamiento. Solución de la ecuación diferencial.
Diferentes casos.

• Ecuación diferencial del muelle sometido a una fuerza externa. Solución de la
ecuación diferencial. Término estacionario y resonancia.

• Circuitos eléctricos RLC. Paralelismo entre el movimiento del muelle y los circuitos
RLC.
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3. Aplicaciones de las ecuaciones diferenciales
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4. Sistemas lineales de ecuaciones diferenciales

OBJETIVOS:

Modelar en forma de sistemas de ecuaciones diferenciales lineales el movimiento
de un sistema de resortes acoplados y la intensidad en redes eléctricas. Conocer
las propiedades básicas de los sistemas de ecuaciones lineales. Saber resolver los
sistemas de ecuaciones diferenciales lineales de coeficientes constantes.

Los sistemas de ecuaciones diferenciales surgieron en la historia de las matemáticas con
la misma intención que las ecuaciones diferenciales ordinarias: Modelar y analizar cuantita-
tivamente determinados sistemas f́ısicos, en particular los astronómicos. En el campo de la
astronomı́a los principios f́ısicos (las leyes del movimiento de Newton y la ley de gravitación)
estaban claros y los problemas matemáticos eran mucho más profundos. El problema ma-
temático fundamental al estudiar el movimiento de dos o más cuerpos, moviéndose cada uno
bajo la acción gravitatoria de los otros es el de resolver un sistema de ecuaciones diferenciales
ordinarias.

El primer éxito lo obtuvo Newton en los Principia al demostrar que a partir de sus leyes
de movimiento y de la ley de gravitación universal se pod́ıan deducir las tres leyes planetarias
de Kepler (1571–1630). El problema de los tres cuerpos sometidos a una acción gravitatoria
común fue estudiado intensamente por Euler, Laplace y Lagrange obteniendo sólo resultados
parciales. Poincaré, al estudiar la estabilidad del sistema solar a principios del siglo XX,
introdujo los métodos cualitativos (o topológicos) para estudiar el comportamiento de las
soluciones, en particular, la existencia de soluciones periódicas.

Al no obtener métodos generales para resolver los sistemas de ecuaciones diferenciales, los
matemáticos se volcaron con los sistemas de ecuaciones lineales de coeficientes constantes. La
primera vez que surgió este tipo de sistemas fue al estudiar sistemas de muelles acoplados, a
partir de la ley de Hooke. La noción de polinomio caracteŕıstico aparece ya expĺıcitamente
en el trabajo de Lagrange sobre sistemas de ecuaciones diferenciales publicado en 1774 y en
el trabajo de Laplace en 1775. Por otra parte, Laplace desarrolló un método alternativo para
hallar la solución de tales sistemas. En el famoso ensayo Théorie analytique des probabilités,
publicado en 1812, Laplace presentó lo que ahora se conoce como la transformada de Laplace
para encontrar la solución de ecuaciones diferenciales lineales de coeficientes constantes. Esta
transformada sirve también para encontrar la solución de los sistemas lineales de ecuaciones
diferenciales con coeficientes constantes.

Cauchy dedujo el teorema de existencia y unicidad de las ecuaciones diferenciales en algún
momento entre los años 1820 y 1830 y resumido en sus Exercises d’analyse (1840). Poste-
riormente, Cauchy, al tratar de demostrar el mismo teorema para los sistemas de ecuaciones
diferenciales, introdujo la notación vectorial que todav́ıa se utiliza hoy en d́ıa. Generalización
que, utilizando los conceptos matriciales introducidos por Cayley a mediados del siglo XIX,
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4. Sistemas lineales de ecuaciones diferenciales

ayudó a Jacobi a resolver completamente los sistema de ecuaciones diferenciales lineales de
coeficientes constantes donde la matriz del sistema es diagonalizable. Posteriormente Jordan
introdujo lo que hoy se conoce como la forma canónica de Jordan precisamente para resolver
los sistemas lineales de ecuaciones donde la matriz no es diagonalizable.

4.1. Introducción

Un sistema de ecuaciones diferenciales es un conjunto de ecuaciones de la forma




y′1 = f1(t, y1, . . . , yn)
· · ·

y′n = fn(t, y1, . . . , yn)

donde las funciones fi son funciones de n+1 variables. Podemos simplificar la notación (esto
es útil tanto en el estudio teórico como en los métodos de resolución aproximada):

Y(t) = (y1, . . . , yn)t, F(t,Y) = (f1(t,Y), . . . , fn(t,Y))t.

con lo que el sistema se puede escribir como

Y′(t) = F(t,Y).

Cuando F(t,Y) = A(t)Y + g(t), siendo A una matriz n × n y g : I → IRn (donde I es
un intervalo de IR), el sistema se llama lineal, y el caso más frecuente ocurre cuando A no
depende de t, en este caso el sistema se llama de coeficientes constantes. Si g(t) = 0, el
sistema se llama homogéneo. Cuando se conoce el valor del vector Y evaluado en un valor
t0 real se tiene un problema de valor inicial.

A continuación planteamos dos problemas concretos surgidos de la f́ısica.

• Ecuaciones del movimiento de dos masas sujetas a dos resortes acoplados.

• Ecuaciones de las intensidades en un circuito eléctrico con elementos en serie y en
paralelo con una fuerza electromotriz variable.

Ambos problemas conducen a sistemas de ecuaciones diferenciales lineales de coeficientes
constantes.

4.2. Propiedades de los sistemas de ecuaciones diferenciales
lineales

En primer lugar mencionamos la reducción de una ecuación lineal de orden n a un sis-
tema lineal de orden n. Esta reducción es útil en los métodos numéricos. Dada la ecuación
diferencial de orden n

y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y′ + a0(t)y + b(t) = 0,

introduciendo las variables

u1 = y; u2 = y′; . . . ; un−1 = y(n−2); un = y(n−1),
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4.3. Sistemas homogéneos de coeficientes constantes

obtenemos el sistema lineal



u1

u2

· · ·
un−1

un




′

=




0 1 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 1

−a0(t) −a1(t) · · · −an−2(t) −an−1(t)







u1

u2

· · ·
un−1

un




+




0
0
· · ·
0

b(t)




.

Enunciamos el siguiente teorema sin demostrarlo, puesto que la demostración requiere
herramientas matemáticas demasiado complicadas, a nuestro juicio, para incorporarlas a una
carrera técnica. Si Aij(t) y gi(t) son funciones continuas en un cierto intervalo I de IR, t0 ∈ I,
Y0 ∈ IRn, entonces existe una única solución del sistema Y′(t) = A(t)Y + g(t) definida en I
tal que Y(t0) = Y0.

El siguiente resultado, cuya demostración es elemental si se supone demostrado el teorema
anterior, nos dice que para encontrar la solución del sistema Y′ = A(t)Y + g(t), basta
encontrar n (el orden de la matriz) soluciones independientes del sistema homogéneo y una
solución particular de la no homogénea.

• El conjunto de soluciones de Y′ = A(t)Y es un espacio vectorial de dimensión n.

• Si Yp verifica Y′ = A(t)Y + g(t), entonces cualquier solución de Y′ = A(t)Y + g(t) se
puede escribir como suma de Yp más una solución del sistema homogéneo asociado.

Una base de las soluciones del sistema Y′ = A(t)Y se llama sistema fundamental de
soluciones. La matriz M(t) cuyas columnas forman una base de soluciones se llaman matriz
fundamental del sistema.

Ya que la solución general de la homogénea es de la forma C1Y1(t) + · · · + CnYn(t),
siendo {Y1, . . . ,Yn} un sistema fundamental de soluciones y Ci ∈ IR, la solución general de
la homogénea también se puede escribir como

Y(t) = M(t)C, C ∈ IRn.

Demostramos el siguiente resultado importante. Sean Y1(t), . . . ,Yn(t) soluciones del
sistema homogéneo Y′ = A(t)Y. Entonces son linealmente independientes si y sólo si existe
t0 ∈ IR tal que Y1(t0), . . . ,Yn(t0) son vectores linealmente independientes en IRn.

Obviamente, por este teorema, M(t) es una matriz fundamental del sistema Y′ = A(t)Y
equivale a que M ′(t) = A(t)M(t) y que existe t0 ∈ IR tal que M(t0) es invertible.

4.3. Sistemas homogéneos de coeficientes constantes

Recordamos que el conjunto de las soluciones de un sistema lineal de orden n homogéneo
de ecuaciones diferenciales es un espacio vectorial de dimensión n. Por lo tanto, para resolver
sistemas de este tipo sólo tenemos que encontrar n soluciones linealmente independientes.
Dejamos como ejercicio comprobar estas dos propiedades muy sencillas pero muy importantes:

• Si v es un vector propio de A asociado al valor propio λ ∈ C, entonces la función
Y(t) = eλtv verifica Y′ = AY.
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4. Sistemas lineales de ecuaciones diferenciales

• Si {v1, . . . ,vn} es una base de vectores propios de A asociados a los valores propios
λ1, . . . , λn (iguales o distintos), entonces eλ1tv1, . . . , eλntvn forman un sistema funda-
mental de soluciones.

Hay que explicar con detalle el caso cuando aparecen ráıces complejas. Es trivial demostrar
que si λ ∈ C\ IR es un valor propio de una matriz real con vector propio v, entonces λ es otro
valor propio con vector propio asociado v, por lo que exp(λt)v, exp(λt)v son dos soluciones
independientes del sistema. Teniendo en cuenta sencillas propiedades de los números comple-
jos es sencillo demostrar que la base anterior es equivalente a Re(eλtv), Im(eλtv). Hacemos
varios ejemplos concretos.

Si una matriz de orden n no es diagonalizable, entonces no podemos acudir al mecanis-
mo previo de búsqueda de n soluciones independientes. Hay dos alternativas: hablar de la
exponencial de la matriz o usar la forma canónica de Jordan. No tratamos esta situación.

4.4. Búsqueda de una solución particular en los sistemas no
homogéneos

En vista de los resultados anteriores, para hallar la solución general de un sistema lineal
no homogéneo de ecuaciones diferenciales de coeficientes constantes, sólo basta encontrar una
solución particular. Describiremos dos métodos, uno de aplicación general pero complicado
de usar y otro que sólo se puede usar en ciertos casos concretos, pero mucho más sencillo que
el anterior.

Primero describimos el método de variación de parámetros. Sea el sistema Y′ =
AY + g(t), en donde ya hemos resuelto la ecuación homogénea. Aśı pues, podemos construir
M(t) una matriz fundamental de soluciones. Sabemos que la solución general de la homogénea
es M(t)C donde C ∈ IRn. Conjeturamos como solución de la no homogénea

Yp(t) = M(t)C(t),

en donde C(t) es un vector columna de funciones desconocidas. Tras forzar a que Yp verifique
la ecuación no homogénea y aplicar propiedades de la matriz fundamental llegamos a que
M(t)C′(t) = g(t). Con lo cual es fácil (en teoŕıa) hallar una solución particular de la ecuación:

Yp(t) = M(t)
∫ t

t0

M−1(ξ)g(ξ) dξ. (4.1)

Notamos que (4.1) es más costoso de resolver que M(t)C′(t) = g(t). Creemos conveniente
hacer un ejemplo donde el tamaño de la ecuación diferencial no supere a dos, ya que la
fórmula, aunque en apariencia sencilla, en la práctica requiere cálculos muy laboriosos.

Cuando el término g(t) es de un tipo particular se suele aplicar la técnica de los coefi-
cientes indeterminados para encontrar una solución particular. Explicamos este método
para el sistema de ecuaciones Y′ = AY + g(t) válido para cuando g(t) es una función vecto-
rial sencilla: polinomios, funciones exponenciales, trigonométricas o sumas de estas funciones.
Destacamos cuándo determinados valores son valores propios de la matriz A, porque hay que
tener más cuidado a la hora de conjeturar la solución particular.
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4.5. Sistemas de ecuaciones diferenciales lineales de orden superior

4.5. Sistemas de ecuaciones diferenciales lineales de orden
superior

Si Rj son funciones lineales en las variables xi y en sus derivadas (por ejemplo R =
x′′−y′′+2x′−5y), entonces el conjunto de ecuaciones siguientes recibe el nombre de sistema
de ecuaciones diferenciales lineales de orden superior.





R1 = f1(t)
· · ·

Rk = fk(t)

Para resolverlo se introducen variables extras para que sólo aparezca un orden de derivación,
consiguiendo que este sistema se exprese como

AX′ = BX + b(t),

donde A y B son matrices cuadradas constantes del mismo tamaño y b un vector del mismo
orden que A. Enseñamos a los alumnos un ejemplo concreto. Si la matriz A es invertible el
sistema se llama no degenerado, y este caso lo podemos reducir a los tipos ya estudiados:
X′ = A−1BX+A−1b(t). En caso de que A no tenga inversa el sistema se llama degenerado.
El estudio de tales sistemas se escapan al nivel desarrollado en el curso.

Creemos que los textos que mejor se ajustan a los objetivos de este caṕıtulo son [13, 37, 75].
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Contenido del Caṕıtulo 4

1. Introducción.

• Definiciones. Notación vectorial para los sistemas de ecuaciones diferenciales.

• Dos problemas surgidos de la f́ısica: sistemas de resortes acoplados y redes eléctri-
cas.

2. Propiedades de los sistemas de ecuaciones diferenciales.

• Reducción de una ecuación diferencial de orden n a un sistema de ecuaciones
diferenciales.

• Teorema de existencia y unicidad de soluciones. El conjunto de soluciones de un
sistema lineal de orden n es un espacio vectorial de orden n. Relación entre el
conjunto de soluciones de la ecuación homogénea y no homogénea.

• Matrices fundamentales. Propiedades. Solución general en término de la matriz
fundamental.

3. Sistema homogéneos de coeficientes constantes.

• Relación entre los valores y vectores propios de la matriz del sistema y la solución
del sistema de ecuaciones diferenciales.

• La matriz del sistema es diagonalizable. Valores propios reales y complejos.

4. Sistema homogéneos de coeficientes constantes.

• Método de variación de parámetros.

• Método de los coeficientes indeterminados.

5. Sistemas de ecuaciones diferenciales de orden superior.

• Reducción a un sistema donde solo aparecen primeras derivadas.

• Sistemas degenerados y no degenerados.
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5. Cálculo variacional

OBJETIVOS:

Saber plantear y resolver problemas en donde se usa la ecuación de Euler del
cálculo de variaciones.

En el Acta Eruditorum de junio de 1696, Jean Bernouilli propuso como un reto a otros
matemáticos el problema de la braquistócrona. Newton, Leibniz, L’Hôpital (1661–1704),
Jean Bernouilli y su hermano mayor Jacques (1654–1705) encontraron la solución correcta. El
método de Jean era ver que la trayectoria de descenso más rápido es la misma que la trayectoria
de un rayo de luz en un medio con un ı́ndice de refracción adecuadamente seleccionado. El
método de Jacques fue mucho más laborioso; pero también más general y significó un paso al
cálculo de variaciones.

En 1734 Euler generalizó el problema de la braquistócrona para minimizar cantidades
distintas al tiempo y tomando en cuenta un medio resistente. En 1736, Euler se propuso
encontrar una aproximación más general. Su método, que fue una simplificación del de
Jacques Bernouilli fue aplicado a integrales de la forma J(y) =

∫ b
a f(x, y, y′) dx. Euler tuvo

éxito al demostrar que la función y(x) que maximiza o minimiza el valor de J debe cumplir
la hoy famosa ecuación de Euler, que es aún la ecuación diferencial básica del cálculo de
variaciones. Euler mejoró sus métodos y obtuvo ecuaciones diferenciales análogas para un
buen número de problemas. Estos resultados los publicó en un libro de 1744, Methodus
inveniendi lineas curvas maximi minimive propietate gaudentes.

En 1755 Lagrange obtuvo un procedimiento general y puramente anaĺıtico publicado en
su Essai d’une nouvelle méthode pour déterminer les maxima et les minima des formules
intégrales indéfinies. Hoy en d́ıa sus métodos son usados para deducir las fórmulas básicas
del cálculo de variaciones. El siguiente paso dado por Lagrange fue considerar integrales de
la forma J(z) =

∫∫
Ω f(x, y, z, ∂z/∂x, ∂z/∂y) dxdy. Posteriormente Lagrange aplicó el cálculo

de variaciones a la mecánica obteniendo las ecuaciones de Lagrange del movimiento que son
equivalentes a la segunda ley de Newton. Más adelante, Hamilton desarrolló estas ecuaciones
y ofreció un nuevo enfoque de la mecánica newtoniana.

Las ecuaciones obtenidas por Euler y Lagrange dan condiciones necesarias sobre las fun-
ciones que maximizan o minimizan localmente (análogas a la anulación de la primera derivada
en el cálculo de una variable). ¿Qué ocurre para encontrar condiciones suficientes o efecti-
vamente demostrar que es un máximo o mı́nimo? Los trabajos posteriores de Jacobi sobre
puntos conjugados y los de Weierstrass (1815–1897) proporcionaron respuestas parciales a
estas preguntas.
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5. Cálculo variacional

5.1. Introducción

Es fácil captar la atención del alumno si se explican algunos problemas t́ıpicos.

a) En un plano vertical un punto A = (a, c) se une con un punto B = (b, d), tales que a < b
y c > d, por una curva suave y = y(x) de modo que el tiempo que tarda una part́ıcula sin
rozamiento desde A hasta B sobre la curva y bajo la gravedad sea lo menor posible (véase
la figura 5.1). Se deduce que la velocidad v(x) que tiene la part́ıcula en el punto (x, y(x))
debe cumplir v(x) =

√
2g(c− y(x)), donde g es la aceleración terrestre. Como v = ds/dt

en donde t es el tiempo y s el espacio recorrido, y como ds =
√

1 + y′(x)2 dx, entonces el
tiempo que tarda la part́ıcula en ir desde A hasta B es

T (y) =
∫ b

a

√
1 + y′(x)2√

2g(c− y(x))
dx. (5.1)

Por lo que de todas las funciones derivables y(x) definidas en [a, b] que cumplen y(a) = c
y y(b) = d, tenemos que encontrar la que minimice (5.1).

-

6
c

c
s

A

B

(x, y(x))

Figura 5.1.: El problema de la braquistócrona.

b) ¿Cuál es la curva que minimiza la distancia entre dos puntos dados A = (a, c) y B =
(b, d)? Obviamente la respuesta debe ser el segmento que conecta estos dos puntos; pero
el problema se puede plantear como sigue. Hallar la función derivable y = y(x) definida
en [a, b] que minimiza

L(y) =
∫ b

a

√
1 + y′(x)2 dx

y que además cumple y(a) = c, y(b) = d.

c) El siguiente problema es similar. Dos puntos A = (a, c) y B = (b, d), donde a < b y c, d > 0
se unen con una curva y = y(x) por encima del eje x de modo que el área de la superficie
de revolución formada cuando la curva se rota alrededor del eje x sea lo menor posible.
Es decir, hemos de hallar la función derivable y = y(x) definida en [a, b] que minimiza

A(y) = 2π

∫ b

a
y(x)

√
1 + y′(x)2 dx

y que además cumple y(a) = c, y(b) = d.
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5.2. La ecuación de Euler

El planteamiento general es como sigue. Dada una función F = F (x, y, y′) de tres variables
la cual supondremos diferenciable tantas veces sea preciso, encontrar la función diferenciable
y = y(x) definida en [a, b] que maximice o minimice el valor

I(y) =
∫ b

a
F (x, y(x), y′(x)) dx (5.2)

y que además cumpla y(a) = c, y(b) = d para valores de c, d dados.

5.2. La ecuación de Euler

En esta sección deducimos la ecuación de Euler. Supongamos que y = y(x) maximiza o
minimiza (5.2) y sea η : [a, b] → IR con derivada continua tal que η(a) = η(b) = 0. Definimos

f(ε) =
∫ b

a
F (x, y(x) + εη(x), y′(x) + εη′(x)) dx. (5.3)

Como ε = 0 es un extremo de f se cumple f ′(0) = 0. Derivando (5.3) respecto a ε, haciendo
ε = 0 e integrando por partes se tiene

0 =
∫ b

a
η

(
∂F

∂y
− d

dx

∂F

∂y′

)
dx.

Como esto se cumple para toda función η ∈ C1([a, b]) con η(a) = η(b) = 0 se concluye1 que

∂F

∂y
− d

dx

∂F

∂y′
= 0.

Esta es la ecuación diferencial básica del cálculo variacional, que se puede escribir como

∂F

∂y
=

∂2F

∂x∂y′
+ y′

∂2F

∂y∂y′
+ y′′

∂2F

∂(y′)2
.

Es una ecuación diferencial de segundo orden que en general no se puede resolver. En algunos
casos particulares śı que se puede integrar.

a) F = F (x, y). Este caso carece de interés ya que la ecuación de Euler se reduce a ∂F/∂y = 0.

b) F = F (x, y′). La ecuación de Euler se reduce a que ∂F/∂y′ es una constante y de aqúı se
puede hallar la solución

c) F = F (y, y′). Este caso es el más importante y ocurre en la mayoŕıa de los ejemplos. Se
comprueba fácilmente (derivando) que

F − y′
∂F

∂y′

es una constante. Esto permite reducir el orden y resolver la ecuación de Euler.

Planteamos las ecuaciones diferenciales que surgen de los tres ejemplos mencionados en
la sección previa.

1Este paso fue aceptado intuitivamente o demostrado incorrectamente hasta que Sarrus (1798–1861) lo de-
mostró en 1848. Nosotros no lo demostramos.
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5. Cálculo variacional

5.3. Integrales con más de una función argumento

Nuestro objetivo ahora es encontrar las funciones y1, . . . , yn suficientemente diferenciables
en [a, b] con valores yi(a), yi(b) conocidos para i = 1, . . . , n que maximicen o minimicen

I(y1, . . . , yn) =
∫ b

a
F (x, y1, . . . , yn, y′1, . . . , y

′
n) dx.

Para ello, sean ηi ∈ C1([a, b]) cumpliendo ηi(a) = ηi(b) = 0 y definimos

f(ε1, . . . , εn) =
∫ b

a
F (x, y1 + ε1η1, . . . , yn + εnηn, y′1 + ε1η

′
1, . . . , y

′
n + εnη′n) dx.

Si y1, . . . , yn es un extremo de I entonces ∇f(0) = 0 y análogamente a la sección anterior
obtenemos

∂F

∂yi
− d

dx

∂F

∂y′i
= 0, i = 1, . . . , n.

Planteamos (sin resolver) los dos problemas siguientes:

a) De todas las curvas r(t) = (x(t), y(t), z(t)) que unen dos puntos, ¿cuál es la que minimiza
la distancia? Si suponemos que r(0) y r(1) son los extremos de la curva, hay que encontrar
funciones x = x(t), y = y(t), z = z(t) con valores dados en t = 0 y t = 1 que minimizan∫ 1
0

√
x′(t)2 + y′(t)2 + z′(t)2 dt.

b) ¿Cuál es la curva que minimiza la distancia en la esfera? Si suponemos que la esfera es de
radio uno y centrada en el origen, podemos decir que cualquier curva en la esfera es de la
forma r(t) = (senφ(t) cos λ(t), sen φ(t) senλ(t), cosφ(t)) para t ∈ [0, 1]. Por tanto hay que
encontrar funciones φ = φ(t), λ = λ(t) con valores dados en t = 0 y t = 1 que minimizan∫ 1
0 ‖r′(t)‖dt.

5.4. Problemas condicionados

Introducimos esta sección comentando dos problemas:

a) De todas las curvas cerradas de longitud constante, ¿ cuál es la que encierra más área?
Hemos de buscar dos funciones x = x(t) e y = y(t) de C1([0, 1]) de modo que x(0) = x(1)
e y(0) = y(1) son conocidos y maximicen

A(x, y) =
∫ 1

0
x(t)y′(t) dt,

con la condición de que ∫ 1

0

√
x′(t)2 + y′(t)2 dt

sea constante. Éste es el famoso problema isoperimétrico.
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5.4. Problemas condicionados

-

6
c

c

a b

Figura 5.2.: La cuerda que minimiza la enerǵıa potencial: la catenaria.

b) ¿Cuál debe ser la forma de una cuerda de densidad constante ρ que pende de dos puntos
fijos y que minimice la enerǵıa potencial? Sea y = y(x) la forma de la cuerda para x ∈ [a, b].
Conocemos y(a) e y(b). La enerǵıa potencial de un elemento diferencial de masa es

dE = gy(x) dm = gy(x)ρ ds = gρy(x)
√

1 + y′(x)2 dx,

donde g es la aceleración terrestre y ds es el diferencial de longitud de arco. Luego hemos
de minimizar

E(y) =
∫ b

a
gρy(x)

√
1 + y′(x)2 dx

con la condición de que la longitud de la cuerda sea constante, es decir
∫ b

a

√
1 + y′(x)2 dx es constante.

Establecemos sin demostración el siguiente resultado (véase [18, 22] para una demostra-
ción). Si y = y(x) es un extremo de

I(y) =
∫ b

a
F (x, y, y′) dx

con la condición ∫ b

a
G(x, y, y′) dx es constante

entonces existe λ ∈ IR tal que

d
dx

∂F

∂y′
− ∂F

∂y
= λ

(
∂G

∂y
− d

dx

∂G

∂y′

)
.

Notamos que si H = H(x, y, y′), la expresión

d
dx

(
H − y′

∂H

∂y′

)
=

∂H

∂x
+ y′

(
∂H

∂y
− d

dx

∂H

∂y′

)

suele ser útil.
Planteamos el el problema isoperimétrico en polares. En primer lugar se supone si

pérdida de generalidad que la curva tiene interior convexo. Esta convexidad permite afir-
mar que la curva se puede poner como ρ = ρ(θ) para θ ∈ [0, 2π]. Ahora hay que maximizar
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5. Cálculo variacional

A(ρ) =
∫ 2π
0 ρ2(θ)/2 dθ con la condición que

∫ 2π
0

√
ρ(θ)2 + ρ′(θ)2 dθ sea constante. También

planteamos el problema de la cuerda que minimiza la enerǵıa potencial (se obtiene la catena-
ria).

Si el problema hubiese sido encontrar y1, . . . , yn ∈ C1([a, b]) tales que se conocen yj(a),
yj(b) para j = 1, . . . , n que maximizan o minimizan

I(y1, . . . , yn) =
∫ b

a
F (x, y1, . . . , yn, y′1, . . . , y

′
n) dx

con la condición de que ∫ b

a
Gi(x, y1, . . . , yn, y′1, . . . , y

′
n) dx

sean constantes para i = 1, . . . ,m entonces existen λ1, . . . , λm ∈ IR tales que

∂

∂yj

(
F +

m∑

i=1

λiGi

)
− d

dx

(
∂

∂yj
′ (F +

m∑

i=1

λiGi)

)
= 0, j = 1, . . . , n. (5.4)

Planteamos el problema isoperimétrico propuesto al principio de la sección. Si además defi-
nimos λ0 = 1 y G0 = F , entonces (5.4) se puede escribir como

∂

∂yj

(
m∑

i=0

λiGi

)
− d

dx

(
∂

∂yj
′ (

m∑

i=0

λiGi)

)
= 0, j = 1, . . . , n.

Esta ecuación permite establecer el principio de reciprocidad. La solución de los proble-
mas de hallar el extremo de

∫ b
a Gs dx con las condiciones

∫ b
a Gi dx es constante para i 6= s,

coinciden. Este hecho, permite probar sin cálculo ninguno el siguiente problema: de todas las
curvas cerradas con área constante, ¿cuál es la que tiene menor longitud?

La bibliograf́ıa que hemos seguido ha sido [18, 22, 45].
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Contenido del Caṕıtulo 5

1. Introducción.

• Tres ejemplos: la braquistócrona, la curva que minimiza la distancia y la superficie
de revolución de área mı́nima.

2. La ecuación de Euler.

• Deducción y casos particulares.

• Resolución de algunos ejemplos concretos.

3. Integrales con más de una función argumento.

• Deducción de la fórmula.

• Resolución de algunos ejemplos concretos.

4. Problemas condicionados.

• Dos ejemplos: problema isoperimétrico y la cuerda que minimiza la enerǵıa poten-
cial.

• Resolución de los problemas.

• Principio de reciprocidad.
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127





Introducción

La asignatura de análisis vectorial se ubica en el segundo cuatrimestre del primer curso
de la carrera de Ingenieros de Telecomunicación y su carga lectiva es de 4’5 créditos.

Una de las consecuencias de la situación de la asignatura es que previamente el alumno
ha cursado la asignatura de cálculo diferencial. El estudiante, por tanto, tiene soltura con
razonamientos abstractos y conoce el cálculo diferencial e integral de funciones de varias
variables lo que permite introducir rápidamente los conceptos más importantes del análisis
vectorial.

Pensamos que el análisis vectorial debe ser una asignatura que prepare a los alumnos a
cursos más avanzados. Por esta razón, un porcentaje elevado de los contenidos consiste en las
aplicaciones a la f́ısica y más concretamente a la teoŕıa de los campos electromagnéticos. Evi-
tamos dar demostraciones no constructivas de los teoremas y preferimos argumentar éstos con
aproximaciones heuŕısticas de tipo geométrico o f́ısico. Eso śı, enunciamos los teoremas con
precisión y estableciendo de manera expĺıcita las razones por las cuales las argumentaciones
proporcionadas no son demostraciones rigurosas.

Creemos que uno de los objetivos de la asignatura debe ser la comprensión de los con-
ceptos. Esto, en nuestra opinión, es ayudado si antes se explican de forma intuitiva las ideas
geométricas o f́ısicas subyacentes, aśı como las aplicaciones de estos conceptos. Pero también
creemos que el alumno debe adquirir un grado de destreza y mecanización para resolver pro-
blemas que se pueden tildar de rutinarios. Asimismo el alumno debe prepararse para poder
resolver algunos problemas teóricos sencillos; pero siempre cuya resolución sea constructiva.

Hemos distribuido la asignatura en nueve grandes bloques temáticos:

Caṕıtulo 1 Curvas parametrizadas.

Caṕıtulo 2 Integrales de ĺınea.

Caṕıtulo 3 Superficies parametrizadas.

Caṕıtulo 4 Integrales de superficie.

Caṕıtulo 5 Campos conservativos y solenoidales.

Caṕıtulo 6 Coordenadas curvliĺıneas ortogonales.

Caṕıtulo 7 Los campos gravitatorios y electrostáticos.

Caṕıtulo 8 El campo magnético.

Comentamos brevemente el contenido de cada uno de los caṕıtulos.
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Introducción al programa de análisis vectorial

El objetivo del Caṕıtulo 1 es el estudio de las curvas parametrizadas y sus propiedades
más elementales: tangencias y longitud. No mencionamos los conceptos de curvatura y torsión
ni las fórmulas de Frenet-Serret debido a que presentan pocas aplicaciones a la teoŕıa de
campos electromagnéticos.

Las integrales curviĺıneas de campos escalares y vectoriales aparecen de forma continua
en la f́ısica. El propósito del Caṕıtulo 2 es saber calcular este tipo de integrales. Debido al
planteamiento de la asignatura creemos oportuno no demostrar el teorema de Green.

El propósito del Caṕıtulo 3 es saber parametrizar superficies y calcular el plano tangente
a éstas.

Al igual que ocurre con las integrales de ĺınea, las integrales de superficie son importantes
en la f́ısica. El objetivo del Caṕıtulo 4 es que los alumnos sepan calcular integrales de
superficie y que conozcan los teoremas de Stokes y de la divergencia. Hacemos énfasis en la
interpretación f́ısica de las integrales de superficie y de las ideas de rotacional y divergencia.
Creemos oportuno mostrar argumentos heuŕısticos para motivar los teoremas de Stokes y de
la divergencia.

Muchos campos importantes en f́ısica son conservativos (que permite hablar de la fun-
ción potencial) o solenoidales (por ejemplo el magnético). Se estudian estos campos en el
Caṕıtulo 5.

Hay muchos campos importante en la f́ısica con simetŕıas. El estudio de estos cam-
pos se hace de manera más cómoda usando coordenadas distintas a las cartesianas. En
el Caṕıtulo 6 proporcionamos fórmulas para el gradiente, divergencia y rotacional en los
sistemas de coordenadas curviĺıneas ortogonales.

En los Caṕıtulos 7 y 8 se estudian dos campos importantes en la f́ısica: el eléctrico y
el magnético. Con respecto al eléctrico, creado por cargas escalares, estudiamos el gradiente
y el laplaciano. Del campo magnético, creado por intensidades vectoriales, se esudian su
rotacional y divergencia. Se concluye enunciando las cuatro leyes de Maxwell y demostrando
algunas consecuencias sencillas.

Los libros básicos que recomendamos son [12, 17, 50]. También son recomendables [61, 63]
que proporcionan una visión muy intuitiva de la asignatura. Para un desarrollo más avanzado
y teórico se puede consultar [18]. Por último, [42], es muy avanzado y en nuestra opinión sólo
es recomendable a alumnos muy aventajados.
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1. Curvas parametrizadas.

OBJETIVOS:

Saber parametrizar los ejemplos más importantes de curvas. Saber calcular vecto-
res tangentes y normales. Aplicar la teoŕıa de curvas parametrizadas para plantear
y resolver problemas geométricos y f́ısicos.

Uno de los objetivos de la introducción por parte de Descartes y de Fermat (1601–1665)
de la geometŕıa anaĺıtica fue la de establecer un paralelismo entre el álgebra y la geometŕıa.
A partir de este momento se empezó a aplicar el cálculo diferencial e integral a problemas
geométricos. Algunos de los conceptos posteriormente tratados por el cálculo fueron intro-
ducidos por Huygens (1629–1695), quien usó sólo métodos geométricos. Los conceptos de
evoluta, involuta y radio de curvatura se le deben a él.

Newton introduce el centro de curvatura como el punto ĺımite de las intersecciones de una
normal con una normal adyacente. Afirma que el ćırculo con centro de curvatura y radio
de curvatura es el ćırculo de contacto más cercano a la curva. Newton incluye la fórmula
del radio de curvatura. Estos resultados duplican a los de Huygens, pero Newton deseaba
mostrar que los métodos anaĺıticos eran igual de válidos.

Clairaut inició la teoŕıa de curvas en el espacio. Pensó una curva como la intersección de
dos superficies cuyas ecuaciones eran de tres variables. La expresión de la longitud de arco
de una curva espacial se debe a Clairaut.

El siguiente paso importante fue dado por Euler motivado por problemas de la mecánica.
Obtuvo las fórmulas actuales de las componentes radial y tangencial de la aceleración en
polares:

ar = r̈ − rθ̇2, aθ = rθ̈ + 2ṙθ̇.

Euler representó las curvas espaciales como x = x(s), y = y(s), z = z(s), donde s es la
longitud de arco. Escribe además dx = x′(s) ds, dy = y′(s) ds, dz = z′(s) ds, donde la prima
denota derivación respecto a s y ds lo consideraba constante. Euler definió la curvatura como
dφ/ds, donde dφ es el ángulo de dos tangentes de dos puntos de la curva que están separados
ds. Más adelante da fórmulas anaĺıticas de la curvatura y del plano osculador. La torsión,
que representa la rapidez en que una curva se aleja del plano osculador, fue introducida por
Lancret (1774–1807).

Cauchy mejoró la formulación de los conceptos en su famoso Leçons sur les applications
du calcul infinitesimal à la geometrie (1826). Descartó los infinitésimos constantes y señaló
que cuando se escribe

ds2 = dx2 + dy2 + dz2

se debe entender (
ds

dt

)2

=
(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

.
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1. Curvas parametrizadas.

La teoŕıa clásica culmina cuando Serret (1819–1885) y Frénet (1816–1900) publican en 1851
y en 1852 respectivamente y de forma independiente las famosa fórmulas de Frenet-Serret.

1.1. Ejemplos

Motivados por el estudio de la trayectoria de un móvil en IR2 ó IR3, definimos una curva
como una aplicación continua r : [t0, t1] → IRn (véase la figura 1.1). El significado f́ısico es que
r(t0) es la posición de la part́ıcula móvil en el tiempo t0. La variable t se llama parámetro.
Argumentamos que las curvas tienen un sólo parámetro, pues son “objetos unidimensionales”.
Explicamos de forma f́ısica e intuitiva la condición de continuidad: si ĺımt→τ r(t) 6= ĺımt→τ r(t),
el móvil en el tiempo τ pasa repentinamente de la posición ĺımt→τ r(t) a ĺımt→τ r(t).

Además, como en muchas ocasiones se hablará de tangentes a las curvas o velocidades
y estos conceptos se tratan con derivadas, exigiremos que r sea diferenciable salvo en una
cantidad finita de puntos (f́ısicamente un móvil puede sufrir un número finito de desviaciones
bruscas de dirección, por ejemplo, una bola de billar que rebota en las paredes de la mesa).
También observamos que las curvas poseen una una orientación: no es lo mismo ir desde r(a)
hasta r(b) que efectuar el camino al revés.

-

6

c cr(a) r(b)

Figura 1.1.: Una curva diferenciable a trozos.

Hacemos los siguientes ejemplos:

a) La circunferencias centradas en p = (h, k) y de radio R se puede parametrizar mediante
r(t) = (h + R cos t, k + R sen t) para t ∈ [0, 2π] (véase la figura 1.2). Es importante el
intervalo de variación de t.

cp c¢
¢
¢
¢
¢
sr(t)

t
cos t

sen t

a

b
c

sr(t)

Figura 1.2.: Parametrización de una circunferencia y de una elipse.
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1.1. Ejemplos

Además comenzamos a tratar el problema de las reparametrizaciones con este otro ejemplo:
describir la curva r(t) = (cos 2t, sen 2t) para t ∈ [0, π]. Es claro que el objeto geométrico
es el mismo; sin embargo el significado f́ısico es distinto.

b) Parametrizamos la elipse de semiejes a y b. Por comodidad, vamos a suponer que la elipse
está centrada en el origen y que los ejes de la elipse son paralelos a los ejes de coordenadas
(véase la figura 1.2). Aplicando una homotecia adecuada al ejemplo anterior obtenemos
que una parametrización es r(t) = (a cos t, b sen t) para t ∈ [0, 2π]. Observamos que t no
es el ángulo que forma r(t) con el eje x salvo para t ∈ {0, π/2, π, 3π/2, 2π}.

c) Parametrizamos el segmento orientado entre los puntos a y b. Se ve la figura 1.3 que
cualquier punto del segmento se puede escribir como a + t(b − a) para 0 ≤ t ≤ 1. Por
tanto r(t) = a + t(b− a) con t ∈ [0, 1] es una parametrización del segmento ab.
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a

b
a + t(b− a)

Figura 1.3.: Parametrización de un segmento.

d) Parametrizamos las hélices como sigue. r(t) = (R cos t, R sen t, bt) para t ∈ [0, 2kπ], donde
R, b > 0 y k ∈ IN. Discutimos el significado geométrico de los valores R, b y k.

e) Como ejemplo un poco más complicado parametrizamos la intersección de la esfera x2 +
y2+z2 = R2 con el plano y+z = R. Un procedimiento t́ıpico para parametrizar curvas tri-
dimensionales es el siguiente: proyectar la curva sobre un plano coordenado y parametrizar
la proyección. Al hacer esto obtenemos la parametrización de dos coordenadas. Por último
se halla la parametrización de la coordenada que falta. Aplicamos este procedimiento en
un ejemplo.

f) La gráfica de una función continua de una variable f : [a, b] → IR es una curva. Se puede
parametrizar como r(x) = (x, f(x)) para x ∈ [a, b].

-
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d

a bx

(x, f(x))

Figura 1.4.: Parametrización de y = y(x).

135



1. Curvas parametrizadas.

g) Si la curva está en polares como ρ = ρ(θ) para θ ∈ [θ0, θ1], una parametrización es
r(θ) = ρ(θ)(cos θ, sen θ) para θ0 ≤ θ ≤ θ1.

1.2. Vectores tangentes

Primero motivamos la definición de vector tangente a una curva r : [a, b] → IRn usando
“secantes que se aproximan a la recta tangente”. En la figura 1.5 se observa cómo se pretende
calcular la recta tangente a la curva en el punto p = r(t0) para cierto t0 ∈ [a, b].
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Figura 1.5.: La tangente a una curva.

Sea otro punto q = r(t) para t ∈ [a, b]. La recta que pasa por p y q tiene vector director
q− p. Desgraciadamente no podemos decir que “a medida que q se acerca a p, la secante se
convierte en tangente, y por tanto un vector director de la recta tangente es ĺımq→p q − p”
pues este ĺımite es 0.

Un modo de obviar esta dificultad es pensar en términos de velocidades. Calculemos la
velocidad de un móvil en p. Como “velocidad = distancia / tiempo” y el parámetro t mide el
tiempo, entonces lo que tarda el móvil de ir de p a q es t− t0. Por tanto podemos considerar
el siguiente ĺımite:

ĺım
t→t0

q− p
t− t0

= ĺım
t→t0

r(t)− r(t0)
t− t0

= r′(t0).

Esto proporciona la definición de vector tangente en el punto r(t0). Si la curva es r(t) =
(x(t), y(t), z(t)), entonces r′(t) = (x′(t), y′(t), z′(t)). El vector tangente unitario en el
punto r(t0) se define como T(t0) = r′(t0)/‖r′(t0)‖ siempre que r′(t0) 6= 0.

Hacemos un ejemplo concreto de calcular el vector tangente a una curva en un punto.
Además resolvemos el siguiente problema: El movimiento de una part́ıcula en la circunferencia
x2 + y2 = R2 se puede describir por medio de r(t) = R(cos θ(t), sen θ(t)), donde supondremos
que θ es una función derivable (obsérvese que si θ(t) = ωt se describe un movimiento circular
uniforme). Calcúlese el vector tangente y compruébese que es perpendicular al vector de
posición.

1.3. Curvas regulares

Hacemos el siguiente problema para motivar el concepto de curva regular: Una rueda
circular de radio R rueda sin deslizarse sobre el eje x. La figura descrita por un punto de la
circunferencia de la rueda se llama cicloide. Obténgase una parametrización r(t) de la curva
y calcúlense los valores t tales que r′(t) = 0. Interprétese este resultado.
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1.4. Longitud de arco

Este ejercicio muestra que no basta exigir que r : [a, b] → IRn sea diferenciable para que la
curva no presente picos. Este comportamiento también se muestra en la curva r(t) = (t2, t3)
en t = 0. Decimos que una curva parametrizada r : I → IRn es regular a trozos si el
conjunto de los valores de t tales que r no es derivable en t ó r′(t) 6= 0 es finito. Probamos,
como simple ejercicio, que la gráfica de una función diferenciable es siempre una curva regular.

Es útil derivar expresiones que contengan al producto escalar1 y vectorial. Las reglas
necesarias vienen dadas a continuación (la demostración es completamente rutinaria). Sean
r, s : I → IRn dos curvas parametrizadas y diferenciables, f : I → IR diferenciable y a, b
constantes reales.

a) (ar + bs)′ = ar′ + bs′.

b) (fr)′ = f ′r + fr′.

c) (r · s)′ = r′ · s + r · s′.

d) (r× s)′ = r′ × s + r× s′.

Como ‖r‖2 = r ·r, se deduce que
(‖r‖2

)′ = 2r′ ·r. Proponemos el siguiente ejercicio. Pruébese
que si una curva está en una esfera de centro p entonces la recta tangente en un punto q de
la curva es perpendicular al vector q− p.

Como el vector normal unitario T tiene norma constante, entonces T′ es perpendicular a
T, lo que permite definir el vector normal unitario como N(t) = T′(t)/‖T′(t)‖ para una
curva regular y siempre que T′(t) 6= 0.

1.4. Longitud de arco

En esta sección deducimos una expresión para la longitud de una curva r : [a, b] → IRn.
En la figura 1.6 se ha dibujado una curva plana y un trozo infinitesimal de curva de longitud
dl. Sean dx y dy los incrementos infinitesimales de x e y.

6

-
dx

dydl
¡¡

Figura 1.6.: Deducción informal de la longitud de una curva.

Suponemos que el arco infinitesimal es recto y como dx/ dt = x′ y dy/ dt = y′, entonces

dl =
√

dx2 + dy2 =
√

(x′ dt)2 + (y′ dt)2 =
√

(x′2 + y′2)2 dt.

1Representaremos por u · v el producto escalar canónico de IR2 o de IR3.
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1. Curvas parametrizadas.

Integrando respecto a t entre a y b obtenemos que la longitud total de la curva es

L =
∫ b

a

√
x′(t)2 + y′(t)2 dt.

Explicamos que esta forma de proceder no es rigurosa. Sin embargo, creemos que la siguiente
manera, aunque rigurosa, es demasiado dif́ıcil para un alumno de primer curso.

Sea a = t0 < t1 < · · · < tn−1 < tn = b una partición del intervalo [a, b]. Entonces la
longitud de la quebrada que une los puntos r(t0), r(t1), . . . , r(tn) es L(r, P ) =

∑n
i=1 ‖r(ti) −

r(ti−1)‖, donde P denota la partición elegida del intervalo [a, b]. Sea ‖P‖ la mayor longitud
de los subintervalos. Si existe L ∈ IR tal que para cada ε > 0 existe δ > 0 tal que si ‖P‖ < δ
entonces |L − L(r, P )| < ε, se dice que L es la longitud de la curva. Además se dice que
la curva es rectificable. Para ser riguroso del todo hay que probar que este valor de L
es único; pero esto es fácil. La demostración del siguiente resultado es complicada y no la
hacemos (requiere conocer la noción de continuidad uniforme y el teorema de Heine y se puede
encontrar un esquema de la demostración en [21]). Sea r : [a, b] → IRn una curva tal que r′

es continua, entonces la longitud de r es
∫ b
a ‖r′(t)‖dt.

Hacemos un ejemplo concreto y demostramos que la longitud de la gráfica de la función
f : [a, b] → IR es

∫ b
a

√
1 + f ′(x)2 dx.

Una reparametrización de una curva regular r : [a, b] → IRn es otra curva r ◦ γ :
[c, d] → IRn, en donde γ : [c, d] → [a, b] es una biyección que cumple γ′ > 0. Explicamos
de forma intuitiva lo que es una reparametrización (“recorrer la misma curva de distinta
manera”). Decimos que los conceptos geométricos que definamos han de ser invariantes por
reparametrizaciones, no aśı los conceptos f́ısicos. Por ejemplo, es fácil comprobar que los
vectores tangentes unitarios de r y r◦γ coinciden, sin embargo ‖r′‖ 6= ‖(r◦γ)′‖, ya que como
veremos ‖r′‖ es la velocidad de r y ‖(r◦γ)′‖ es la velocidad de r◦γ. Es interesante demostrar
la invarianza respecto a parametrizaciones de la fórmula de la longitud de una curva.

Aunque el concepto de curvas parametrizadas por el arco es importante en geometŕıa
diferencial, debido a que no se usará en el resto de la asignatura, creemos que no es necesario
explica este concepo.

1.5. Movimiento de una part́ıcula

Con el siguiente problema motivamos la idea de velocidad de una curva.
Considérese una part́ıcula con movimiento circular uniforme r(t) = R(cos ωt, sen ωt) para

t > 0, siendo ω > 0 una constante llamada velocidad angular. Compruébese que ‖r′‖ = Rω.
Hállese el tiempo T que tarda la part́ıcula en recorrer la circunferencia. Calcúlese L/T , donde
L es la longitud de la circunferencia. Recuérdese que “velocidad = espacio / tiempo”. ¿Se
observa alguna relación con ‖r′‖?

Dada una curva diferenciable r : [a, b] → IR3, la función s(t) =
∫ t
a ‖r′(τ)‖dτ mide la

distancia que recorre la part́ıcula para ir desde r(a) hasta r(t). Si convenimos que la velocidad
v(t) es la derivada del espacio recorrido respecto al tiempo, entonces

v(t) =
ds

dt
=

d
dt

(∫ t

a
‖r′(τ)‖dτ

)
= ‖r′(t)‖.
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1.5. Movimiento de una part́ıcula

Todo esto motiva a definir la velocidad de una curva r : [a, b] → Rn como r′(t). La velocidad
escalar es v(t) = ‖r′(t)‖. La aceleración es r′′(t).

La siguiente fórmula (que se demuestra derivando r′ = vT) muestra que el vector acele-
ración se puede expresar en términos de T y de N:

r′′(t) = ‖T′(t)‖v(t)N(t) + v′(t)T(t).

Esta descomposición de r′′ es importante en f́ısica. La componente en la dirección N se llama
componente normal y es la causante de la fuerza centŕıfuga. La componente en la dirección
T se llama componente tangencial.

Hacemos el siguiente problema. Considérese una part́ıcula con movimiento circular uni-
forme dado por r(t) = R(cosωt, senωt), donde ω > 0 es la velocidad angular. Pruébese

r′′ = Rω2N =
v2

R
N.

Observamos que la fuerza centŕıfuga de un cuerpo de masa m tiene módulo mv2/R y es
perpendicular al movimiento. Comentamos f́ısicamente el resultado.

Explicamos los dos siguientes ejemplos con detalle.

a) Determinamos la velocidad de un satélite artificial que se mueve en una órbita circular.
Sea la trayectoria del satélite

r(t) = R(cos θ(t), sen θ(t)), (1.1)

en donde hemos situado la Tierra en el origen. Supongamos que se verifican las dos
siguientes leyes f́ısicas: Si F es la fuerza que actúa sobre el satélite,

F(r(t)) = mr′′(t), F(r(t)) = −GMm
r(t)

‖r(t)‖3
, (1.2)

donde m es la masa del satélite, M la de la Tierra y G es la constante de gravitación
universal. Vemos que ‖F‖ = GMm/R2 y explicamos el signo negativo en la segunda ley
de (1.2). De (1.2) tenemos

r′′ = −GM
r

‖r‖3
. (1.3)

Probamos a partir de (1.1) que r′′ = Rθ′′T + R(θ′)2N. De (1.3) se tiene

Rθ′′T + R(θ′)2N =
GM

R2
N.

Igualando las componentes,

θ′′ = 0, R(θ′)2 =
GM

R2
.

De la primera ecuación obtenemos θ(t) = ωt+ θ0; es decir, el satélite tiene un movimiento
circular uniforme con velocidad angular ω. Ésta es una versión simplificada de la segunda
ley de Kepler (1571–1630). De la segunda se deduce R3ω2 = GM , esta relación es un caso
particular de la tercera ley de Kepler.
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1. Curvas parametrizadas.

b) Estudiamos el movimiento de una carga q de masa m bajo un campo magnético constante
B, con la condición que la velocidad inicial de la part́ıcula es perpendicular al campo
magnético. Situamos los ejes de coordenadas de modo que B = (0, 0, B). El movimento
de la part́ıcula es r(t) = (x(t), y(t), z(t)). Podemos suponer que r(0) = (0, 0, 0) y como la
velocidad inicial es perpendicular a B, entonces z′(0) = 0.

Postulamos la segunda ley de Newton: F(r(t)) = mr′′(t) y la ley de Lorentz: F(r(t)) =
mq(r′ × B). Se prueba fácilmente a partir de las hipótesis que r · B = 0, luego la curva
está contenida en el plano z = 0. Además se prueba también de forma sencilla que r′ tiene
módulo constante.

Como r′ es plana y tiene módulo constante, entonces r′ recorre una circunferencia. Sea v
el radio de esta circunferencia. Luego existe una función ω(t) tal que

r′(t) = v(cosω(t), senω(t), 0).

Por tanto
r′′(t) = vω′(t)(− sen ω(t), cosω(t), 0).

De r′′ = q(r′ ×B) se deduce que ω′(t) = −qB/m. Ahora es trivial obtener r(t).

Como referencias para todo el caṕıtulo proponemos [12, 17, 50]
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Contenido del Caṕıtulo 1

1. Parametrización de curvas.

• Definición.

• Ejemplos: circunferencias, elipses, segmentos, hélices, gráficas de funciones, curvas
en polares.

2. Vectores tangentes.

• Motivación y ejemplos.

3. Curvas regulares.
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constante.
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2. Integrales de ĺınea

OBJETIVOS:

Saber calcular integrales curviĺıneas de campos escalares y vectoriales. Conocer
el teorema de Green.

2.1. Integrales curviĺıneas de campos escalares

Motivamos la definición de integral de ĺınea de un campo escalar con lo siguiente. Calcula-
mos la carga total q de un cable parametrizado por medio de r : [a, b] → IRn con densidad de
carga ρ. Se tiene dq = ρds; pero como ds = ‖r′‖dt, entonces dq = ρ‖r′‖dt. Tras integrar ya
tenemos la carga total. Esto, por supuesto no es riguroso, pero motiva la siguiente definición.

Dada C una curva diferenciable r : [a, b] → IRn y f : r([a, b]) → IR una función continua,
se define la integral curviĺınea de f sobre la curva como

∫

C
f ds =

∫ b

a
f(r(t))‖r′(t)‖ dt.

Se debe probar que esta definición es independiende de la parametrización; pero esto es
sencillo. Cuando la curva es diferenciable a trozos, entonces se usa la definición anterior
para cada subintervalo en donde la curva sea diferenciable y por último se suman todas las
integrales. Hacemos un ejemplo concreto.

Comentamos las propiedades básicas: linealidad, aditividad respecto al camino y si C es
la curva parametrizada mediante r : [a, b] → IRn y si C∗ es la curva cuya parametrización es
s : [0, b− a] → IRn dada por s(t) = r(b− t), entonces

∫
C f ds =

∫
C∗ f ds (decimos que C∗ es

la curva C recorrida en sentido opuesto) y explicamos la idea intuitiva de esto último: si f es
la densidad de carga, la carga del cable es independiente de cómo se recorre éste.

A los alumnos se les da una hoja en donde se dan fórmulas de las siguienteres aplicaciones
a la mecánica (son fórmulas bien conocidas que se pueden encontrar en, por ejemplo, [50]):
la masa (o carga) de un cable, el centro de gravedad de un cable y el momento de inercia.

2.2. Integral curviĺınea de un campo vectorial

Motivamos la definición de integral de ĺınea de un campo vectorial con lo siguiente. Es-
tamos interesados en calcular el trabajo hecho por una part́ıcula si ésta se mueve a lo lar-
go de una curva bajo la influencia de un campo de fuerzas F (que en general puede va-
riar según la posición). Parametrizamos la curva mediante r = r(t) para t ∈ [a, b]. Si
r(t + dt) − r(t) = dr = r′ dt es un elemento diferencial de la curva, entonces el diferencial
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2. Integrales de ĺınea

de trabajo realizado por la part́ıcula es dW = F · dr = F · r′ dt. Ahora basta integrar para
obtener el trabajo total W . Igual que antes esto no es riguroso; pero motiva la siguiente
definición.

Dada C una curva diferenciable r : [a, b] → IRn y F : r([a, b]) → IRn una función continua,
se define la integral curviĺınea de F sobre la curva como

∫

C
F · dr =

∫ b

a
F(r(t)) · r′(t) dt.

Cuando la curva C es cerrada (esto es, r(a) = r(b)) se suele usar el śımbolo
∮
C . Igual que

antes se debe probar la independencia respecto a reparametrizaciones. Cuando la curva es
diferenciable a trozos se procede como en la sección previa. Las propiedades son las mismas
salvo que si C∗ es la curva C recorrida en sentido opuesto, entonces

∫
C F · dr = − ∫

C∗ F · dr
(no es lo mismo bajar una cuesta que subirla).

Si F = (P, Q,R), entonces es trivial ver que

∫

C
F · dr =

∫ b

a
[P (r(t))x′(t) + Q(r(t))y′(t) + R(r(t))z′(t)] dt,

lo que motiva la siguiente notación clásica:
∫
C P dx + Qdy + R dz.

Hacemos algunos ejemplos concretos y alguno un poco más teórico como el siguiente. Si
C es una curva regular, entonces

∫
C F · dr =

∫
C F ·T ds.

2.3. El teorema de Green

Primero definimos (sin ningún rigor) una curva de Jordan y cuándo una curva de Jordan
está recorrida en sentido positivo. A continuación enunciamos el teorema de Green. Si
las funciones P = P (x, y) y Q = Q(x, y) son continuas y tienen derivadas parciales continuas
en una región R encerrada por una curva de Jordan C recorrida en sentido positivo, entonces

∮

C
P dx + Qdy =

∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

No probamos el teorema. Hacemos un ejemplo concreto. Además, observamos que aplicando
el teorema de Green al campo F(x, y) = (βy, αx) siendo α, β constantes reales, obtenemos
varias fórmulas para el área de una región. El clásico ejemplo que realizamos es calcular por
medio de algunas de estas expresiones el área que encierra la elipse x2/a2 + y2/b2 = 1.

Las referencias para este caṕıtulo han sido [12, 17, 18, 50]. En especial el segundo y el
cuarto.

144



Contenido del Caṕıtulo 2

1. Integral curviĺınea de campos escalares.

• Motivación y definición.

• Ejemplos.

2. Integral curviĺınea de campos vectoriales.

• Motivación y definición.

• Ejemplos.

3. El teorema de Green.

• Enunciado y ejemplos.
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3. Superficies parametrizadas

OBJETIVOS:

Saber parametrizar las superficies más importantes. Saber calcular vectores tan-
gentes y normales a superficies.

La teoŕıa de superficies comenzó cuando se introdujo la geometŕıa anaĺıtica en el espacio
y se observó que una relación del tipo F (x, y, z) = 0 equivale a una superficie en el espacio.

El primer problema interesante fue el estudio de las geodésicas en una superficie. En
1697 Jean Bernouilli propuso el problema de encontrar las geodésicas. Su hermano Jacques
y posteriormente el propio Jean obtuvieron la respuesta sobre algunos tipos de superficies.
Más adelante, en 1728, Euler usó el cálculo variacional para proporcionar las ecuaciones
diferenciales que satisfacen las geodésicas.

En 1760, en su Recherches sur la courbure des surfaces, Euler representó una superficie
como z = z(x, y). Comparando las curvaturas de las secciones normales de una superficie,
Euler estableció lo que hoy se llama el teorema de Euler (véase [21]). Los mismo resultados
fueron obtenidos en 1776 por Meusnier (1754–1793) de forma más elegante, en donde además
probó el llamado teorema de Meusnier. En 1771 Euler introdujo la representación paramétrica
de una superficie, esto es, x = x(u, v), y = y(u, v), z = z(u, v).

Gran parte de los problemas de la geometŕıa diferencial del siglo XVIII estuvo motivada
por el problema del trazado de mapas. Puesto que no es posible trazar un mapa plano de
la Tierra que conserve las propiedades geométricas (esto fue probado por Euler en 17751), la
atención se dirigió hacia los mapas que conservan sólo los ángulos (como el mapa de Mercator)
ya que este tipo de mapas son útiles en navegación, pues marcan el rumbo correcto2.

A partir de 1816 Gauss, trabajó en geodesia y cartograf́ıa. Su participación en medidas
reales estimuló su interés en geometŕıa diferencial y lo condujo a su ensayo definitivo de 1827,
Disquisitiones circa superficies curvas3. Gauss usó la representación paramétrica introducida
por Euler para tratar la longitud y ángulos de curvas sumergidas en superficies.

Gauss se dedica luego al estudio de la curvatura de una superficie. Su definición de
curvatura es una generalización de la definición de Euler de curvatura de una curva espacial.
En cada punto p de una superficie hay un vector normal unitario N(p) que está en la esfera
unitaria. Si consideramos sobre la superficie cualquier región R pequeña que rodea a p,
entonces existe una región correspondiente N(R) sobre la esfera unitaria que rodea a N(p).
La curvatura de la superficie en p, denotada por K(p), está definida como el ĺımite del
cociente entre el área de N(R) y el área de R. Después de un número incréıble de cálculos

1En [8] se da una prueba sencilla.
2Véase [7] para una introducción de la cartograf́ıa usando métodos del análisis vectorial.
3Véase [66, Tomo II] para una explicación más profunda del trabajo de Gauss.

147



3. Superficies parametrizadas

proporciona una fórmula para K(p), relacionando este valor con el teorema de Euler de curvas.
Ahora Gauss observa que K(p) sólo depende de las propiedades métricas de la superficie y
no cómo está sumergida en el espacio. Gauss llamó a este resultado Theorema Egregium.
Codazzi (1824–1875) y Mainardi (1800–1879) proporcionaron ecuaciones suplementarias a las
obtenidas por Gauss.

Otra cuestión que Gauss estudió fue el problema de las geodésicas. Demostró un famoso
teorema sobre un triángulo formado por geodésicas: Si α, β, γ son los tres ángulos de un
triángulo T cuyos lados son geodésicas, entonces

∫∫
T K dS = α + β + γ − π. Este resultado,

que generaliza a la fórmula del área de un triángulo esférico, fue usado por Gauss para estudiar
la curvatura del espacio tras medir los ángulos de un triángulo formado por tres montañas.

El trabajo de Gauss estimuló la creación por Riemann (1826–1866) de la que hoy se
conoce como geometŕıa riemanniana. En ésta se considera una variedad n-dimensional sin
hacer referencia al espacio ambiente. Su trabajo fue continuado por Ricci (1853–1925) y por
Levi-Civita (1873–1941) con la creación del cálculo tensorial.

3.1. Definición y ejemplos de superficies parametrizadas

Hablando intuitivamente, una superficie se obtiene deformando un trozo plano de modo
que en cada punto de la figura resultante se pueda construir un plano tangente. Damos la
siguiente definición (no muy precisa). Una parametrización de una superficie es una
aplicación diferenciable x : D → IR3, donde D ⊂ IR2. El subconjunto de IR3 formado por
x(D) se llama superficie. La definición precisa se puede encontrar en [21].

Como x depende de dos variables, podemos escribir x = x(u, v), donde (u, v) ∈ D ⊂ IR2

y como x = x(u, v) ∈ IR3, podemos escribir x = x(u, v) = (x(u, v), y(u, v), z(u, v)). Para fijar
un punto x(u, v) de la superficie hace falta determinar los valores de dos parámetros.

Vemos algunos ejemplos importantes de superficies parametrizadas.

a) Un punto del cilindro de la figura 3.1 (izquierda) de radio R y altura H queda determinado
si se conoce su altura z y el ángulo θ. Se tiene que x(z, θ) = (R cos θ,R sen θ, z) para
z ∈ [0,H], θ ∈ [0, 2π].
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Figura 3.1.: Un cilindro y un cono.
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3.2. El plano tangente

b) Un punto (x, y, z) del cono de la figura 3.1 (centro) de radio R y altura H queda de-
terminado por θ y ρ, siendo θ el ángulo que forma el vector (x, y, 0) con el eje X y ρ
la distancia del punto (x, y, z) al eje Z. Evidentemente, x = ρ cos θ, y = ρ sen θ; pero,
como los triángulos de la derecha de la figura 3.1 (derecha) son semejantes, se tiene que
ρ = Rz/H. Luego x(z, θ) = ( R

H z cos θ, R
H z sen θ, z) para z ∈ [0,H], θ ∈ [0, 2π].

c) Consideremos un punto p en la esfera de radio R centrada en el origen. Sean φ el ángulo
que forma el eje Z con el vector de posición de p y λ el ángulo que forma el eje X con el
vector de posición de q, siendo q la proyección de sobre el plano XY (véase la figura 3.2,
izquierda). Evidentemente φ ∈ [0, π] y λ ∈ [0, 2π]. Se tiene que

x(φ, λ) = (R senφ cosλ,R sen φ sen λ,R cosφ).
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Figura 3.2.: Una esfera y un toro de revolución.

d) La gráfica de la función f : A → IR, donde A ⊂ IR2 se puede parametrizar fácilmente
mediante x(x, y) = (x, y, f(x, y)) para (x, y) ∈ A.

e) Consideremos una circunferencia de radio b situada en el plano y = 0, cuyo centro dista
a del origen. Se rota esta circunferencia alrededor del eje z, obteniéndose un toro de
revolución. Observemos que a tiene que ser mayor que b (véase la figura 3.2, derecha).
Sean u, v los ángulos dibujados en la figura y sea x(u, v) un punto del toro. Se tiene
fácilmente que x(u, v) = ((a + b cos v) cos u, (a + b cos v) sen u, b sen v) para u, v ∈ [0, 2π].

f) Al igual que ocurre con las curvas, las superficies se pueden parametrizar de varios modos.
Vemos un ejemplo, la parte superior de la esfera x2 + y2 + z2 = R2 también se puede
parametrizar con r(x, y) = (x, y,

√
R2 − x2 − y2), para (x, y) cumpliendo x2 + y2 ≤ 1.

Ya que una superficie admite parametrizaciones diferentes; se ha de tener cuidado de que
los conceptos y definiciones que se hagan no dependan de la parametrización elegida. Dada
una superficie S parametrizada por medio de x : D → S, una reparametrización es una
aplicación x ◦ f : D′ → S, en donde f : D′ → D es una biyección diferenciable tal que el
determinante del jacobiano es estrictamente positivo en todo punto de D′ ⊂ IR2.

3.2. El plano tangente

La figura 3.3 motiva la siguiente definición. Un vector v es tangente a una superficie S
en un punto p ∈ S si existe una curva r :]− ε, ε[→ S tal que r(0) = p y r′(0) = v.
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3. Superficies parametrizadas
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Figura 3.3.: Vector tangente en un punto a una superficie.

Vemos cómo calcular de manera cómoda el plano4 tangente a una superficie S con una
parametrización x : D → S. Si v es un vector tangente a la superficie S en p, entonces existe
s :] − ε, ε[→ D tal que (x ◦ s)(0) = p y (x ◦ s)′(0) = v. Si s(t) = (u(t), v(t)) se obtiene
fácilmente

v = u′(0)
∂x
∂u

(p) + v′(0)
∂x
∂v

(p).

Hemos probado que si v es un vector tangente, entonces es una combinación lineal de
∂x
∂u (p) y ∂x

∂v (p). Demostramos también el rećıproco. Luego el conjunto de vectores tangentes
es el espacio generado por ∂x

∂u (p), ∂x
∂v (p). Si estos dos vectores son independientes entonces

el conjunto de vectores tangentes forman un plano. En tal situación un vector normal a la
superficie es ∂x

∂u (p) × ∂x
∂v (p). Este vector normalizado se denotará N (hacemos ver que hay

dos elecciones de N). Es habitual definir los coeficientes

E =
∂x
∂u

· ∂x
∂u

, F =
∂x
∂u

· ∂x
∂v

, G =
∂x
∂v

· ∂x
∂v

.

Como ‖u× v‖2 = ‖u‖2‖v‖2 − (u · v)2 para u,v ∈ IR3, se tiene que
∥∥∥∥
∂x
∂u

× ∂x
∂v

∥∥∥∥ =
√

EG− F 2,

una expresión que en ocasiones resulta útil (en especial si los vectores ∂x/∂u, ∂x/∂v son
perpendiculares). Hacemos un ejemplo concreto de calcular el plano tangente y un vector
normal de una superficie.

Explicamos con el ejemplo del cono qué ocurre cuando los vectores ∂x/∂u, ∂x/∂v son
dependientes (o dicho de otro modo, EG−F 2 = 0). Las superficies que cumplen EG−F 2 6= 0
se llaman regulares.

Continuamos la sección explicando el significado geométrico de los vectores ∂x/∂u, ∂x/∂v:
son los vectores tangentes a las curvas coordenadas. Lo detallamos con los ejemplos del
cilindro y de la esfera.

Usar una parametrización no es la única manera de describir superficies. Por ejemplo, una
esfera de radio R se puede escribir como el conjunto de puntos (x, y, z) de IR3 que cumplen
x2 + y2 + z2 = R2. La ecuación f(x, y, z) = 0 de una superficie se suele llamar impĺıcita
Demostramos que cuando S viene dada por {(x, y, z) ∈ D : f(x, y, z) = 0}, en donde D es un
abierto de IR3, f : D → IR es una función diferenciable y ∇f(p) 6= 0 para un punto p ∈ S,

4Más adelante probamos que (bajo cierta hipótesis que detallaremos) es efectivamente un plano.
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3.2. El plano tangente

entonces un vector normal a S en p es ∇f(p). La demostración es fácil: si r :]− ε, ε[I → S es
una curva contenida en S que cumple r(0) = p, entonces f ◦ r = 0. Derivando esta expresión
se logra ∇f(p) · r′(0) = 0, lo que prueba el resultado. Usamos este resultado para calcular
de forma cómoda el vector tangente a un cilindro o una esfera interpretando el resultado
geométricamente.
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4. Integrales de superficie

OBJETIVOS:

Saber calcular integrales de superficie de campos escalares y vectoriales. Conocer
los teoremas de la divergencia y de Stokes.

La idea de sumar infinitos diferenciales condujo al concepto de integral de superficie de
campos escalares. A partir del estudio de la cantidad de fluido que atraviesa una membrana
porosa, se empezaron a tratar en el siglo XVIII las integrales de campos vectoriales. Los
primeros ejemplos importantes fueron dados por Gauss al estudiar triángulos geodésicos y
por Green (1793–1841) quien, estudiando problemas de electromagnetismo, estableció que
(bajo ciertas hipótesis en las que no entraremos) dados f, g campos escalares, se cumple

∫∫∫

V
f∇2g dv +

∫∫

S
f

∂g

∂n
dS =

∫∫∫

V
g∇2f dv +

∫∫

S
g
∂f

∂n
dS,

en donde V es un sólido tridimensional y S su frontera.
Hamilton introdujo un operador diferencial importante. El śımbolo ∇ (que llamó nabla,

pues se asemeja a un antiguo instrumento musical hebreo) se define como

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

donde i, j, k son las unidades no reales básicas de los cuaterniones. Cuando se aplica a una
función escalar f se obtiene

∇f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z

(el equivalente a nuestro gradiente) y si v = v1i + v2j + v3k, entonces

∇v = −
(

∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z

)
+

(
∂v3

∂y
− ∂v2

∂z

)
i +

(
∂v1

∂z
− ∂v3

∂x

)
j +

(
∂v2

∂x
+

∂v1

∂y

)
k. (4.1)

El siguiente paso fue dado por Maxwell (1831–1879). Aisló la parte real y la no real de
los cuaterniones y enfatizó estos conceptos. Denotó S∇v y V∇v la parte real y la no real de
(4.1) y las llamó convergencia y rotacional, nombres sacados de la mecánica de fluidos.
Clifford (1845–1879) llamó más tarde a −S∇v la divergencia de v. La ruptura definitiva
con los cuaterniones fue hecha por Gibbs (1839–1903) y Heaviside (1850–1925).

Muchos teoremas del análisis vectorial pueden expresarse en forma vectorial, por ejemplo
el teorema de la divergencia (establecido de forma independiente por Gauss y Ostrogradski
(1801–1862)), que en notación clásica se expresa

∫∫∫

V

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dv =

∫∫

S
(P cosα + Q cosβ + R cos γ) dS,
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4. Integrales de superficie

donde P,Q, R son funciones de x, y, z y α, β, γ son los cosenos directores de la normal a la
superficie S que limita al sólido V , puede escribirse de forma más compacta usando notación
vectorial. Del mismo modo, el teorema de Stokes (establecido por Kelvin (1824–1907) en
una carta a Stokes (1819–1903) y propuesto por éste en un examen para el premio Smith
en Cambridge) se establece de forma cómoda usando notación vectorial. Posteriormente se
definieron el gradiente, divergencia y rotacional de forma independiente al sistema coordenado,
aśı tenemos, por ejemplo

∇f = ĺım
∆v→0

1
∆v

∫∫

S
fNdS,

donde S es la frontera de un elemento de volumen ∆v y N es la normal unitaria al elemento
de superficie de S.

4.1. Integrales de superficie de campos escalares

Primero vemos una fórmula para calcular el área de una superficie S parametrizada por
x : D → S, donde D ⊂ IR2. Para ello aproximamos la superficie mediante pequeños paralelo-
gramos tangentes a la superficie como indica la figura 4.1. Si un vértice es a = x(u0, v0), los
otros tres vértices son b = x(u0 + ∆u, v0), c = x(u0, v0 + ∆v) y d = x(u0 + ∆u, v0 + ∆v). El
área de cada paralelogramo pequeño es

‖(b− a)× (c− a)‖ =
∥∥∥∥
x(u0 + ∆u, v0)− x(u0, v0)

∆u
× x(u0, v0 + ∆v)− x(u0, v0)

∆v

∥∥∥∥∆u∆v,
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Figura 4.1.: Un trozo “pequeño” de superficie.

Si sumamos todas las áreas y hacemos tender ∆u,∆v → 0, obtenemos que el área total es
∫∫

D

∥∥∥∥
∂x
∂u

× ∂x
∂v

∥∥∥∥ dudv.

Por supuesto que este razonamiento no es riguroso. Si se desea ver un argumento preciso, se
puede consultar [21]. En los libros poco formales se suele decir con poco rigor que

dS =
∥∥∥∥
∂x
∂u

× ∂x
∂v

∥∥∥∥ dudv,

siendo dS un elemento infinitesimal de superficie.
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4.2. Integrales de superficies de campos vectoriales.

Pese a todo, el anterior razonamiento motiva definir el área de una superficie parametri-
zada x : D → S, donde D ⊂ IR2, como

∫∫

D

∥∥∥∥
∂x
∂u

× ∂x
∂v

∥∥∥∥ dudv.

Recordamos que el integrando se puede expresar como
√

EG− F 2. Esta definición hace uso
expĺıcito de la parametrización de la superficie. Probamos que esta definición es independiente
de la parametrización elegida.

Ponemos como ejemplo calcular el área de una esfera y de un cilindro. También hacemos
el siguiente ejercicio: Demuéstrese que el área de la gráfica de una función f : D → IR, donde
D ⊂ IR2 y f es una función diferenciable viene dada por

∫∫
D

√
1 + ‖∇f‖2 dxdy.

Ahora estamos preparados para definir la integral de un campo escalar sobre una superficie.
Para fijar ideas, supongamos que deseamos estudiar la catga de una lámina. Sea f(p) la
densidad en el punto p. Para calcular la carga de la lámina aproximamos la superficie mediante
pequeños paralelogramos P1, . . . , Pn y sean pi ∈ Pi para i = 1, . . . , n. La carga aproximada
en cada paralelogramo Pi es f(pi) · Área(Pi). El valor aproximado de la carga de la lámina es

n∑

i=1

f(pi) · Área(Pi).

Al hacer tender el área de todos los paralelogramos a 0 en sus dos dimensiones, obtenemos
un escalar que lo representaremos por

∫∫
S f dS. Sin embargo esta definición no es rigurosa,

ya que ni se establece la forma de hacer tender a 0 el área de los paralelogramos, ni se dice si
este ĺımite existe o no, y sobre todo, no se establecen condiciones sobre f para que este ĺımite
exista. Sin embargo, lo anterior motiva la siguiente definición. Sean S = x(D) una superficie
parametrizada y f : S → IR continua. Se llama integral de superficie de f en S a

∫∫

S
f dS =

∫∫

D
f(x(u, v))

∥∥∥∥
∂x
∂u

× ∂x
∂v

∥∥∥∥ dudv.

De nuevo, esta definición usa la parametrización de la superficie S. Probamos que esta defini-
ción no depende de la parametrización escogida para S. Calculamos dos ejemplos concretos.

Las propiedades son análogas a las integrales dobles: linealidad, monotońıa y aditividad
respecto al recinto. No hacemos ninguna demostración; pues son absolutamente rutinarias.

A los alumnos les proporcionamos una hoja en donde se muestran las siguientes aplica-
ciones: cálculo de masas, cálculo de promedios, centro de gravedad y momento de inercia
respecto a un eje.

4.2. Integrales de superficies de campos vectoriales.

Para definir la integral de superficie de un campo vectorial es necesario considerar su-
perficies orientadas. Para comprender este concepto, observamos que en cada punto de la
superficie hay dos vectores normales unitarios dependiendo del sentido. Una superficie S es
orientable cuando existe un campo vectorial continuo N : S → IR3 de vectores normales
unitarios. Como ejemplos, construimos un campo de vectores normales y unitarios a la esfera
unitaria y al cilindro de ecuación x2 + y2 = R2.
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4. Integrales de superficie

Decimos que no todas las superficies son orientables. Un ejemplo es la famosa cinta de
Möbius. Explicamos de forma intuitiva la razón de que la cinta de Möbius no sea orientable.
En lo que sigue sólo manejamos superficies orientables, que desde luego son las más comunes1.

Para motivar la integral de flujo, imaginamos un fluido de modo que el punto p se mue-
ve con una velocidad vectorial v(p) y calculamos la cantidad de fluido que pasa por una
membrana porosa por unidad de tiempo por medio del siguiente argumento nada riguroso.

Consideremos un “pequeño paralelogramo” en la superficie de vértices a,b, c y d. Si
x : T → S es una parametrización de la superficie, podemos escribir a = x(u0, v0), b =
x(u0+∆u, v0) y c = x(u0, v0+∆v) para un cierto (u0, v0) ∈ T . Si el paralelogramo es pequeño,
podemos suponer que v es constante en este paralelogramo; y por tanto, los puntos que ocupan
las posiciones a,b, c y d tras una unidad de tiempo, ocupan las posiciones a+v,b+v, c+v
y d + v. El volumen del fluido ∆Φ que sale por el paralelogramo por unidad de tiempo es el
volumen del paraleleṕıpedo de aristas b− a, c− a y v. Luego ∆Φ = v · [(b− a)× (c− a)].
Si el producto mixto anterior fuese negativo, el fluido entra, en vez de salir. Ahora

∆Φ = v ·
(

x(u0 + ∆u, v0)− x(u0, v0)
∆u

× x(u0, v0 + ∆v)− x(u0, v0)
∆v

)
∆u∆v.

Si descomponemos la superficie en muchos paralelogramos, sumamos la cantidad de fluido
que pasa por ellos y hacemos tender cada paralelogramo a un punto, obtenemos

Φ =
∫∫

T
v ·

(
∂x
∂u

× ∂x
∂v

)
dudv.

Si elegimos como vector unitario normal

N =
∥∥∥∥
∂x
∂u

× ∂x
∂v

∥∥∥∥
−1 (

∂x
∂u

× ∂x
∂v

)
,

entonces

Φ =
∫∫

T
v ·N

∥∥∥∥
∂x
∂u

× ∂x
∂v

∥∥∥∥ dudv =
∫∫

S
v ·NdS.

Esta última integral motiva la siguiente definición. Sea S una superficie orientable en donde
hemos fijado un campo de vectores normales unitarios N : S → IR3 continuo y sea F : S → IR3

otro campo de vectores continuo. La integral de superficie del campo F sobre la superficie
S (o flujo de F sobre S) es ∫∫

S
FdS =

∫∫

S
F ·N dS.

Observamos que es necesario fijar una orientación en la superficie. Si la superficie fuese
cerrada se toma como vector normal unitario el exterior. Las propiedades de la integral de
flujo son exactamente las mismas que las de las integrales de superficie de campos escalares.

Hacemos un ejemplo concreto y el siguiente ejercicio. Calcúlese
∫∫

S FdS, si S es la
esfera centrada en el origen de radio R y el campo F = f(r)r, donde r(x, y, z) = (x, y, z)
y r = ‖r‖ =

√
x2 + y2 + z2. La razón de incluir este ejercicio es mostrar cómo se pueden

calcular algunas integrales sin parametrizar la superficie.
1Se puede demostrar que una superficie dada por {(x, y, z) ∈ IR3 : f(x, y, z) = c}, donde c es un valor regular

para una función f diferenciable, es orientable; véase [21].
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4.3. El teorema de Gauss-Ostrogradsky

4.3. El teorema de Gauss-Ostrogradsky

La cantidad de fluido que entra o sale de una superficie cerrada puede calcularse de modo
diferente a la comentada previamente, aunque advertimos que el siguiente razonamiento no
es riguroso.

Para calcular el flujo del campo F = (P, Q,R) sobre la superficie cerrada S que encierra a
la región V , aproximamos la región V mediante una unión de pequeños cubos S1, . . . , Sn de
lados paralelos a los planos coordenados y de arista 2h. Tenemos en cuenta que

∫∫
S FdS =∑n

i=1

∫∫
Si

FdS ya que las caras comunes de dos cubos tienen vectores normales opuestos2.

Ahora calcularemos de forma aproximada
∫∫

Si
FdS. Sean pi = (xi, yi, zi) el centro del

cubo Si y Ai, Bi las tapas del cubo superior e inferior respectivamente. Aproximamos R por
su polinomio de Taylor de orden 1 centrado en pi:

R(u, v, zi + h) ' R(pi) + (u− xi)
∂R

∂x
(pi) + (v − yi)

∂R

∂y
(pi) + h

∂R

∂z
(pi),

y se obtiene ∫∫

Ai

FdS ' 4h2R(pi) + 4h3 ∂R

∂z
(pi).

Análogamente se puede aproximar el flujo sobre la cara inferior:
∫∫

Bi

FdS ' −4h2R(pi) + 4h3 ∂R

∂z
(pi).

Luego el flujo correspondiente a las tapas superior e inferior es 8h3 ∂R
∂z (pi). De igual forma se

aproxima el flujo para el resto de las caras restantes y obtenemos que el flujo total Φ sobre el
cubo se aproxima a:

Φ ' 8h3

(
∂P

∂x
(pi) +

∂Q

∂y
(pi) +

∂R

∂z
(pi)

)
.

Observamos que 8h3 es el volumen del cubo. El término entre paréntesis motiva la siguiente
definición. Sea F = (P, Q,R) un campo de vectores con derivadas parciales continuas definido
en un abierto U de IR3. Se llama la divergencia de F al campo escalar

div F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

Volviendo a la consideración previa, hemos obtenido que
∫∫

S
FdS =

n∑

i=1

∫∫

Si

FdS '
n∑

i=1

Volumen(Si) div F(pi),

Si las aristas de los cubos tienden a 0, el sumatorio anterior tiende a una integral triple, y se
obtiene el teorema de la divergencia o de Gauss-Ostrogradsky. Lo enunciamos con rigor:
Sean S una superficie cerrada orientable que encierra una región V y F : V → IR3 un campo
vectorial continuo con derivadas parciales continuas en V , entonces

∫∫

S
FdS =

∫∫∫

V
div Fdxdy dz.

2F́ısicamente esta afirmación debe resultar evidente: si una cara pertenece a dos cubos, el fluido que sale por
un cubo, entra en el otro a través de la cara común.
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4. Integrales de superficie

Desde luego que la consideración previa al teorema no puede considerarse una prueba rigurosa.
Para consultar una demostración se pueden ver, por ejemplo, los libros [18, 42, 50].

Si S es una superficie cerrada que se contrae hasta el punto p, se tiene

ĺım
S→p

1
Volumen(VS)

∫∫

S
FdS = div F(p).

donde VS es la región encerrada por S. Observamos que esta igualdad proporciona una
expresión para divF independiente del sistema coordenado elegido. Además podemos dar
una interpretación f́ısica de la divergencia de F: Pensemos en un fluido cuya velocidad sea F.
Si V es una región pequeña que encierra a un punto p, entonces la razón de fluido que sale
de V respecto al volumen de V es la divergencia de F en el punto p. Por eso si divF(p) > 0,
el fluido sale y se dice que p es una fuente. En caso contrario, el fluido entra y p es un
sumidero.

Calculamos el volumen del elipsoide de semiejes a, b y c usando el teorema de la diver-
gencia. Además hacemos un problema de la necesidad de “cerrar” la superficie de manera
adecuada con “tapas” para aplicar el teorema de la divergencia.

También enunciamos el teorema extendido de la divergencia. Sean Ω1 y Ω2 dos regiones
de IR3 con superficies frontera ∂Ω1 y ∂Ω2 respectivamente tales que Ω1 ⊂ Ω2 y sea F un
campo vectorial con derivadas continuas en Ω2 \ Ω2. Entonces

∫∫∫

Ω2\Ω1

div Fdxdy dz =
∫∫

∂Ω2

FdS−
∫∫

∂Ω1

FdS.

La idea intuitiva de la demostración (no hacemos más que esto) es “conectar con un tubo”
Ω1 y Ω2, aplicar el teorema de la divergencia a la región que resulta y “cerrar el tubo”.
Dibujamos en la pizarra la figura 4.2.

∂Ω2

A
A

AA A
A

AA

∂Ω1

Figura 4.2.: La forma (bidimensional) extendida del teorema de la divergencia.

4.4. El teorema de Stokes

Para motivar la definición del rotacional y el teorema de Stokes, explicamos el siguiente
argumento poco riguroso.

Calculamos el trabajo necesario para desplazar una part́ıcula moviéndose en una circun-
ferencia de radio ε ' 0 centrada en p y en el plano horizontal bajo el campo de fuerzas
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4.4. El teorema de Stokes

F = (P, Q, R). Una parametrización de esta circunferencia es r(θ) = p + ε(cos θ, sen θ, 0),
donde θ ∈ [0, 2π], luego

W =
∮

C
Fdr =

∫ 2π

0
F(r(θ)) · r′(θ) dθ = ε

∫ 2π

0
[−P (r(θ)) sen θ + Q(r(θ)) cos θ] dθ.

Tra usar aproximaciones de Taylor de primer orden de P y Q centradas en p se obtiene

W ' a(C)
(

∂Q

∂x
(p)− ∂P

∂y
(p)

)
.

en donde a(C) denota el área del ćırculo. Ha salido la tercera componente del rotacional.
Si el nivel de la clase lo permite, podemos explicar lo siguiente. Para generalizar lo anterior

a una curva arbitraria que rodea a un punto p, consideremos la siguiente curva que rodea al
punto p = (x0, y0, z0):

r(t) = p + s(t) = (x0 + x(t), y0 + y(t), z0 + z(t)), t ∈ [a, b],

donde s(t) es una curva “pequeña” y cerrada. Como

F(r(t)) · r′(t) = P (p + s)x′ + Q(p + s)y′ + R(p + s)z′

'
(

P (p) + x
∂P

∂x
(p) + y

∂P

∂y
(p) + z

∂P

∂z
(p)

)
x′ +

+
(

Q(p) + x
∂Q

∂x
(p) + y

∂Q

∂y
(p) + z

∂Q

∂z
(p)

)
y′ +

+
(

R(p) + x
∂R

∂x
(p) + y

∂R

∂y
(p) + z

∂R

∂z
(p)

)
z′

y además
∫ b
a x′ dt =

∫ b
a xx′ dt =

∫ b
a y′ dt =

∫ b
a yy′ dt =

∫ b
a z′ dt =

∫ b
a zz′ dt = 0, puesto que la

curva s es cerrada, obtenemos

W =
∫ b

a
F(r(t)) · r′(t) dt

' ∂P

∂x
(p)

∫ b

a
yx′ dt +

∂P

∂z
(p)

∫ b

a
zx′ dt +

+
∂Q

∂x
(p)

∫ b

a
xy′ dt +

∂Q

∂z
(p)

∫ b

a
zy′ dt +

+
∂R

∂x
(p)

∫ b

a
xz′ dt +

∂P

∂z
(p)

∫ b

a
yz′ dt.

Ahora probamos a partir del teorema de Green que Sxy = − ∫ b
a yx′ dt =

∫ b
a xy′ dt, donde Sxy

es el área encerrada por la proyección de la curva sobre el plano XY . Luego, si denotamos Sxz,
Syz el área encerrada por la proyección sobre los planos XZ, Y Z, respectivamente, obtenemos

W ' Sxy

(
∂Q

∂x
(p)− ∂P

∂y
(p)

)
+ Sxz

(
∂P

∂z
(p)− ∂R

∂x
(p)

)
+ Syz

(
∂R

∂y
(p)− ∂Q

∂z
(p)

)
. (4.2)
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Esto motiva la siguiente definición. Sea F = (P,Q, R) un campo vectorial con derivadas
parciales continuas definido en un abierto U de IR3. Se llama el rotacional de F al campo
vectorial

rotF =
(

∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
.

Hay una forma sencilla de acordarse de esta definición mediante el siguiente determinante
simbólico:

rot(P, Q,R) =

∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

P Q R

∣∣∣∣∣∣
.

Volviendo a lo previo, si denotamos S = (Syz, Sxz, Sxy), entonces (4.2) se escribe
∮

C
Fdr ' S · rotF.

Si suponemos ahora que la curva C es plana, entonces hay una relación sencilla entre el
área S encerrada por la curva C y el área encerrada por sus proyecciones:

Syz = S cosφx, Sxz = S cosφy, Sxy = S cosφz,

donde φx es el ángulo que forman el vector normal a la curva C y el eje X; y de forma análoga
se definen φy, φx. Por tanto

S = (Syz, Sxz, Sxy) = S(cos φx, cosφy, cosφz).

Pero (cosφx, cosφy, cosφz) es un vector normal unitario a la curva C, que denotaremos en lo
sucesivo por N. Luego ∮

C
Fdr ' SN · rotF. (4.3)

Recordamos que hemos supuesto que la curva C es pequeña y plana. Otra vez advertimos
que el siguiente razonamiento no es nada riguroso.

Sea S una superficie cuya curva frontera es C. Dividimos S en muchas superficies pequeñas
S1, . . . , Sn y elegimos un punto pi en cada trozo Si. Sea Ci la curva frontera de Si. Se tiene

∮

C
Fdr =

n∑

i=1

∮

Ci

Fdr, (4.4)

ya que los lados comunes a dos trozos están recorridos en sentidos opuestos, y por tanto
en el término derecho de (4.4), las únicas circulaciones que no se cancelan son las que sólo
pertenecen a un trozo, es decir, las de la frontera de la superficie S. Véase la figura 4.3.

Si cada trozo es suficientemente pequeño, lo podemos suponer plano, y de (4.3) y (4.4)
obtenemos ∮

C
Fdr =

n∑

i=1

Área(Si) rotF(pi) ·N(pi),

y haciendo tender cada Si a pi obtenemos
∮

C
Fdr =

∫∫

S
rotF ·NdS =

∫∫

S
rotFdS. (4.5)
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4.4. El teorema de Stokes

6

?

Figura 4.3.: Las circulaciones de los lados comunes se cancelan.

Hemos obtenido el teorema de Stokes. Por supuesto, la “deducción” que presentamos no
es rigurosa.

Hay que tener cuidado, ya que en las dos integrales de (4.5) aparece una orientación.
Precisamos un poco más este concepto con la siguiente definición. Sea x : D → S una
parametrización de una superficie S, donde D ⊂ IR2 cuya frontera ∂D es una curva de
Jordan. Entonces C = x(∂D) es la curva frontera de la superficie S. Decimos que la curva
C está recorrida positivamente respecto a la parametrización x si la curva plana ∂D está
orientada positivamente. Para recordar esta definición, usamos la “regla de la mano derecha”.

Enunciamos, sin demostración, el teorema de Stokes (para consultar una demostración,
se pueden ver, por ejemplo, [18, 42, 50]). Sean S una superficie orientable con curva frontera
C y F : S → IR3 con derivadas parciales continuas. Entonces

∫∫

S
rotFdS =

∮

C
Fdr, (4.6)

donde la curva C se recorre positivamente respecto a la parametrización usada para calcular
el vector normal unitario en (4.6).

El teorema de Stokes permite dar una interpretación f́ısica del rotacional. Sean p un
punto de IR3 en donde está definido F, S una superficie orientable en IR3 que contiene a p y
∂S su curva frontera recorrida de modo positivo. Entonces

rotF(p) ·N = ĺım
S→p

1
área(S)

∮

∂S
Fdr,

en donde N es el vector al cual tienden los vectores normales unitarios de S. En realidad,
los vectores normales unitarios de S no tiene por qué tender a un vector; este problema se
soslaya suponiendo que todas las superficies S son paralelas entre ellas.

Hacemos un ejemplo concreto. Observamos que si S1 y S2 son dos superficies con la misma
curva frontera de modo que F tiene derivadas parciales continuas en la región comprendida
entre ambas superficies, por el teorema de Stokes, se tiene

∫∫
S1

rotFdS =
∫∫

S2
rotFdS, lo

que puede ayudar a facilitar cálculos. Aplicamos este comentario para calcular de forma
cómoda otro problema concreto. El teorema de Stokes puede aplicarse también a superficies
con curva frontera diferenciable a trozos, como mostramos con otro ejemplo.

Por último demostramos que si f es un campo escalar de clase C2, entonces rot(∇f) = 0
y que si F es un campo vectorial de clase C2, entonces div(rotF) = 0.
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Contenido del Caṕıtulo 4

1. Integrales de campos escalares.

• Motivación y definición de área.

• Definición de integrales de campos escalares. Independencia de la parametrización.

2. Integrales de campos vectoriales.

• Superficies orientables.

• Motivación y definición de integrales de campos vectoriales. Independencia de la
parametrización.

3. Teorema de Gauss-Ostrogradsky.

• Motivación y definición de la divergencia.

• Teorema de Gauss-Ostrogradsky. Ejemplos.

• Teorema extendido de la divergencia.

4. Teorema de Stokes.

• Motivación y definición del rotacional.

• Teorema de Stokes. Ejemplos.
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5. Campos conservativos y solenoidales

OBJETIVOS:

Saber comprobar si un campo es conservativo o solenoidal. En caso afrimativo,
saber calcular el potencial respectivo. Entender la utilidad de conocer el potencial
de un campo conservativo.

En 1739, Clairaut en un trabajo sobre la forma de la Tierra, se encontró lo que hoy se
conoce habitualmente como ecuaciones en diferencias totales que tiene la forma

P dx + Qdy + R dz = 0, (5.1)

donde P, Q, R son funciones de x, y, z. Si existe una función u = u(x, y, z) tal que

du = P dx + Qdy + R dz,

entonces señala Clairaut que (5.1) puede resolverse y que

∂P

∂y
=

∂Q

∂x
,

∂P

∂z
=

∂R

∂x
,

∂Q

∂z
=

∂R

∂y
.

Por otra parte, uno de los principales problemas del siglo XVIII fue la determinación de
la atracción gravitatoria que una masa ejerce sobre otra. Uno de los casos más importantes
fue el estudio de la influencia de la Tierra sobre una part́ıcula exterior o interior a ella. El
enfoque geométrico usado por Newton y MacLaurin sólo es apropiado para cuerpos atractores
especiales y para posiciones muy peculiares de las part́ıculas atráıdas.

Este enfoque dio paso pronto a los métodos anaĺıticos que fueron usados por Clairaut en
1743. Señalemos algunos hechos. La fuerza ejercida por la Tierra sobre una masa situada en
(x, y, z) es la suma de todos los diferenciales de fuerzas ejercidas por todas los diferenciales de
masas de la Tierra. Por la ley de gravitación de Newton, las componentes de un diferencial
de fuerza son

−G
x− ξ

r3
ρ dξ dη dζ, −G

y − η

r3
ρ dξ dη dζ, −G

z − ζ

r3
ρ dξ dη dζ,

donde G es la constante de la ley de Newton, dξ dη dζ es el diferencial de volumen en la Tierra
localizado en el punto (ξ, η, ζ) y r =

√
(x− ξ)2 + (y − η)2 + (z − ζ)2. La componente x de la

fuerza que la Tierra ejerce sobre un cuerpo de masa unidad situado en el punto (x, y, z) es

fx(x, y, z) = −G

∫∫∫

T

x− ξ

r3
ρ dξ dη dζ,
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5. Campos conservativos y solenoidales

donde T es la Tierra. Las componentes y, z de esta fuerza son análogas. Si se define

V (x, y, z) =
∫∫∫

T

ρ

r
dξ dη dζ,

y se deriva respecto a x, y, z (incluidas en r),

∂V

∂x
=

fx

G
,

∂V

∂y
=

fy

G
,

∂V

∂z
=

fz

G
.

Esto perimte trabajar a partir de ahora con una función V en vez de las tres componentes fx,
fy, fz. La idea de que una fuerza pueda derivar de una función potencial fue usada por Daniel
Bernouilli (1700–1782) en 1738 en su libro Hydrodynamica, en el cual empezó a estudiar las
propiedades de presión, velocidad y densidad de los fluidos.

Por otra parte, Euler al estudiar las componentes u, v, w de la velocidad de un fluido
incompresible, dedujo que

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

En nuestra notación, div(u, v, w) = 0. El triunfo más espectacular de la ciencia en el siglo
XIX fue la derivación en 1865 por Maxwell de las leyes del electromagnetismo. Una de estas
leyes, en notación moderna, establece que divB = 0, en donde B es el campo magnético.
Esta ley expresa el hecho experimental de que no hay monopolos magnéticos. Otra de las
ecuaciones de Maxwell es divE = ρ/ε0, donde E es el campo eléctrico, ε0 es una constante
f́ısica y ρ es la densidad de carga. Por lo que en zonas libres de cargas se cumple divE = 0.

5.1. Campos conservativos

Recordamos que el trabajo realizado por una part́ıcula que se mueve sobre una curva C
en un campo de fuerzas F es

∫
C Fdr. Un concepto importante en f́ısica es que el trabajo sólo

depende de los puntos inicial y final de la curva. Decimos que un campo vectorial F : D → IRn,
donde D es un abierto de IRn, es conservativo cuando

∫
C1

Fdr =
∫
C2

Fdr para cualquier
par de curvas C1, C2 contenidas en D con los mismos puntos inicial y final.

Explicamos que si se desea demostrar que un campo vectorial F no es conservativo basta
encontrar dos trayectorias con los mismos extremos y ver que la circulación de F a través de
ambas trayectorias es diferente. Pero si queremos demostrar que un campo es conservativo
hay que demostrar que para cualquier par de caminos con extremos iguales, la circulación
coincide.

Comprobar si un campo F es conservativo es, a partir de la definición, una tarea compli-
cada. Afortunadamente hay un modo más sencillo que describimos a continuación; pero sólo
se puede aplicar a campos que están definidos sobre conjuntos que cumplen la siguiente defi-
nición. Un conjunto D ⊂ Rn es simplemente conexo si es conexo y cualquier curva cerrada
se puede contraer de forma continua a un punto sin salirse del conjunto D. Esta definición
no es rigurosa, aunque intuitiva. Simplemente apelaremos a la intuición para decidir si un
conjunto es simplemente conexo o no1. Vemos algunos ejemplos: IR2, IR3, un plano sin un
punto, el espacio sin una recta y el espacio sin un punto.

1Si se está interesado en una definición rigurosa de este concepto, aśı como sus implicaciones se puede consultar
los libros más avanzados [28, 66].
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El siguiente teorema es útil para saber si un campo vectorial es conservativo o no. Sea
F : D → IR3 un campo vectorial de clase C1 donde D ⊂ IR3 es un abierto simplemente conexo.
Las siguientes afirmaciones son equivalentes:

a) Para toda curva cerrada C contenida en D, se tiene
∮
C Fdr = 0.

b) El campo F es conservativo.

c) Existe un campo escalar U : D → IR tal que ∇U = −F.

d) El rotacional del campo F es nulo.

Las implicaciones c) ⇒ d) ⇒ a) ⇒ b) son fáciles y las hacemos. Observemos que, aunque el
enunciado se pueda entender en el Caṕıtulo 3, preferimos enunciarlo en este momento, pues
la implicación d) ⇒ a) es trivial usando el teorema de Stokes. Dependiendo de varios factores
(tiempo, nivel o número de alumnos, ...) demostramos b) ⇒ c). Esta demostración se puede
encontrar en, por ejemplo, [17, 18, 50].

Para campos F : D → IR2, donde D ⊂ IR2 y F = (P, Q), basta definir G(x, y, z) =
(P (x, y), Q(x, y), 0) y aplicar el teorema anterior.

La hipótesis de que el abierto sea simplemente conexo es fundamental. Sea el campo
F(x, y, z) = (−y/(x2 + y2), x/(x2 + y2), 0), definido en IR3 \ {Eje Z}. El rotacional de F es
0 y la circulación de F a través de la circunferencia x2 + y2 = 1, z = 0 recorrida en sentido
positivo es distinta de 0.

Sin embargo, si el abierto donde está definido F no es simplemente conexo, aún hay algunas
implicaciones que son ciertas. Todo esto se enuncia con precisión en el siguiente resultado.
Sea F : D → IRn un campo vectorial de clase C1 y D ⊂ IRn es un abierto. Las siguientes
afirmaciones son equivalentes:

a) Para toda curva cerrada C contenida en D, se tiene
∮
C Fdr = 0.

b) El campo F es conservativo.

c) Existe un campo escalar U : D → IR tal que ∇U = −F.

Las pruebas de a) ⇒ b) ⇒ c) son iguales que en el teorema previo. Para demostrar c) ⇒ a),
observamos previamente que F(r(t)) · r′(t) = −∇U(r(t)) · r′(t) = −(U ◦ r)′(t).

Observamos que la prueba de c) ⇒ a) permite demostrar que si U : D → IR es un campo
escalar de clase C1 donde D ⊂ IRn es un abierto y si C es una curva contenida en D, entonces∫
C ∇U dr = U(q)− U(p); donde p es el punto inicial de C y q es el final.

Si F es conservativo, existe un campo escalar U tal que −∇U = F. Desde el punto de vista
de la f́ısica, este campo U es importante, ya que está relacionado con la enerǵıa potencial.
Esto motiva la siguiente definición: Un potencial del campo conservativo F es un campo
escalar U tal que −∇U = F. Hacemos un ejemplo concreto de comprobar si un campo es
conservativo, en donde además calculamos el potencial. Si se ha visto la implicación b) ⇒
c) en el teorema de las cuatro equivalencias de los campos conservativos, se puede calcular el
potencial de dos formas distintas2.

2Pocas veces el alumno se pregunta si el potencial de un campo conservativo es “único” en el siguiente sentido:
si U1 y U2 son dos potenciales del mismo campo F entonces U1 − U2 es constante. Si el dominio de F
es conexo, entonces śı es cierto ya que ∇(U1 − U2) = 0. En general, sólo se puede decir que U1 − U2 es
constante en cada componente conexa del dominio de definición de F.
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5. Campos conservativos y solenoidales

Si una part́ıcula de masa m se mueve en una trayectoria r sujeta a una fuerza F, la
segunda ley de Newton es F ◦ r = mr′′. Si F es conservativo, existe un campo escalar U
tal que −∇U = F. Bajo estas condiciones, la función escalar

E(t) =
1
2
m‖r′(t)‖2 + U(r(t))

es constante. Esta función se llama enerǵıa; el primer sumando es la enerǵıa cinética y
el segundo la enerǵıa potencial. Comprobamos este principio (de conservación de la
enerǵıa).

5.2. Campos solenoidales

Un campo es solenoidal si su divergencia es nula. Este tipo de campos es importante como
se ha visto en la introducción histórica: el campo de velocidades de un fluido incompresible
y el campo magnético son ejemplos de campos solenoidales.

El siguiente teorema caracteriza los campos solenoidales. Sea F : IR3 → IR3 un campo
vectorial con derivadas parciales continuas. Las siguientes afirmaciones equivalen:

a) Existe un campo diferenciable G : IR3 → IR3 tal que rotG = F (el campo G se llama
potencial vector de F).

b) El flujo de F a través de cualquier superficie cerrada es nulo.

c) El campo F es solenoidal, es decir, divF = 0.

Las demostraciones de a) ⇒ b) ⇒ c) usan el teorema de la divergencia y la propiedad
div ◦ rot = 0. Para la demostración de c) ⇒ a) hay dos alternativas para hallar G:

G(x, y, z) =
{ (∫ z

0 Fy(x, y, t) dt− ∫ y
0 Fz(x, t, 0) dt,− ∫ z

0 Fx(x, y, t) dt, 0
)
,∫ 1

0 tF(tx, ty, tz)× (x, y, z) dt.

La primera tiene la ventaja de que surge de manera natural al tratar de resolver rot(G) =
(Fx, Fy, Fz) con algunas imposiciones y en realidad para los ejemplos concretos no necesita
memorización ninguna. La segunda fórmula es más general en el sentido de que sólo se
requiere que el dominio de F sea estrellado respecto al origen3.

La demostración de c) ⇒ a) prueba la existencia, pero ¿cuál es la solución general de
rotG = F supuesto divF = 0? Si G1 es otro campo tal que rotG1 = F, como rot(G−G1) =
0, entonces existe un campo escalar φ tal que G −G1 = −∇φ. Luego G1 = G +∇φ. Otra
forma de encarar la cuestión es (siempre que el alumno haya visto la asignatura de ecuaciones
diferenciales ordinarias) que la solución general de rotG = F es la solución general de la
homogénea (rotGh = 0) más una solución particular de rotG = F.

Una hipótesis esencial del teorema anterior es que el campo F debe estar definido en todo
IR3. En el siguiente ejercicio se ve la razón de incluir esta hipótesis.

Sea el campo F = r/‖r‖3, donde r = (x, y, z). Obsérvese que este campo no está definido
en el origen. Pruébense las siguientes afirmaciones.

3Se dice que Ω ⊂ IRn es estrellado respecto a p ∈ Ω si para cualquier q ∈ Ω se cumple que el segmento
pq está incluido en Ω.
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5.2. Campos solenoidales

a) La divergencia de F es cero.

b) El flujo de F a través de la esfera de centro el origen y radio 1 es 4π, distinto de 0.

c) Es imposible que exista un campo vectorial G tal que rotG = F. Ayuda: Sean S la esfera
de centro el origen y radio 1; HN el hemisferio norte y HS el sur. Entonces

∫∫
S FdS =∫∫

HN
FdS +

∫∫
HS

FdS. Supóngase que existe tal campo G y apĺıquese el teorema de
Stokes para obtener una contradicción.

Las referencias que proponemos para este caṕıtulo son [12, 17, 50]. Unos libros más
informales profundizando más en el aspecto f́ısico que en el rigor matemático son [61, 63].
Algo más avanzado es [18].
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Contenido del Caṕıtulo 5

1. Campos conservativos.
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6. Coordenadas curviĺıneas ortogonales

OBJETIVOS

Saber calcular el gradiente, divergencia, rotacional y laplaciano en coordenadas
polares, ciĺındricas y esféricas.

El primer uso de coordenadas distintas a las cartesianas parece ser que fue hecho por
Newton en el libro The method of fluxions and infinite series escrito sobre 1671; pero publicado
en 1736. En este libro, Newton describe las coordenadas polares y las bipolares, en las cuales
un punto se situa de acuerdo con las distancias a dos puntos fijos. El descubrimiento de las
coordenadas polares se suele atribuir a Jacobo Bernouilli quien publicó un art́ıculo en el Acta
Eruditorum en 1691. Lagrange, en 1773, expresó la atracción ejercida por una esfera mediante
una integral triple y efectuó el cambio a coordenadas esféricas, en donde usó expĺıcitamente
que dxdy dz = r2 senφ dφdλdr, donde r es la distancia del punto de la esfera al origen, φ la
colatitud y λ la longitud.

Usando el principio de mı́nima acción y el cálculo de variaciones, Lagrange obtuvo sus
famosas ecuaciones del movimiento. Después introdujo lo que hoy se llaman coordenadas
generalizadas. Esto es, en lugar de las coordenadas cartesianas, se puede usar cualquier
conjunto de coordenadas para fijar la posición de la part́ıcula.

La utilidad de las coordenadas curviĺıneas fue señalada por Lamé (1795–1870) quien en
1833 indicó que la ecuación del calor sólo hab́ıa sido resuelta para cubos con caras paralelas
a los planos coordenados. La idea de Lamé fue introducir nuevos sistemas coordenados y
transformar la ecuación en este nuevo sistema coordenado, como fue hecho por Euler y Laplace
al transformar la ecuación del potencial de cartesianas a esféricas. En 1834 Lamé consideró
las propiedades de tres familias de superficies mutuamente ortogonales y dio un método para
expresar una ecuación en derivadas parciales en cualquier sistema ortogonal de coordenadas.

6.1. Repaso de las coordenadas polares, ciĺındricas y esféricas

Motivamos este tema con la ley de Coulomb: la fuerza que ejerce un cuerpo puntual de
carga Q situado en el origen sobre otra carga q situada en (x, y, z) es

F(x, y, z) = −KQq
1√

(x2 + y2 + z2)3
(x, y, z).

Observamos que esta expresión es relativamente complicada para un problema que posee
mucha simetŕıa. De hecho los puntos situados en una esfera con centro el origen tienen
comportamiento similar, por lo que el estudio de este problema debe ser más sencillo en
coordenadas esféricas.
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6. Coordenadas curviĺıneas ortogonales

En muchos problemas es conveniente usar coordenadas no cartesianas, como por ejemplo,
polares, esféricas o ciĺındricas. Para comprender mejor este caṕıtulo, repasamos brevemente
estas coordenadas.

Coordenadas polares. Se definen mediante x = x(r, θ) = r cos θ, y = y(r, θ) = r sen θ para
r ∈ [0,+∞[ y θ ∈ [0, 2π[. El vector de posición es r = r(r, θ) = (r cos θ, r sen θ). Expli-
camos geométricamente el significado de ∂r/∂θ y ∂r/∂r. Observamos que los vectores
{∂r/∂r, ∂r/∂θ} forman una base ortogonal orientada positivamente de IR2 (véase la
figura 6.1, izquierda).

½
½

½½>

S
S

SSo

b

∂r/∂r
∂r/∂θ

HHHj
©©©*
6

∂r/∂r

∂r/∂θ∂r/∂z

b

Figura 6.1.: Coordenadas polares y ciĺındricas.

Coordenadas ciĺındricas. Se definen mediante x = x(r, θ, z) = r cos θ, y = y(r, θ, z) = r sen θ,
z = z(r, θ, z) = z para r ∈ [0, +∞[, θ ∈ [0, 2π[, z ∈] −∞, +∞[. El vector de posición
es r = r(r, θ, z) = (r cos θ, r sen θ, z). Explicamos el significado geométrico de ∂r/∂r,
∂r/∂θ y ∂r/∂z. Estos tres vectores forman una base ortogonal orientada positivamente
de IR3 (véase la figura 6.1, derecha).

Coordenadas esféricas. Se definen por medio de

x(r, λ, φ) = r sen φ cosλ, y(r, λ, φ) = r sen φ sen λ, z(r, λ, φ) = r cosφ,

para r ∈ [0, +∞[, φ ∈ [0, π] y λ ∈ [0, 2π[. El vector de posición es

r(r, λ, φ) = r(senφ cosλ, sen φ senλ, cosφ).

Igual que antes, explicamos el significado geométrico de ∂r/∂r, ∂r/∂φ y ∂r/∂λ y vemos
que estos tres vectores forman una base ortogonal orientada positivamente.

6.2. Definición de las coordenadas curviĺıneas ortogonales

Un cambio de coordenadas es especificar tres funciones diferenciables

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)

que admiten inversa; es decir, existen

u = u(x, y, z), v = v(x, y, z), w = w(x, y, z),
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6.3. Los operadores diferenciales en coordenadas curviĺıneas ortogonales

donde además supondremos que ∂(x, y, z)/∂(u, v, w) 6= 0. El vector de posición se denotará
r(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)).

Las coordenadas u, v, w forman un sistema ortogonal de coordenadas curviĺıneas
si la base {∂r/∂u, ∂r/∂v, ∂r/∂w} es ortogonal orientada positivamente. Los factores de
escala son

hu =
∥∥∥∥

∂r
∂u

∥∥∥∥ , hv =
∥∥∥∥

∂r
∂v

∥∥∥∥ , hw =
∥∥∥∥

∂r
∂w

∥∥∥∥ .

Denotamos
û =

1
hu

∂r
∂u

, v̂ =
1
hv

∂r
∂v

, ŵ =
1

hw

∂r
∂w

.

Como ejercicios, calculamos los factores de escala en coordenadas polares, ciĺındricas y
esféricas. Expresamos algunos campos escalares y vectoriales concretos en función de las
coordenadas ciĺındricas y esféricas.

6.3. Los operadores diferenciales en coordenadas curviĺıneas
ortogonales

En lo sucesivo supondremos que todos los campos que aparecen son diferenciables tantas
veces como sea preciso.

6.3.1. El gradiente

Sea f un campo escalar. El gradiente de f en coordenadas cartesianas es el vector

∇f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

Hallemos∇f en la base {û, v̂, ŵ}. Si∇f = fuû+fvv̂+fwŵ, tenemos que encontrar fu, fv, fw.
Por ser la base {û, v̂, ŵ} ortonormal,

fu = ∇f · û =
1
hu

(
∇f · ∂r

∂u

)
=

1
hu

[
∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
+

∂f

∂z

∂z

∂u

]
=

1
hu

∂f

∂u
.

Análogamente se obtienen fv y fw. Por lo que

∇f =
1
hu

∂f

∂u
û +

1
hv

∂f

∂v
v̂ +

1
hw

∂f

∂w
ŵ. (6.1)

Una expresión para el gradiente usando sumatorios es

∇f =
∑ 1

hi

∂f

∂ui
ûi,

donde se ha substituido û por û1; v̂ por û2 y ŵ por û3. Observamos que esta fórmula tiene
sentido también en IR2.

Como ejercicios calculamos el gradiente de un campo escalar que depende sólo de r en IR2

y en IR3. Además, probamos como ejercicio que

∇u =
û
hu

, ∇v =
v̂
hv

, ∇w =
ŵ
hw

.
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6. Coordenadas curviĺıneas ortogonales

Como consecuencia (que será útil) se tiene

rot
û
hu

= 0, rot
v̂
hv

= 0, rot
ŵ
hw

= 0. (6.2)

6.3.2. La divergencia

Expresamos la divergencia de F = Fuû+Fvv̂+Fwŵ en el nuevo sistema de coordenadas.
Como div F = div(Fuû) + div(Fvv̂) + div(Fwŵ), sólo calcularemos div(Fuû), pues el resto es
análogo. Se tiene que

div(Fuû) = div[Fu(v̂ × ŵ)] = ∇Fu · (v̂ × ŵ) + Fu div(v̂ × ŵ).

Aplicando (6.1) y debido a que la base {û, v̂, ŵ} es ortonormal y orientada positivamente, se
obtiene que

∇Fu · (v̂ × ŵ) =
1
hu

∂Fu

∂u
.

Ahora, por (6.1), (6.2) y usando que div(F×G) = G ·F−F ·G para cualquier par de campos
vectoriales F y G de clase C2

div(v̂ × ŵ) = div
(

(hvhw)
v̂
hv
× ŵ

hw

)

= ∇(hvhw) ·
(

v̂
hv
× ŵ

hw

)
+ hvhw div

(
v̂
hv
× ŵ

hw

)

=
1

huhvhw

∂(hvhw)
∂u

.

Luego

div(Fuû) =
1
hu

∂Fu

∂u
+

Fu

huhvhw

∂(hvhw)
∂u

=
1

huhvhw

∂(Fuhvhw)
∂u

.

El resto de las componentes se calculan de forma similar. Por tanto

div(F) =
1

huhvhw

(
∂(hvhwFu)

∂u
+

∂(hwhuFv)
∂v

+
∂(huhvFw)

∂w

)
. (6.3)

Una expresión para la divergencia usando sumatorios es

div F =
1
H

∑ ∂

∂ui

(
HFi

hi

)
,

donde H = h1h2h3. Observemos que esta expresión tiene sentido en IR2; siendo en este caso
H = h1h2.

Pocas veces el alumno se cuestiona que en la deducción de (6.3) se usa que el campo F es
tridimensional (al utilizar el producto vectorial). Sin embargo se ha afirmado que la fórmula
es válida también en IR2. ¿Por qué? Se considera el campo F(x, y) = (Fx(x, y), Fy(x, y)) y se
define F∗(x, y, z) = (Fx(x, y), Fy(x, y), 0). Ahora basta aplicar (6.3) para F∗.

Como un ejemplo, calculamos la divergencia del campo F = r/‖r‖3 en el plano y en el
espacio usando coordenadas polares y esféricas respectivamente. Este campo es importan-
te en las aplicaciones, pues, salvo una constante multiplicativa, es el campo gravitatorio o
electrostático.
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6.3. Los operadores diferenciales en coordenadas curviĺıneas ortogonales

6.3.3. El rotacional

Se calculará el rotacional de F = Fuû+Fvv̂+Fwŵ. Como rotF = rot(Fuû)+rot(Fvv̂)+
rot(Fwŵ), sólo hace falta calcular rot(Fuû) pues el resto es análogo. Aplicando que rot(fF) =
f rotF + ∇f × F para un campo escalar f y un campo vectorial F, ambos de clase C2, se
tiene

rot(Fuû) = rot(Fuhu
û
hu

)

= Fuhu rot
û
hu

+∇(Fuhu)× û
hu

= 0 +
[

1
hu

∂(Fuhu)
∂u

û +
1
hv

∂(Fuhu)
∂v

v̂ +
1

hw

∂(Fuhu)
∂w

ŵ
]
× û

hu

= − 1
huhv

∂(Fuhu)
∂v

ŵ +
1

huhw

∂(Fuhu)
∂w

v̂

=
1

huhvhw

[
∂(Fuhu)

∂w
hvv̂ − ∂(Fuhu)

∂v
hwŵ

]
.

Una expresión simbólica para rotF es

rotF =
1

huhvhw

∣∣∣∣∣∣∣∣∣∣∣

huû hvv̂ hwŵ

∂

∂u

∂

∂v

∂

∂w

huFu hvFv hwFw

∣∣∣∣∣∣∣∣∣∣∣

. (6.4)

Como ejercicio, calculamos el rotacional de un campo de fuerzas central, es decir, F =
f(r)r̂.

6.3.4. El Laplaciano

Si f es un campo escalar, el laplaciano de f se define mediante

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

Puesto que ∇2 = div ◦∇, se tiene que

∇2f =
1
H

∑ ∂

∂ui

(
H

h2
i

∂f

∂ui

)
.

Como ejercicio, hallamos el laplaciano en coordenadas polares, esféricas y ciĺındricas y las
funciones f : IR2 → IR tales que ∇2f = 0 y que sólo dependen de r. Hacemos lo mismo para
funciones de tres variables.

Puesto, que en nuestra opinión, la memorización excesiva no ayuda a comprender la
materia, en los examenes se proporcionan a los alumnos las expresiones (6.1), (6.3) y (6.4).
Si el nivel de la clase lo permitiera, se incluyen las demostraciones de las fórmulas.
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7. El campo gravitatorio y electrostático

OBJETIVOS

Saber plantear la integral del potencial creada por distribuciones continuas y calcu-
larla en algunos casos concretos. Conocer la ley de Gauss y conocer las ecuaciones
básicas que cumple el potencial.

En este caṕıtulo se presentan varias aplicaciones del análisis vectorial a la teoŕıa de campos
gravitatorios y electrostáticos. Para una mayor información se pueden consultar muchos
libros, por ejemplo, [9, 15, 27, 38, 42, 57].

7.1. El potencial gravitatorio y electrostático

Según la ley de gravitación universal de Newton, dos cuerpos se atraen con una
fuerza proporcional al producto de las masas e inversamente proporcional al cuadrado de la
distancia que separa a ambas. Usando vectores, podemos enunciar que la fuerza que ejerce
una masa M situada en p0 sobre otra masa m situada en p es

F(p) = −GMm
p− p0

‖p− p0‖3
.

Comentamos brevemente el signo negativo y el valor ‖F(p)‖ en la igualdad anterior. La
expresión de esta fuerza en coordenadas esféricas centradas en p0 es mucho más sencilla:

F =
−GMm

r2
r̂.

El campo gravitatorio E que crea una part́ıcula de masa M es la fuerza que ejerce sobre
otra part́ıcula de masa 1, es decir, mE = F.

La ley de Coulomb postula que la fuerza que ejerce una carga Q situada en p0 sobre
otra carga q situada en p es

F(p) =
Qq

4πε0

p− p0

‖p− p0‖3
.

Esta ley es similar a la de Newton; sin embargo hay algunas diferencias:

• Hay cargas de distinto signo y éstas se atraen si son de signos distintos y se repelen si
son del mismo signo, mientras que sólo hay “masas del mismo signo” ya que las masas
sólo se atraen. De aqúı que en la ley de Coulomb no aparece el signo negativo que se
puso en la de Newton.
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7. El campo gravitatorio y electrostático

• En el caso de la ley de Coulomb la constante G se substituye por −1/(4πε0). Esta cons-
tante es mayor que G, por eso la fuerza electrostática es más fuerte que la gravitatoria.

• Si las cargas no estuviesen en el vaćıo, la constante ε0 (llamada permitividad eléctrica
en el vaćıo) debe modificarse; por eso esta constante no es universal (a diferencia de
la de gravitación).

La expresión para el campo electrostático que crea una carga se define como el campo
gravitatorio; es decir la fuerza sobre otra carga de magnitud uno.

El campo gravitatorio que crea una part́ıcula de masa M situada en p0 es conservativo en
IR3 \ {p0}, ya que rotE = 0 y el dominio de definición de E es simplemente conexo. Luego
existe una función potencial V tal que ∇V = −E. Usando coordenadas esféricas1,

∂V

∂r
r̂ +

1
r

∂V

∂φ
φ̂ +

1
r cosφ

∂V

∂λ
λ̂ = GM

r̂
r2

.

Tras igualar componentes se obtiene V = −GM/r + C. Si se impone la condición de que V
se anule en el infinito, se tiene

V = −GM

r
.

Se ha obtenido que V tiene simetŕıa radial, lo que es f́ısicamente intuitivo pues E también la
tiene. La razón para calcular este potencial es práctica: E tiene tres componentes, mientras
que V sólo una; aśı pues, es más sencillo hallar V que E. Hay que tener en cuenta que una
vez hallado V , por derivación, obtenemos E.

En el mundo real normalmente no hay dos masas puntuales aisladas. Para estudiar siste-
mas con varias masas es necesario postular que las masas M1, . . . , Mn situadas en los puntos
x1, . . . ,xn, crean una fuerza que es igual a la suma de las fuerzas que originan por separado.
Luego el potencial en un punto p distinto de x1, . . . ,xn es

V (p) =
n∑

i=1

−GMi

‖p− xi‖ . (7.1)

Este mismo principio también es válido en electrostática.
La situación anterior es bastante irreal, ya que en la naturaleza no existen masas o cargas

puntuales. Lo que hay son distribuciones continuas. Para trabajar con tales distribuciones se
postula que la distribución continua de masas ocupando una región Ω crea en un punto p el
potencial dado por

V (p) =
∫

Ω

−Gρ(x)
‖p− x‖ dx, (7.2)

donde x ∈ Ω y ρ(x) es la densidad en x. La integral puede ser de ĺınea, superficie o de
volumen dependiendo de Ω.

Al pasar de una distribución discreta (7.1) a una distribución continua (7.2), el sumatorio
se reemplaza por una integral y cada masa Mi se convierte en el diferencial de masa ρ(x) dx.
Observamos que si p ∈ Ω, la integral (7.2) presenta problemas de convergencia.

Resolvemos los siguientes problemas:
1Desde luego, si se estudia el campo electrostático, basta cambiar G por −1/(4πε0).
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7.1. El potencial gravitatorio y electrostático

a) Pruébese que el potencial gravitatorio creado por una esfera hueca homogénea de radio R
sobre un punto p que no está en la superficie esférica es

V (p) =

{
−GM/R si ‖p− c‖ < R,

−GM/‖p− c‖ si ‖p− c‖ > R,

donde c es el centro de la esfera y M es la masa total de la esfera hueca. Este resultado
dice que la fuerza de atracción que crea una esfera hueca sobre puntos exteriores es como si
la masa estuviese concentrada en el centro de la esfera; conclusión deducida por Newton.

b) Con respecto al potencial del ejercicio anterior:

b.1) Hállese ∇V . Conclúyase que los puntos interiores a la esfera no sufren atracción ni
repulsión.

b.2) Pruébese que ∇2V = 0 en cualquier punto que no está sobre la superficie de la esfera.

c) Debido a que la forma de la Tierra se puede aproximar por una esfera; es importante calcu-
lar el potencial originado por una esfera maciza de radio R sobre un punto p. Suponemos
la Tierra homogénea con densidad ρ y centrada en el origen. Pruébese que

V (p) =





−GM

‖p‖ si R < ‖p‖,

−Gρ2π

(
R2 − ‖p‖2

3

)
si ‖p‖ < R.

d) Respecto al potencial del ejercicio previo, pruébese que

d.1) el potencial V es continuo en la superficie esférica.

d.2) la fuerza de atracción, −∇V , viene dada por

−∇V (p) =





−GM

‖p‖2
r̂ si R < ‖p‖,

−GM‖p‖
R3

r̂ si ‖p‖ < R.

d.3) El laplaciano de V cumple

∇2V (p) =

{
0 si R < ‖p‖,
4πGρ(p) si ‖p‖ < R.

En general, la integral que proporciona el potencial no se puede hallar de forma exacta.
Pero en todos los casos anteriores, el laplaciano del potencial en puntos libres de masas es nulo
independientemente de la distribución de masas que crea el campo. Más adelante veremos
que no es casualidad. Ésta es una de las razones de la importancia del laplaciano.

El estudio de las propiedades del potencial en puntos ocupados por cargas presenta bas-
tantes dificultades pues el integrando de (7.2) se hace infinito en los puntos donde hay cargas.
No entramos en muchos detalles (véase [42] para un estudio más profundo).
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7. El campo gravitatorio y electrostático

Supongamos en lo que sigue que V (p, q, r) es el potencial en el punto (p, q, r) creado por
una distribución continua de cargas con densidad ρ continua a trozos y acotada en el cerrado
y acotado Ω con interior no vaćıo. Entonces se tiene

V (p, q, r) =
1

4πε0

∫∫∫

Ω

ρ(x, y, z)
[(p− x)2 + (q − y)2 + (r − z)2]1/2

dxdy dz. (7.3)

Enunciamos y demostramos que si Ω es un cerrado y acotado de IR3 con interior no vaćıo
y si ρ : Ω → IR es una función continua a trozos, entonces la integral (7.3) converge para
todo (p, q, r) ∈ IR3. Para la demostración hay que distinguir si (p, q, r) /∈ Ω o si (p, q, r) ∈ Ω.
El primer caso es trivial. Para el segundo, se puede suponer que Ω es una esfera de centro
(p, q, r) y basta pasar la integral a coordenadas esféricas centradas en (p, q, r).

Enunciamos el siguiente teorema: Sea V el potencial de una distribución continua de
cargas ocupando el cerrado y acotado Ω. Si ρ es diferenciable en el interior de Ω y su
gradiente está acotado en Ω, entonces en cualquier punto p que no pertenece a la frontera de
Ω se cumple

∇2V (p) = −ρ(p)
ε0

.

No presentamos la demostración en clase, que se puede encontrar en [42] (basta suponer que
ρ cumple la condición de Hölder en el interior de Ω).

7.2. La ley de Gauss

La ley de Gauss proporciona el valor de
∫∫

S EdS, donde S es una superficie cerrada y
E es el campo electrostático o gravitatorio. Para fijar ideas, la enunciamos usando campos
electrostáticos.

Comenzamos estudiando lo más sencillo: cuando el campo está creado por una part́ıcula
de carga Q situada en el origen, es decir E = Q/(4πε0r

2)r̂. Denotamos K = Q/4πε0 y
observamos que se cumple divE = 0.

Hay que tener cuidado en la siguiente igualdad:
∫∫

S
EdS =

∫∫∫

Ω
div Edxdy dz = 0,

donde Ω es el recinto encerrado por S pues el teorema de la divergencia no es cierto si el campo
E no es diferenciable en el interior de S. Sin embargo podemos decir que si 0 6∈ interior(S),
entonces

∫∫
S EdS = 0.

Si el origen estuviese en el interior de S, lo encerramos dentro de una esfera B de radio δ
suficientemente pequeño tal que B ⊂ Ω (véase la figura 7.1).

Por el teorema extendido de la divergencia, si ∂B es la frontera de B,
∫∫

S
EdS−

∫∫

∂B
EdS =

∫∫∫

Ω\B
div Fdx dy dz = 0.

Pero ahora es trivial calcular
∫∫

∂B EdS. Este valor es Q/ε0. Se acaba de probar

∫∫

S
EdS =





0 si 0 6∈ interior(S),
Q

ε0
si 0 ∈ interior(S).
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Ω

S

c 0
@@Rδ

B

Figura 7.1.: El equivalente plano en la deducción de la ley de Gauss

Este resultado se puede extender al caso de varias cargas como sigue:
∫∫

S EdS = Q/ε0, donde
Q es la carga total encerrada por S. El paso de una distribución discreta a una continua no
es riguroso (en [50] se ve una forma de demostrar este resultado con rigor).

La ley de Gauss permite enunciar la siguiente ley fundamental de la electrostática. Sea Ω
una región de IR3 libre de cargas. Tomamos R ⊂ Ω arbitrario y sea S la superficie frontera
de R. Entonces, por la ley de Gauss y por el teorema de la divergencia,

0 =
∫∫

S
EdS =

∫∫∫

R
div Edxdy dz.

Como esto es cierto para cualquier R ⊂ Ω, entonces div E = 0 en Ω. Como E = −∇V ,
entonces div(∇V ) = 0 en Ω; es decir, V cumple la ecuación de Laplace en Ω, que es,
∇2V = 0.
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8. El campo magnético

OBJETIVOS

Saber calcular el campo magnético en algunos casos simples. Saber usar la ley de
Lorentz. Deducir consecuencias teóricas a partir de las leyes de Biot-Savart y de
las ecuaciones de Maxwell.

8.1. Fluidos

Comenzamos con una breve introducción a la mecánica de fluidos, ya que será útil para
estudiar el flujo de cargas o la ecuación de continuidad. Hay muchos libros que tratan este
tema: se pueden consultar [27] (poco riguroso, pero intuitivo y válido si no se pretende
profundizar), [35] (para un tratamiento más riguroso) o [49] (riguroso, pero abstracto y dif́ıcil
de seguir).

Para comprender mejor la definición de movimiento de un fluido que inicialmente ocupa
la región Ω ⊂ IR3 en el intervalo temporal [0, tf ], explicamos de forma intuitiva lo siguiente.
Una part́ıcula del fluido que inicialmente está en la posición x, tras t unidades de tiempo, se
desplaza a otro punto denotado por Φ(x, t). Aśı pues, existe una función Φ : Ω× [0, tf ] → IR3.
Observamos que Φ depende de 4 variables; tres espaciales, las de Ω y una temporal, la de
[0, tf ]. Además se debe cumplir que Φ(x, 0) = x para todo punto x ∈ Ω.

Al fijar x0 ∈ Ω, la curva r : [0, tf ] → IR3 dada por r(t) = Φ(x0, t) es la trayectoria descrita
por la part́ıcula que inicialmente está en x0, por tanto r′(t) es la velocidad del fluido en la
posición Φ(x0, t) y en el tiempo t. Parece intuitivo que deba existir v : Ω × [0, tf ] → IR3 tal
que

∂Φ
∂t

(x, t) = v(Φ(x, t), t). (8.1)

Denotemos por DΦ la matriz diferencial de Φ sin la última columna. Ahora estamos en
condiciones de dar la siguiente definición.

Un fluido es una función Φ : Ω× [0, tf ] → IR3, donde Ω es un abierto de IR3 que cumple

a) Para todo x ∈ Ω se cumple Φ(x, 0) = x.

b) Φ es diferenciable en (x, t) y la matriz DΦ(x,t) es invertible para todo (x, t) ∈ Ω×]0, tf [.

c) Existe un campo de velocidades v : Ω×]0, tf [→ IR3 tal que se cumple (8.1) para todo
(x, t) ∈ Ω× ∈]0, tf [.

Es posible escribir la condición c) de forma más compacta: si definimos Φ : Ω× [0, tf ] →
Ω× [0, tf ] dada por Φ(x, t) = (Φ(x, t), t); entonces la condición c) equivale a que exista v tal
que ∂Φ/∂t = v ◦ Φ.
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8. El campo magnético

Ilustramos la definición anterior con el ejemplo siguiente. La función Φ : IR3 × IR → IR3

dada por
Φ(x, y, z, t) = (x cos t− y sen t, x sen t + y cos t, z). (8.2)

es un fluido. Lo representamos geométricamente y hallamos el campo de velocidades obtenien-
do v(x, y, z, t) = (−y, x, 0). Es importante notar la diferencia entre v y ∂Φ/∂t: observamos
que v(x, t) es la velocidad en el punto x y en el instante t, pero ∂Φ

∂t (x, t) es la velocidad en
el instante t de una part́ıcula que inicialmente está en el punto x. Esta diferencia se muestra
claramente en este ejemplo en donde v 6= ∂Φ/∂t.

8.2. La derivada material

Estudiamos ahora la densidad del fluido. La densidad vaŕıa según la posición y el tiempo.
Aśı, existe un campo escalar f que depende de las variables espaciales x y del tiempo t, es
decir, f : Ω× [0, tf ] → IR. En vez de la densidad; por supuesto, podemos considerar cualquier
campo escalar que depende tanto de la posición como del tiempo.

Fijado x ∈ Ω, sea g(t) = f(Φ(x, t), t), que estudia el comportamiento de f según se mueve
la part́ıcula que inicialmente ocupa la posición x. Es fácil probar que

g′(t) = ∇f(Φ(x, t), t) · ∂Φ
∂t

(x, t) +
∂f

∂t
(Φ(x, t), t).

Debido a la condición c) de la definición de fluido, se tiene que

g′(t) =
(
∇f · v +

∂f

∂t

)∣∣∣∣
(Φ(x,t),t)

.

Esto motiva la siguiente definición. Sea una función f : Ω × [0, tf ] → IR diferenciable. La
derivada material de f respecto al campo de velocidades v es

Df

dt
= ∇f · v +

∂f

∂t
.

La derivada material de f es la variación temporal de f desde el “punto de vista” de una
part́ıcula que se mueve en el fluido. Notamos que generalmente es diferente de ∂f/∂t que
expresa la variación temporal de f desde el “punto de vista” de un punto fijo. Hacemos los
dos siguientes problemas considerando el fluido (8.2):

a) Sea el campo f(x, y, z, t) = x. Calcúlese Df/dt y ∂f/∂t. Expĺıquese de forma intuitiva
la razón de que Df/dt > 0 si y sólo si y < 0.

b) Considérese un campo escalar f que depende sólo de la distancia al eje Z. Pruébese que
Df/dt = 0 y expĺıquese geométricamente este resultado.

8.3. El teorema del transporte

Estudiamos ahora cómo se mueve una región R de IR3 . Denotamos R(t) = {Φ(x, t) : x ∈
R}. El volumen de R(t) es

∫∫∫
R(t) dx y la masa en R(t) es

∫∫∫
R(t) ρ(x, t) dx, siendo ρ(x, t) la
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8.3. El teorema del transporte

densidad en la posición x y en el tiempo t. Para estimar la variación de la masa o el volumen,
estudiaremos

d
dt

∫∫∫

R(t)
f(x, t) dx,

para una función f : Ω× [0, tf ] → IR diferenciable. No podemos permutar la derivada con la
integral, ya que el dominio de integración depende de t. Para evitar esta dependencia, usamos
el teorema del cambio de variables:

∫∫∫

R(t)
f(x, t) dx =

∫∫∫

R
f(Φ(x, t))J(x, t) dx,

donde J(·, t) es el determinante del jacobiano de Φt, es decir, J(x, t) = det(DΦ(x,t)). Ahora
se tiene

d
dt

∫∫∫

R(t)
f(x, t) dx =

∫∫∫

R

∂

∂t
(f(Φ(x, t), t)J(x, t)) dx (8.3)

=
∫∫∫

R

(
Df

dt
(Φ(x, t), t)J(x, t) + f(Φ(x, t), t)

∂J

∂t
(x, t)

)
dx.

Hemos de desarrollar ahora
∂J

∂t
=

∂

∂t
det(DΦ(x,t)).

Para ello usaremos la condición c) de la definición de fluido: como v ◦Φ = ∂Φ/∂t, aplicando
la regla de la cadena y permutando el orden de derivación obtenemos

dv(Φ(x,t),t) dΦ(x,t) =
∂

∂t

(
dΦ(x,t)

)
.

Usando matrices por bloques,

(
Dv(Φ(x,t),t)

∂v
∂t

(Φ(x, t), t)
)(

DΦ(x,t)
∂Φ
∂t

(x, t)

0 1

)
=

∂

∂t

(
DΦ(x,t)

∂Φ
∂t

(x, t)
)

,

donde denotaremos a partir de ahora Dv la matriz dv sin la última columna. Luego

Dv(Φ(x,t),t)DΦ(x,t) =
∂

∂t
DΦ(x,t). (8.4)

Será útil el siguiente lema: Sean M(t) una matriz variable y N una matriz constante, ambas
cuadradas, de orden 3 y cumpliendo M ′ = NM , entonces (detM)′ = (TrN)(detM).

Hacemos la siguiente demostración1. Sean u,v,w las filas de M , como detM = u·(v×w),
entonces (detM)′ = u′ · (v ×w) + v′ · (w × u) + w′ · (u × v). Simplificamos sólo el primer
sumando, pues el resto es análogo. Si las entradas de N son denotadas por ni,j , puesto que
M ′ = NM , se tiene u′ = n11u + n12v + n13w. Luego

u′ · (v ×w) = (n11u + n12v + n13w) · (v ×w) = n11 det M.

1Este lema admite una prueba para matrices de orden arbitrario y “más corta”: Si M cumple M ′ = NM ,
entonces existe una matriz A constante tal que M = AeNt, entonces det M = (det A)(det eNt) =
(det A)eTr(Nt) = (det A)etTrN . Ahora es trivial probar el lema.
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8. El campo magnético

Análogamente se obtiene que v′ · (w × u) = n22 det M y que w′ · (u × v) = n33 detM . Por
tanto se cumple (detM)′ = n11 detM + n22 detM + n33 det M = (TrN)(detM).

Debido a este lema, a la ecuación (8.4) y al hecho de que J(x, t) = det(DΦ(x,t)),

∂J

∂t
(x, t) = Tr(Dv(Φ(x,t),t))J(x, t),

y como por definición de traza se tiene Tr(Dv(Φ(x,t),t)) = div v(Φ(x, t), t), entonces

∂J

∂t
(x, t) = div v(Φ(x, t), t) · J(x, t).

Hemos probado el siguiente resultado (llamado Teorema o ecuación del transporte y
generalmente atribuido a Reynolds (1842–1912).

Para f : Ω× [0, tf ] → IR diferenciable se cumple

d
dt

∫∫∫

R(t)
f dx =

∫∫∫

R

(
Df

dt
+ f div v

)
J dx =

∫∫∫

R(t)

(
Df

dt
+ f div v

)
dx, (8.5)

en donde se han omitido donde están evaluadas las funciones por comodidad.

8.4. La ecuación de continuidad

El teorema del transporte tiene varias consecuencias importantes.
Tomando f = 1 en (8.5) y si denotamos por V (t) el volumen de R(t), entonces V ′(t) =∫∫∫
R J div v dx. Si el fluido ni se expande ni se contrae, se tiene que V ′(t) = 0 para todo R,

es decir, J div v = 0, como J 6= 0, entonces divv = 0.
En ausencia de fuentes o sumideros, la masa del fluido ha de conservarse (la ley de

conservación de la masa). Si ρ(x, t) es la densidad y m(t) es la masa de R(t), entonces
m′(t) = 0 para todo R; y un argumento similar al usado anteriormente muestra

Dρ

dt
+ ρdiv v = 0, (8.6)

que es la ecuación de continuidad2 ya descubierta por Euler en el siglo XVIII3.
Dejamos como ejercicio probar que la ecuación de continuidad se puede escribir como

∂ρ

∂t
+ div(ρv) = 0. (8.7)

Cuando en un material se desplazan cargas eléctricas se crea una corriente eléctrica. Sean
ρ = ρ(x, t) la densidad de carga y v = v(x, t) la velocidad de las cargas. Por convenio
se adopta como sentido de corriente el del movimiento de las cargas positivas. Si ni ρ ni
v dependen del tiempo se dice que la corriente es estacionaria. Se define la densidad
de corriente como J = ρv. Como experimentalmente se ha observado que la carga debe

2Si en la región donde circula el fluido hay un aporte extra (una fuente) o un lugar donde se pierde fluido
(un sumidero) hay que modificar la ecuación (8.6).

3En [63] se puede encontrar una deducción informal de la ecuación de continuidad, aśı como sus aplicaciones.
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conservarse, se postula que la carga total en un sistema aislado permanece constante. Este
principio, gracias a (8.7), se escribe mediante la siguiente ecuación:

∂ρ

∂t
+ div J = 0.

Se deja como ejercicio probar que si S es una superficie cerrada, entonces
∫∫

S JdS = −dQ/dt,
donde Q es la carga total encerrada dentro de S. Se llama intensidad eléctrica que pasa
por una superficie S al escalar I =

∫∫
S JdS.

8.5. La ley de Lorentz y la ley de Biot y Savart

A continuación se estudian la interacción entre cargas eléctricas en movimiento. Estas
relaciones son más complicadas que en el caso del campo eléctrico; ya que este campo es
creado por cargas, que se miden con escalares; y el campo magnético es creado por corrientes
eléctricas, que son medidas por vectores. Por supuesto que no se pretende profundizar en esta
rama de la f́ısica, para más información se pueden consultar, entre otros, [4, 15, 27, 38, 57].
Aclararamos que toda la teoŕıa desarrollada en esta sección trata sólo de campos magnéticos
en el vaćıo y que no cambian con el tiempo.

Cuando una carga está en movimiento, aparece una nueva fuerza (llamada magnética)
que actúa sobre otras cargas en movimiento (part́ıculas de prueba). Debido a una serie de
experimentos se concluyó que la fuerza magnética, denotada en lo sucesivo por Fm, depende
de la carga q y de la velocidad v de la part́ıcula de prueba y cumple

Fm = qv ×B (8.8)

para cierto vector B = B(x, t) que se llama campo magnético y la ecuación (8.8) se llama
la ley de Lorentz. En lo sucesivo se supondrá que ∂B/∂t = 0.

Para enunciar la ley de Biot y Savart es necesario saber integrar un campo vectorial. Sea
F : Ω → IR3, donde Ω es un cerrado y acotado de IR3 y las componentes de F = (P, Q,R)
son integrables en Ω. Se define

∫∫∫

Ω
F(x) dx =

(∫∫∫

Ω
P (x) dx,

∫∫∫

Ω
Q(x) dx,

∫∫∫

Ω
R(x) dx

)
.

Es sencillo probar que v · ∫∫∫
Ω F(x) dx =

∫∫∫
Ω v · F(x) dx para cualquier vector v ∈ IR3

constante. Se puede probar fácilmente
∥∥∥∥
∫∫∫

Ω
F(x) dx

∥∥∥∥ ≤
∫∫∫

Ω
‖F(x)‖dx. (8.9)

La demostración es fácil y la hacemos: sea v =
∫∫∫

Ω F(x) dx. Entonces

‖v‖2 = v ·
∫∫∫

Ω
F(x) dx =

∫∫∫

Ω
v · F(x) dx ≤

∫∫∫

Ω
‖v‖‖F(x)‖dx = ‖v‖

∫∫∫

Ω
‖F(x)‖dx.

La ley de Biot y Savart postula que el campo magnético que crea una corriente con
densidad de carga J que circula en Ω ⊂ IR3 sobre un punto p viene dado por

B(p) =
µ0

4π

∫∫∫

Ω
J(x)× p− x

‖p− x‖3
dx, (8.10)
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donde µ0 es una constante que se llama permeabilidad magnética del vaćıo. Supondremos
Ω es un cerrado y acotado, que las componentes de J tienen gradiente continuo y que J se
anula fuera de Ω y de la superficie frontera de Ω.

En primer lugar debemos ver si esta integral converge, puesto que si p ∈ Ω, entonces el
denominador en (8.10) se hace infinito y puede causar problemas. La demostración se deja
como ejercicio (de hecho, se aplica (8.9) y se procede igual que cuando se probó que la integral
(7.3) converge).

8.6. Propiedades del campo magnético

Una ley básica del electromagnetismo es que la divergencia del campo magnético es nula
en todo punto. Hacemos la siguiente demostración: Sean (p, q, r) las coordenadas del punto
p y (J1, J2, J3) las componentes de J. Entonces

rot
(∫∫∫

Ω

J(x)
‖x− p‖ dx

)
=

(
∂

∂q

∫∫∫

Ω

J3(x) dx
‖x− p‖ −

∂

∂r

∫∫∫

Ω

J2(x) dx
‖x− p‖ , ∗, ∗

)
,

donde el rotacional se toma respecto a las variables (p, q, r) y las componentes marcadas con
asterisco se calculan de forma similar. Ahora supondremos que las derivadas e integrales
pueden intercambiarse (véase [42] para una demostración) y se tiene que

rot
(∫∫∫

Ω

J(x)
‖x− p‖ dx

)
=

(∫∫∫

Ω

(y − q)J3(x)
‖x− p‖3

dx−
∫∫∫

Ω

(z − r)J2(x)
‖x− p‖3

dx, ∗, ∗
)

=
∫∫∫

Ω

1
‖x− p‖3

((y − q)J3(x)− (z − r)J2(x), ∗, ∗) dx

=
∫∫∫

Ω

1
‖x− p‖3

J(x)× (p− x) dx

=
4π

µ0
B(p).

Como B es el rotacional de un campo vectorial diferenciable, entonces divB = 0.
Además hemos obtenido que si definimos

A(p) =
µ0

4π

∫∫∫

Ω

J(x)
‖x− p‖ dx, (8.11)

entonces rotA = B. Este campo A se llama potencial vector. Sin embargo, a diferencia
del potencial eléctrico, este potencial no juega un papel importante, debido sobre todo a dos
razones: es dif́ıcil de calcular y no tiene una interpretación f́ısica sencilla.

Como divB = 0, entonces
∫∫

S BdS = 0, si S es cualquier superficie cerrada. Esta última
integral se llama flujo magnético sobre S y se denota por ΦB. F́ısicamente, decir que el flujo
magnético sobre cualquier superficie cerrada es nulo, se interpreta diciendo que no existen
monopolos magnéticos. Ocurre lo contrario en el caso del campo eléctrico E, este campo
cumple div E = −ρ/ε0, y śı existen cargas eléctricas (positivas y negativas, dependiendo del
signo de ρ). La no existencia de monopolos magnéticos ha sido comprobada en la práctica.

Otra ley básica del electromagnetismo de corrientes estacionarias es rotB = µ0J en los
puntos que no son de la frontera de Ω. Hacemos la siguiente demostración: Se tiene

rotB = rot(rotA) = ∇(div A)−∇2A. (8.12)
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8.6. Propiedades del campo magnético

Sean (A1, A2, A3) las componentes de A y (J1, J2, J3) las de J. Por la definición de A, se
tiene que A1 es el potencial causado por la distribución continua de cargas que ocupa Ω con
densidad de carga µ0ε0J1. Luego A1 cumple la ecuación de Poisson fuera de la frontera de
Ω, es decir ∇2A1 = −µ0J1. Lo mismo es válido para el resto de las componentes. Luego

∇2A = −µ0J. (8.13)

Ahora comprobamos que la divergencia de A es nula: si suponemos que las integrales y
derivadas pueden intercambiarse (véase de nuevo [42]), se cumple que

div A(p) =
∂A1

∂p
+

∂A2

∂q
+

∂A3

∂r

=
µ0

4π

[
∂

∂p

∫∫∫

Ω

J1(x)
‖x− p‖ dx +

∂

∂q

∫∫∫

Ω

J2(x)
‖x− p‖ dx +

∂

∂r

∫∫∫

Ω

J3(x)
‖x− p‖ dx

]

=
µ0

4π

∫∫∫

Ω

J1(x)(x− p) + J2(x)(y − q) + J3(x)(z − r)
‖x− p‖3

dx

=
µ0

4π

∫∫∫

Ω
J(x) ·

(
x− p

‖x− p‖3

)
dx. (8.14)

Ahora consideramos dos casos: cuando p está en el interior de Ω y cuando p /∈ Ω. Si p /∈ Ω,
considerando p fijo y x ∈ Ω variable, como x 6= p y usando que div(fF) = ∇f · F + f div F
para cualquier par de campos escalar f y vectorial F, ambos diferenciables, se tiene

div
(

J(x)
‖x− p‖

)
= J(x) ·

(
x− p

‖x− p‖3

)
+

div J(x)
‖x− p‖ , (8.15)

y como se trata de un campo estacionario, por la ecuación de continuidad de la carga, la
divergencia de J es nula. Y ahora por el teorema de la divergencia, (8.14) y (8.15) se cumple

div A(p) =
∫∫

S

J(x)
‖x− p‖ dS,

donde S es la superficie frontera de Ω. Pero como J se anula en la superficie frontera de Ω,
entonces la divergencia de A se anula fuera de Ω.

Ahora supondremos que p está en el interior de Ω. Podemos encontrar una esfera centrada
en p y de radio ε contenida en Ω. Sea Eε esta esfera y Sε la superficie de esta esfera. Por el
teorema de la divergencia en la región Ω \Eε, se tiene

∫∫∫

Ω
J(x) ·

(
x− p

‖x− p‖3

)
dx

=
∫∫∫

Ω\Eε

J(x) ·
(

x− p
‖x− p‖3

)
dx +

∫∫∫

Eε

J(x) ·
(

x− p
‖x− p‖3

)
dx

= −
∫∫

Sε

J(x)
‖x− p‖ dS +

∫∫∫

Eε

J(x) ·
(

x− p
‖x− p‖3

)
dx. (8.16)

Es fácil probar que si J una cota del campo J, entonces
∣∣∣∣
∫∫

Sε

J(x)
‖x− p‖ dS

∣∣∣∣ ≤ J4πε,

∣∣∣∣
∫∫∫

Eε

J(x) ·
(

x− p
‖x− p‖3

)
dx

∣∣∣∣ ≤ 4πJε.
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8. El campo magnético

Luego, haciendo tender ε a 0 en (8.16), obtenemos que
∫∫∫

Ω
J(x) ·

(
x− p

‖x− p‖3

)
dx = 0.

Por tanto la divergencia de A es nula. De (8.12) y de (8.13), obtenemos rotB = µ0J en los
puntos que no son frontera de Ω. Con lo que la prueba está terminada.

Proponemos los siguientes ejercicios (bajo las hipótesis del teorema anterior):

a) Si C es una curva que no pasa por la frontera de Ω e I es la intensidad que pasa por una
superficie que no corta a la frontera de Ω y cuya frontera es C, entonces

∮
C Bdr = µ0I.

b) Si C es una curva cerrada que encierra a una superficie S, entonces
∮
C Adr = ΦB.

8.7. Las ecuaciones de Maxwell

Estudiamos de manera muy breve e incompleta las famosas ecuaciones de Maxwell que
gobiernan los campos electromagnéticos. Antes de Maxwell se créıa que las fuerzas eléctrica
y magnética eran diferentes. Una de las contribuciones de Maxwell fue la unificación en una
sóla teoŕıa de estas dos fuerzas. Hasta ahora se han encontrado 4 ecuaciones que cumplen el
campo eléctrico E y el campo magnético B: si ρ es la densidad de carga y J es la densidad
de corriente,

div E =
ρ

ε0
, rotE = 0, div B = 0, rotB = µ0J.

Recordamos que estas ecuaciones son válidas sólo si los campos son estacionarios y en el vaćıo.
¿Qué ocurre si los campos cambian con el tiempo? A principios del siglo XIX, experimentos

hechos por Faraday y Henry mostraron que si el campo magnético cambia con el tiempo
entonces aparece una corriente eléctrica. Por lo que la ecuación rotE = 0 debe modificarse.
La ley de Faraday establecida de forma emṕırica, establece que rotE = −∂B/∂t.

Por otra parte, Maxwell observó que la ecuación de continuidad es incompatible con la
ecuación rotB = µ0J; ya que si aplicamos la divergencia a esta última ecuación, obtenemos
que la divergencia de J es nula, lo que es incongruente con la ecuación de continuidad.

La contribución de Maxwell fue modificar la ecuación rotB = µ0J dejando intacta la
ecuación de continuidad. Maxwell supuso rotB = µ0J + C, donde C es un campo vectorial
que de momento no sabemos nada sobre él. Se puede probar fácilmente que divC = µ0∂ρ/∂t.
Ahora, por divE = ρ/ε0 trivialmente se tiene div(C − µ0ε0∂E/∂t) = 0. Maxwell postuló
C = µ0ε0∂E/∂t.

Las cuatro ecuaciones siguientes, conocidas como las ecuaciones de Maxwell. gobiernan
toda la teoŕıa electromagnética.

div E =
ρ

ε0
, rotE = −∂B

∂t
, div B = 0, rotB = µ0J + µ0ε0

∂E
∂t

.

Se debe decir que estas cuatro ecuaciones no son teoremas matemáticos; sino que son leyes
emṕıricas motivadas por la experimentación y que hasta ahora no han contradicho a ningún
experimento realizado.
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Además hay que decir que las ecuaciones de Maxwell se deben modificar ante la presencia
de materia. Esto es debido, de una forma muy rudimentaria, a que el campo magnético y el
eléctrico modifica las propiedades de los cuerpos. Es necesario introducir dos campos más en
las ecuaciones de Maxwell. La relación de estos dos campos con E y con B (que dependen
de cada material) junto con las ecuaciones de Maxwell y la ley de Lorentz, F = q(E+v×B)
que nos da la fuerza, son las ecuaciones básicas de la teoŕıa electromagnética4.

Proponemos los dos siguientes ejercicios :

a) Demuéstrese que las cuatro ecuaciones de Maxwell implican las siguientes expresiones,
supuestos los campos diferenciables tantas veces como sean precisos.

1) Sea S una superficie cerrada que encierra una carga Q

Q

ε0
=

∫∫

S
EdS, 0 =

∫∫

S
BdS,

2) Sea S una superficie cuya frontera es la curva C orientada positivamente
∮

C
Edr = −∂ΦB

∂t
,

∮

C
Bdr = µ0I + µ0ε0

∂

∂t

∫∫

S
EdS,

donde I es la intensidad que atraviesa S y ΦB es el flujo magnético que atraviesa S.

b) En este ejercicio se verá que los campos E y B se trasladan como una onda con velocidad
la de la luz. Pruébese que de las cuatro ecuaciones de Maxwell se deduce que

∇2E = µ0ε0
∂2E
∂t2

+ µ0
∂J
∂t

+
1
ε
∇ρ, ∇2B = µ0ε0

∂2B
∂t2

− µ0 rotJ.

Ayuda: úsese la igualdad ∇2W = ∇(div W) − rot(rotW) siendo W un campo vectorial
suficientemente diferenciable.

En el vaćıo y en ausencia de cargas en movimiento (J = 0) estas dos ecuaciones se reducen a

∇2E = µ0ε0
∂2E
∂t2

, ∇2B = µ0ε0
∂2B
∂t2

. (8.17)

Las ecuaciones (8.17) son las mismas y corresponde a lo que se llama la ecuación de ondas.
Esta ecuación es

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

1
c2

∂2u

∂t2
, (8.18)

donde u(x, y, z, t) es el desplazamiento respecto a la posición de equilibrio de una onda que
se mueve con velocidad c en el punto (x, y, z) y en el tiempo t. Maxwell dedujo que los
campos E y B se comportan como ondas que se mueven con velocidad 1/

√
ε0µ0. Este valor

empiŕıcamente hallado es muy parecido al valor de la velocidad de la luz en el vaćıo, unos
3 · 108 m/s. Maxwell propuso que la luz es de naturaleza electromagnética. Pronto estas
conclusiones teóricas condujeron al descubrimiento de las ondas de radio por Hertz en 1886.

4En los conductores además se tiene la ley (experimental) de Ohm.

189



Contenido del Caṕıtulo 8
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Introducción

Como ya hemos comentado, esta asignatura está dirigida a estudiantes de segundo curso.
El objetivo principal es la presentación de unas herramientas matemáticas de cierto nivel
encaminadas a satisfacer las necesidades matemáticas que el alumno encontrará a lo largo
de la carrera. Puesto que hay una presión considerable debido al tiempo docente disponi-
ble pensamos que es preferible sacrificar las demostraciones no constructivas en aras de la
obtención de la mayor información útil en el tiempo disponible; aunque siempre enunciando
con total precisión y rigor las hipótesis necesarias para la validez del teorema. Los detalles
excesivamente formales, demasiado abstractos y que puedan obscurecer las intuiciones del
alumno se evitan siempre que sea posible.

Hemos distribuido el programa de esta asignatura en seis caṕıtulos:

Caṕıtulo 1 Funciones de variable compleja.

Caṕıtulo 2 Resolución de ecuaciones en derivadas parciales mediante la trans-
formada de Fourier.

Caṕıtulo 3 Resolución de ecuaciones en derivadas parciales mediante la trans-
formada de Laplace.

Caṕıtulo 4 Soluciones de ecuaciones diferenciales de segundo orden mediante
series de potencias.

Caṕıtulo 5 Resolución de ecuaciones en derivadas parciales mediante series de
Fourier.

Caṕıtulo 6 Problemas de Sturm-Liouville y desarrollos en serie de autofuncio-
nes.

Comentamos a continuación, muy brevemente, el desarrollo del programa.
El Caṕıtulo 1 está dedicado al estudio de las funciones de variable compleja. Hemos

optado por un enfoque que permite llegar lo más rápidamente posible al Teorema de los Re-
siduos, resultado fundamental para calcular integrales impropias relacionadas con las trans-
formadas directa e inversa de Fourier y de Laplace, que son herramientas fundamentales en
otras asignaturas de la carrera.

El Caṕıtulo 2 estudia las transformadas de Fourier, de seno de Fourier y la de coseno de
Fourier, aśı como sus propiedades más importantes. Básicamente en este tema nos ocuparemos
en transformar ecuaciones en derivadas parciales en ecuaciones diferenciales ordinarias con el
fin de resolver aquéllas.

193



Introducción al programa de matemáticas

En el Caṕıtulo 3 estudiamos la transformada de Laplace y sus propiedades. Esta trans-
formada tiene la utilidad de transformar ecuaciones en derivadas parciales en ecuaciones dife-
renciales ordinarias y sistemas de ecuaciones diferenciales en sistemas de ecuaciones lineales.
La transformada de Laplace presenta algunas ventajas en relación con las de Fourier, aśı será
aplicable a una clase más amplia de funciones. Una diferencia clara entre las transformadas
de Fourier y la de Laplace es que esta última transformada actúa sobre una variable compleja
y este hecho repercute en que la correspondiente fórmula de inversión se expresa en términos
de cierta integral compleja, en donde se necesitará aplicar las herramientas de la variable
compleja que proporciona el Caṕıtulo 1.

En el Caṕıtulo 4 se resuelven ecuaciones diferenciales de segundo orden mediante series
de potencias. Este estudio permite introducir las funciones de Bessel.

El Caṕıtulo 5 estudia las series de Fourier y sus propiedades. También contiene la
descripción del método de separación de variables, utilizando las series de Fourier, que es
indispensable para el estudio de las ecuaciones de ondas, del calor y la ecuación de Laplace.

El Caṕıtulo 6 comienza con el método de autofunciones, para a continuación desarrollar
un método de resolución para resolver ecuaciones en derivadas parciales no homogéneas.
Un estudio profundo de este método conduce a definir lo que se entiende por un problema
de Sturm-Liouville. Al intentar resolver los problemas de Sturm-Liouville surge de manera
natural una sucesión de funciones ortonormales entre śı, que constituye una generalización
de las series de Fourier. Se estudian las propiedades de estos sistemas de autofunciones y se
aplica este estudio a resolver más ecuaciones en derivadas parciales.

La referencia principal del programa de la asignatura es [40]. Aunque en lo sucesivo men-
cionaremos otras referencias, [40] desarrolla los contenidos de la asignatura convenientemente.
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Índice del programa

Caṕıtulo 1 Funciones de variable compleja.

1.1. Introducción y preliminares.
1.2. Funciones holomorfas.
1.3. Las funciones exponencial, trigonométricas y logaritmo complejos.
1.4. Singularidades aisladas. Series de Laurent. Cálculo de residuos.
1.5. Integración en el plano complejo.
1.6. El Teorema de los Residuos y su aplicación al cálculo de integrales.

Caṕıtulo 2 Resolución de ecuaciones en derivadas parciales mediante la transformada de
Fourier.

2.1. Transformada de Fourier y primeras propiedades.
2.2. Resolución de la ecuación del calor en una varilla infinita.
2.3. Convolución de funciones.
2.4. Transformadas de Fourier en senos y cosenos.

Caṕıtulo 3 Resolución de ecuaciones en derivadas parciales mediante la transformada de
Laplace.

3.1. Primeras propiedades.
3.2. La fórmula de inversión de Laplace.
3.3. Las ecuaciopnes intregrales de Volterra.
3.4. La transformada de Laplace y las ecuaciones en derivadas parciales.

Caṕıtulo 4 Soluciones de ecuaciones diferenciales de segundo orden mediante series de po-
tencias.

4.1. Soluciones mediante series alrededor de un punto regular.
4.2. Soluciones mediante series alrededor de un punto singular-regular.
4.3. Funciones de Bessel.

Caṕıtulo 5 Resolución de ecuaciones en derivadas parciales mediante series de Fourier.

5.1. Primeras propiedades de las series de Fourier.
5.2. Resolución de la ecuación del calor mediante el método de separación de variables.
5.3. Resolución de la ecuación de ondas.
5.4. La ecuación de Laplace para un rectángulo.
5.5. El problema de Dirichlet para un disco.

Caṕıtulo 6 Problemas de Sturm-Liouville y desarrollos en serie de autofunciones.

6.1. Introducción al método de autofunciones.
6.2. Problemas de Sturm-Liouville homogéneos. Autovalores y autofunciones.
6.3. Problemas de Sturm-Liouville no homogéneos.
6.4. Resolución de ecuaciones en derivadas parciales mediante series de autofunciones.

195



Introducción al programa de matemáticas
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1. Funciones de variable compleja

OBJETIVOS:

Estudiar las propiedades de las funciones de una variable compleja, dirigidas al
teorema de los residuos y su aplicación al cálculo de integrales impropias.

Desde el punto de vista técnico, la creación del siglo XIX más importante fue la teoŕıa
de funciones de una variable compleja. Esta nueva rama de las matemáticas dominó el siglo
XIX casi tanto como las expresiones directas del cálculo hab́ıan dominado el siglo XVIII.

Los números complejos surgieron cuando Cardano (1501–1576), al intentar resolver la
ecuación de orden 3, observó que era necesario introducir números cuyos cuadrados fuesen
negativos. A los números que están formados por sumas de aquéllos y reales se les llamó
imaginarios (en contraposición a reales). En su ensayo sobre hidromecánica Ensayo sobre
una nueva teoŕıa de la resistencia de los fluidos (1752), D’Alembert considera el movimiento
de un cuerpo a través de un fluido homogéneo, ideal, carente de peso y en este estudio busca
encontrar dos funciones p y q que satisfacen las ecuaciones de Cauchy-Riemann:

px = qy, qx = −py,

es decir p y q son la parte real e imaginaria de una función compleja. Euler mostró cómo
usar funciones complejas para evaluar integrales reales. En la famosa Théorie analytique des
probabilités (1812) Laplace pasa de integrales reales a complejas tal como lo hizo Euler. La
obra de Euler, D’Alembert y Laplace constituyó un progreso, sin embargo ellos depend́ıan de
la separación de la parte real e imaginaria de f(x + i y) para llevar a cabo su trabajo. La
función compleja no era aún la entidad básica.

El siguiente paso fundamental lo dio Gauss al describir geométricamente un número com-
plejo (aunque hubo unos antecedentes debidos a Argand y a Wessel) y al introducir el término
complejo frente a imaginario. En una carta a Bessel en 1811 pregunta ¿qué se debeŕıa inter-
pretar por

∫
f(x) dx cuando uno de los ĺımites es complejo? Más adelante escribe:

Si los ĺımites son 0 y a+bi , se debeŕıa ir con un paso continuo desde 0 hasta a+bi ,
pero este paso tiene lugar en una curva y es por tanto posible ir sobre muchas
trayectorias. Afirmo ahora que

∫
f(x) dx tiene un valor único aún tomada sobre

varias trayectorias siempre que f(x) tome un único valor y no se haga infinita en
el espacio comprendido entre las dos curvas.

Poisson discutió en un ensayo publicado en 1820 el uso de las integrales de funciones
complejas tomadas sobre trayectorias en el plano complejo. Como ejemplo proporciona

∫ 1

−1

dx

x
.
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Aqúı pone x = ei θ, donde θ va desde (2n + 1)π a 0 y obtiene el valor de −(2n + 1)πi . Más
adelante nota que el valor de la integral no tiene que ser el mismo cuando es tomada sobre
una trayectoria imaginaria o real. Menciona el ejemplo

∫ ∞

−∞

cos(ax)
b2 + x2

dx,

donde a y b son constantes positivas. Hace x = t + i k, con k > 0, y obtiene valores diferentes
según k.

A pesar de que Gauss y Poisson hicieron avances significativos, la teoŕıa de funciones com-
plejas se considera fundada por Cauchy quien desarrolló la teoŕıa hasta dejarla básicamente
tal como la conocemos hoy d́ıa. En un principio desarrolla la derivación compleja para a
continuación demostrar en 1822 de manera rigurosa lo afirmado por Gauss. En 1825 Cauchy
es más claro aún acerca de una idea ya aparecida en 1814 como una nota a pie de página:
Considera

∫
f(z) dz cuando la curva rodea a un punto donde f no es holomorfa y define el

residuo de la función para a continuación, enunciar y demostrar lo que hoy conocemos por el
teorema de los residuos. Cauchy desarrolla todos estos puntos para evaluar integrales reales.
Más tarde, en 1831, enuncia que toda función holomorfa en un punto admite desarrollo de
Taylor alrededor de este punto. En la prueba del teorema, primero demuestra la denominada
fórmula integral de Cauchy. Como consecuencia de esta fórmula también dice que una función
holomorfa es infinitamente diferenciable.

1.1. Introducción y preliminares

Esta sección introduce algunos conceptos que deben ser previos a la teoŕıa de las funciones
de variable compleja. Comenzamos definiendo el valor adherente de una sucesión real y
basándonos en este concepto definimos el ĺımite superior y el inferior. Subrayamos la
doble importancia de estos ĺımites:

• Existencia (si consideramos la recta real ampliada).

• Si ambos ĺımites coinciden, entonces el usual existe y su valor es el mismo.

Suponemos que el alumno está familiarizado con las propiedades básicas de los números
complejos, pese a ello las recordamos: representación geométrica (cartesiana y polar), identi-
ficación con IR2, parte real e imaginaria, conjugación y módulo.

El módulo dota a C de una topoloǵıa que es exactamente la misma que la estudiada
en la asignatura de cálculo infinitesimal. En particular, hablamos de la convergencia en el
plano complejo. Hacemos especial hincapié en la convergencia de series numéricas, que ahora
ampliamos al campo complejo. Demostramos que

• si
∑∞

n=0 zn converge entonces ĺımn→∞ zn = 0.

• si
∑∞

n=0 zn converge absolutamente, entonces
∑∞

n=0 zn converge.

Definimos la convergencia puntual y uniforme de una sucesión de funciones y enunciamos
el criterio de mayoración de Weierstrass y los dos siguientes resultados: Si (fn)∞n=1 : [a, b] → IR
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son continuas y convergen uniformemente en [a, b], entonces ĺımn→∞ fn es continua en [a, b]
y

∫ b
a (ĺımn→∞ fn(x)) dx = ĺımn→∞(

∫ b
a fn(x) dx).

La mayor parte de este caṕıtulo está bien tratada en [3], debiendo señalarse que, al ser
éste un texto de variable real, se debe de tener cuidado en los enunciados de los teoremas,
pero éstos se pueden adaptar perfectamente al caso complejo. Otro libro interesante es [65],
que tiene dos caṕıtulos dedicados a las funciones de variable compleja, pese a ser otro texto
de variable real.

1.2. Funciones holomorfas

Estamos interesados en definir el concepto de función holomorfa, que corresponde a la idea
análoga de función diferenciable. Recuérdese que como podemos dividir números complejos,
el cociente diferencial de una función de valores complejos tiene sentido, lo que no ocurre con
las funciones de varias variables. Como el concepto que intentamos definir es de ı́ndole local,
definimos los discos, abiertos y cerrados en el plano complejo.

Hacemos la siguiente definición. Una función f es holomorfa en un punto z0 si existe

ĺım
z→z0

f(z)− f(z0)
z − z0

.

Este ĺımite, cuando existe, lo denotamos f ′(z0).
A continuación enunciamos las propiedades inmediatas de las funciones holomorfas:

• Si f es holomorfa en z0, entonces f es continua en z0.

• Si f , g son holomorfas en z0 y λ, µ ∈ C, entonces λf + µg es holomorfa en z0 y
(λf + µg)′(z0) = λf ′(z0) + µg′(z0).

• Si f , g son holomorfas en z0, entonces fg es holomorfa en z0 y (fg)′(z0) = f ′(z0)g(z0)+
f(z0)g′(z0).

• Si f , g son holomorfas en z0 y g(z0) 6= 0, entonces f/g es holomorfa en z0 y
(

f

g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)
g(z0)2

.

• Si f es holomorfa en z0 y g es holomorfa en f(z0), entonces g ◦ f es holomorfa en z0 y
(g ◦ f)′(z0) = g′(f(z0))f ′(z0).

Decimos que las demostraciones de estas propiedades se pueden encontrar en cualquier
texto de cálculo de una variable real.

Sin embargo es conveniente recalcar que las funciones holomorfas no son las mismas que
las funciones diferenciables en IR2. Presentamos el siguiente ejemplo fácil de desarrollar: la
conjugación compleja. Si identificamos x + i y con (x, y), este ejemplo proporciona

f : C→ C, f(z) = z,

f : IR2 → IR2, f(x, y) = (x,−y).
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1. Funciones de variable compleja

Es claro que la función considerada de IR2 a IR2 es diferenciable; pero es fácil probar que no es
holomorfa. Éste es un buen momento para introducir las ecuaciones de Cauchy-Riemann:
Sean f : Ω → C, donde Ω es un abierto de C y z = x + i y ∈ Ω. Entonces las dos siguientes
afirmaciones equivalen:

a) f es holomorfa en z.

b) El campo vectorial (Ref, Imf) es diferenciable en (x, y) y

∂(Ref)
∂x

=
∂(Imf)

∂y
,

∂(Ref)
∂y

= −∂(Imf)
∂x

.

En este caso se tiene
f ′(z) =

∂(Ref)
∂x

(x, y) + i
∂(Imf)

∂y
(x, y).

Sólo demostramos la implicación a) ⇒ b). Dos consecuencias triviales son: la parte real e
imaginaria de una función holomorfa son armónicas y que si f toma valores reales y Ω es
conexo, entonces f es constante.

De momento sólo disponemos como ejemplos de funciones holomorfas los polinomios y las
funciones racionales. ¿De dónde provienen más ejemplos? La respuesta es de las series de
potencias.

En un primer lugar enunciamos (sin demostrar) la fórmula de Cauchy-Hadamard, que
demuestra que las series de potencias convergen en discos abiertos y permite calcular el radio
de éstos. Lo que ocurre sobre la frontera del disco de convergencia es una cuestión mucho más
delicada. No entramos a considerar esta relación, sino que nos limitamos a dar los ejemplos

∞∑

n=0

zn,
∞∑

n=0

zn

n
,

∞∑

n=0

zn

n2
.

A continuación señalamos (pero no demostramos) las relaciones fundamentales entre las fun-
ciones holomorfas y las series de potencias:

• Una serie de potencias es una función holomorfa en su disco de convergencia y se puede
derivar término a término. Como consecuencia una serie de potencias es una función
infinitamente derivable en el disco de convergencia.

• Una función holomorfa en un punto admite un desarrollo en serie de potencias alrededor
de este punto. Como consecuencia, las funciones holomorfas son infinitamente derivables
en un punto.

• El desarrollo en serie de potencias es único y coincide con el desarrollo en serie de Taylor.

Creemos conveniente explicar los dos ejemplos siguientes en los cuales la variable compleja
puede ayudar a comprender mejor el comportamiento de las funciones reales:

La serie de Taylor de ex es tan satisfactoria como se quiera; converge para todo IR y
se puede derivar término a término. Pero la serie de Taylor de f(x) = 1/(1 + x2) es más
dif́ıcil de entender, función infinitamente derivable y acotada. La serie de Taylor de f es
1− x2 + x4 − x6 + · · · . Si |x| ≥ 1 la serie de Taylor no converge. ¿Por qué? La respuesta nos

200



1.3. La exponencial y el logaritmo complejo

viene encima si consideramos la función compleja f(z) = 1/(1 + z2). Su serie de Taylor es la
misma (cambiando x por z), su radio de convergencia es 1. No es accidental que este disco
no contenga los puntos i ,−i , en los cuales f no está definida. Si la serie de Taylor tuviera
radio de convergencia mayor que 1, la función que define, seŕıa continua en todo este disco,
en particular en i y en −i , lo cual es imposible.

El uso de los números complejos también arroja alguna luz sobre el extraño comporta-
miento de la función real

f(x) = exp
(
− 1

x2

)
.

Para que f sea continua en 0 definimos f(0) = 0. Aunque no hemos definido aún la exponen-
cial compleja, es de esperar que se cumpla si y es real y distinto de 0, entonces

f(i y) = exp
(
− 1

(i y)2

)
= exp

(
1
y2

)
.

El hecho interesante de esta expresión es que se hace infinitamente grande cuando y se hace
pequeño. Aśı, f no será ni siquiera continua en 0, cuando se defina la exponencial para
números complejos, luego no debe sorprender que la serie de Taylor de f sólo converja en 0.

También creemos conveniente, para destacar que las propiedades de la variable real no
tienen por qué cumplirse en la variable compleja, enunciar (sin demostrar) el teorema de Liou-
ville: Las únicas funciones holomorfas acotadas en todo el plano complejo son las constantes.

Este apartado acaba enunciando el siguiente teorema: Si (fn)∞n=1 son funciones holomorfas
definidas en un abierto Ω de C y para todo conjunto cerrado y acotado ∆ ⊂ Ω la sucesión
(fn)∞n=1 converge uniformemente en ∆, entonces la función ĺımite f es holomorfa en Ω y
(f ′n)∞n=1 converge a f ′.

No demostramos este resultado (es consecuencia del teorema de Morera). Tres libros útiles
para completar la bibliograf́ıa son [14, 19, 39].

1.3. La exponencial y el logaritmo complejo

Definimos las funciones exponenciales, trigonométricas y logaritmo complejos pues necesi-
taremos integrar funciones sobre curvas en C que no tienen por qué yacer en IR; pero interesa
que coincidan con las funciones reales respectivas cuando se evalúan en IR.

Definimos la función exponencial como

exp(z) =
∞∑

n=0

zn

n!
.

Se pueden comprobar fácilmente las siguientes propiedades (se pueden poner como ejercicios):

a) exp(z) está definida para todo z ∈ C.

b) exp es derivable en todo C y exp′(z) = exp(z).

c) exp(z) exp(w) = exp(z + w) para todos z, w ∈ C.

d) exp(z)−1 = exp(−z) para todo z ∈ C.

201



1. Funciones de variable compleja

e) exp(a + i b) = ea(cos b + i sen b) para todos a, b ∈ IR (de aqúı se deduce | exp(z)| = eRe(z)).

f) exp(z) = 1 si y sólo si z = 2kπi , para k entero.

A continuación definimos las funciones trigonométricas complejas. Para hacer más
intuitiva la definición y fácil su manejo (se pueden definir como series de potencias, pero
esto complica la demostración de sus propiedades), observamos que si en la penúltima de las
propiedades de la exponencial, hallamos exp(i b), exp(−i b), para b real tenemos

cos b =
ei b + e−i b

2
; sen b =

ei b − e−i b

2i
.

Estas dos fórmulas se pueden extender al plano complejo y definimos para z ∈ C,

cos z =
ei z + e−i z

2
; sen b =

ei z − e−i z

2i
. (1.1)

Se enuncia que cos y sen son holomorfas en C (la demostración es trivial por (1.1)) y se
hallan sus series de potencias. Vemos que las funciones trigonométricas no están acotadas en
C (a diferencia de lo que pasa en IR). Este hecho se puede deducir del teorema de Liouville
o directamente desarrollando las expresiones sen(ix), cos(ix) para x ∈ IR. Es preferible, a
nuestro juicio, esto último pues el alumno ve más claramente el hecho utilizando herramientas
sencillas sin recurrir a teoremas poderosos.

Motivados por las definiciones en IR de las funciones trigonométricas hiperbólicas, se
definen las funciones trigonométricas hiperbólicas complejas.

La siguiente función que definimos es el logaritmo complejo. Su definición es un poco
artificial y hemos de introducir previamente la definición de la función argumento complejo.
Para hacerla más natural introducimos el siguiente razonamiento no riguroso: Si w = log(z)
entonces ew = z. Si tomamos módulos, eRe(w) = |z|, es decir, Re(w) = log |z|. Por otra parte,
como z = eRe(w)ei Im(w), conseguimos ei Im(w) = z/|z|. En resumen, si queremos que w sea un
logaritmo razonable de z estamos obligados a

Re(w) = log |z|; exp(i Im(w)) =
z

|z| .

Hacemos reflexionar al alumno que con la parte real no hay ningún problema; sin embargo
explicamos la idea geométrica de z/|z| y lo que debe cumplir la parte imaginaria de w. Estas
consideraciones nos llevan a definir de manera rigurosa un argumento de un número complejo
z 6= 0 como un número real α tal que

ei α =
z

|z| .

Señalamos que un número complejo tiene infinitos argumentos; pero éstos distan como mı́nimo
2π. Por lo que podemos definir el argumento principal de z 6= 0 (denotado Arg(z)) como
el argumento de z que está en ]− π, π] y el argumento sub-pi (denotado Argπ(z)) como el
argumento de z que está en ]0, 2π]. Explicamos la principal dificultad de los argumentos: no
son continuos, expĺıcitamente Arg sólo es continuo en C\]−∞, 0] y Argπ sólo es continuo en
C \ [0,+∞[.
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Ahora la tarea de definir el logaritmo complejo es fácil. Surge una dificultad que tene-
mos que ser capaces de que el alumno la entienda, como hemos obtenido diferentes tipos de
argumentos de números complejos, obtenemos diferentes tipos de logaritmos:

log(z) = log |z|+ i Arg(z) ; Logaritmo principal,
logπ(z) = log |z|+ i Argπ(z) ; Logaritmo sub-pi.

Señalamos que los logaritmos son holomorfos donde sus respectivos argumentos son conti-
nuos y su derivada es 1/z. Además, si |z| < 1 entonces log(1+z) = z−z2/2+z3/3−z4/4+· · · .
Es importante explicar que la propiedad

log(zw) = log(z) + log(w)

sólo es cierta si Arg(z) + Arg(w) ∈]− π, π]. Análogamente para logπ.
Una aplicación directa de los logaritmos complejos es evaluar zα para z ∈ C\{0} y α /∈ Z.

Esta aplicación la dejamos para más tarde al evaluar integrales de funciones irracionales
porque introducirla ahora es bastante artificial; pese a que el lugar apropiado desde el punto
de vista lógico seŕıa ahora.

Como bibliograf́ıa aparte de [40] son útiles [39, 69].

1.4. Integración en el plano complejo

En esta sección introducimos y desarrollamos el concepto de integral de una función com-
pleja sobre una curva, que es la base del teorema de los residuos. Al principio definimos lo
que son los caminos (diferenciables a trozos) y circuitos. Como ejemplos damos los seg-
mentos y las circunferencias. También definimos el camino opuesto y la yuxtaposición
de caminos.

Decimos que una función f : [a, b] → C es integrable en [a, b] si la parte real e imaginaria
de f son integrables en [a, b]. En este caso, definimos la integral de f : [a, b] → C como

∫ b

a
f(t) dt =

∫ b

a
Re(f(t)) dt + i

∫ b

a
Im(f(t)) dt.

Enunciamos sin demostrar que si f, |f | : [a, b] → C son integrables, entonces
∣∣∣
∫ b
a f(t) dt

∣∣∣ ≤
∫ b
a |f(t)| dt.

A continuación definimos la integral sobre un camino en el plano complejo. Si γ : [a, b] → C
es un camino y f : γ([a, b]) → C es continua, definimos la integral de f sobre γ como

∫

γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt.

Establecemos las propiedades inmediatas de la integración compleja, todas de muy fácil de-
mostración. Nos detenemos un poco más en la siguiente:

∣∣∣∣
∫

γ
f(z) dz

∣∣∣∣ ≤ L(γ) sup{|f(z)| : z ∈ γ([a, b])},
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siendo L(γ) =
∫ b
a |γ′(t)| dt la longitud de la curva γ. Señalamos que

∣∣∣
∫
γ f(z) dz

∣∣∣ ≤∫
γ |f(z)| dz no tiene ni siquiera sentido en C, puesto que el miembro derecho es un número

complejo y C no tiene orden.
También enunciamos el teorema integral de Cauchy. Si f : Ω → C es holomorfa, en

donde Ω es un abierto simplemente conexo, entonces
∫
γ f(z) dz = 0 para cualquier circuito γ

contenido en Ω. La demostración es muy fácil (la hacemos en clase) si se usan las ecuaciones
de Cauchy-Riemann y el teorema de Green.

Terminamos la sección enunciando los siguientes lemas que se usarán en lo que sigue.

a) Sea S = {rei t : 0 ≤ α ≤ t ≤ β ≤ π, r > 0} un sector, f : S → C continua tal que
|f(z)| → 0 cuando |z| → 0 y sean γR(t) = Rei t, t ∈ [α, β], m > 0. Entonces

ĺım
R→∞

∫

γR

f(z)ei mz dz = 0.

b) Existe un lema análogo cuando S es un sector contenido en el semiplano Imz ≤ 0 y m < 0.

c) Sea f una función continua en el sector 0 < |z − a| < r, 0 < argπ(z − a) ≤ α, (donde
0 ≤ α ≤ 2π) y supongamos que (z − a)f(z) → A cuando z → a. Si γε es el arco de
circunferencia |z − a| = ε contenido en el sector dado y recorrido en sentido positivo,
entonces

ĺım
ε→0

∫

γε

f(z) dz = i Aα.

d) Si f es continua en el recinto |z| > R0, 0 ≤ Argπ(z) ≤ α (0 < α ≤ 2π) y si |zf(z)| → 0
cuando |z| → ∞, entonces si γR es un arco de circunferencia de |z| = R contenido en el
recinto dado se verifica

ĺım
R→0

∫

γR

f(z) dz = 0.

Es fundamental demostrar estos lemas para que el alumno se vaya familiarizando con este
tipo de técnicas. En este momento no presentamos ningún ejemplo porque creemos mucho
más oportuno esperar al teorema de los residuos.

1.5. Singularidades aisladas, series de Laurent y cálculo de
residuos

La integración de funciones complejas sobre un circuito depende, como ya intuyó Gauss,
fundamentalmente de los puntos situados en el interior de la región limitada por el circuito y
en los cuales la función no es holomorfa. Este hecho se precisará más adelante, en donde se
discutirá el significado de los puntos donde la función que hay que integrar no es holomorfa.

Definimos lo que es una singularidad aislada, dando ejemplos. Para aclarar la situación
expresamos claramente que las funciones logaritmo no poseen una singularidad aislada donde
no son holomorfas. Este ejemplo del logaritmo pretende hacer ver al alumno que no es lo
mismo “no holomorf́ıa”que singularidad aislada. Es más, un punto de singularidad aislada
puede ser de holomorf́ıa, damos el ejemplo de f(z) = sen z/z en el origen.
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A continuación enunciamos el teorema del desarrollo en serie de Laurent, que permite
clasificar las singularidades aisladas. Sea Ω un abierto de C y sea z0 ∈ Ω. Entonces si
f : Ω \ {z0} → C es holomorfa, existe r > 0 tal que

f(z) =
∞∑

n=−∞
an(z − z0)n, (1.2)

para todo z tal que 0 < |z − z0| < r, donde

an =
1

2πi

∫

γ

f(z)
(z − z0)n+1

dz, n ∈ IN,

y γ es cualquier circunferencia centrada en z0 de radio menor que r y orientada positivamente.
Por motivos de tiempo omitimos la demostración de este teorema (se puede encontrar en

[19]). La convergencia de (1.2) es sobre los cerrados y acotados de {z ∈ C : 0 < |z − z0| < r}.
No damos ejemplos de calcular los coeficientes del desarrollo de Laurent, debido a que sólo el
coeficiente de 1/(z − z0) es el que interesa.

En base al desarrollo de Laurent clasificamos las singularidades aisladas: evitables, polos
de orden k y singularidades esenciales.

El concepto más importante de la sección es el de residuo de una función en un punto
z0: es el coeficiente de 1/(z − z0) en (1.2), denotado por Res(f, z0).

Debido a que saber hallar el residuo es fundamental para el cálculo de integrales, hecho que
es preciso comentar a los alumnos, se da a continuación un fórmula para calcular el residuo
de las funciones de la forma f/g y que la singularidad anula a f y a g. Proporcionamos un
método que dividimos en dos partes:

1. Averiguar el orden del polo mediante el siguiente teorema (que śı probamos): Sea z0

una singularidad aislada de h = f/g, donde f y g son holomorfas en z0. El valor z0 es
una ráız de orden k de f y una ráız de orden k′ de g. Entonces si

• k ≥ k′, entonces z0 es una singularidad evitable de h.

• k < k′, entonces z0 es un polo de orden k′ − k de h.

2. Si z0 es un polo de orden k de h, entonces se puede hallar el residuo de z0 mediante la
fórmula:

Res(f, z0) =
1

(k − 1)!
ĺım

z→z0

(
dk−1

dzk−1
[f(z)(z − z0)k]

)
.

Hacemos un par de ejemplos sencillos.

1.6. El Teorema de los Residuos

Ésta es la sección más importante del caṕıtulo en donde establecemos el teorema de
los residuos y aplicamos este teorema para calcular algunas integrales reales. Presentamos
ejemplos del uso de los lemas vistos antes.

Motivamos el caso más simple del teorema de los residuos con la siguiente discusión: Sea
Ω un abierto de C, z0 ∈ Ω y f : Ω \ {z0} → C holomorfa. Sea γ un circuito simple (que no se
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1. Funciones de variable compleja

autointersecta) contenido en Ω \ {z0} que rodea a z0 recorrido en sentido positivo. En primer
lugar demostramos (de un modo bastante informal) que si γε es la circunferencia de radio ε
centrada en z0 entonces

∫
γ f(z) dz =

∫
γε

f(z) dz (véase la figura 1.1).

b z0

γε

γ

b

Figura 1.1.: Para demostrar que
∫
γ f(z) dz =

∫
γε

f(z) dz se considera el camino de la derecha
y se hace tender el ángulo de la “abertura” a cero.

Ahora podemos usar el teorema del desarrollo de Laurent e intercambiar el sumatorio por
la integral para obtener

∫

γε

f(z) dz =
∞∑

n=−∞
an

∫

γε

(z − z0)n dz = i
∞∑

n=−∞
anεn+1

∫ 2π

0
ei (n+1)θ dθ. (1.3)

Ahora es trivial deducir
∫
γ f(z) dz = 2πi a−1. Puede parecer sorprendente que sólo el término

a−1 contribuya al valor
∫
γ f(z) dz. Sin embargo, esto debe ser evidente, ya que el valor de ε

es indiferente (se puede tomar cualquier circunferencia centrada en z0 contenida en Ω) y en
(1.3), cada sumando del lado derecho es proporcional a εn+1. Podemos esperar que sólo los
términos que no dependan de ε deben de contribuir al valor de

∫
γ f(z) dz. Esto sólo ocurre

cuando n + 1 = 0.
Ahora que hemos motivado el caso más simple del teorema de los residuos. Enunciamos

este teorema como sigue: Sean Ω un abierto simplemente conexo y z1, . . . , zn ∈ Ω. Si f :
Ω \ {z1, . . . , zn} → C es holomorfa y si γ es un circuito simple orientado positivamente
contenido en Ω y que no pasa por ninguna de las singularidades, entonces se tiene

∫

γ
f(z) dz = 2πi

n∑

k=1

Res(f, zk)

Este teorema es el resultado más importante del caṕıtulo e intentamos hacer comprender
su utilidad mediante ejemplos de integrales reales.

1. Si 0 < a y 0 < b, hállese
∫ +∞
0

x sen ax
x2+b2

dx.

Presentamos este ejemplo por varias razones. El circuito es el más simple posible (véase
la figura 1.2, izquierda). Si probamos con el candidato natural f(z) = z sen(az)/(z2+b2),
no podemos aplicar ninguno de los lemas vistos. Debemos modificar la función: f(z) =
z exp(az)/(z2 + b2). Por último la aplicación de los lemas previos es sencilla.
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2. Calcúlese
∫∞
0

sen x
x dx.

Si tomamos la función natural f(z) = sen z/z no podemos aplicar ninguno de los lemas
previos. Por lo que hay que tomar una parecida: f(z) = exp(i z)/z. El origen es
una singularidad aislada de f , por lo que hay que evitar el origen (véase la figura 1.2
derecha). Este ejemplo muestra el uso del lema para arcos pequeños.

b i b

−R R −R R−ε ε

Figura 1.2.: Los circuitos de los ejemplos 1 y 2.

3. Hállese
∫∞
0 exp(−t2) cos(2bt) dt para 0 < b, si se sabe previamente que

∫∞
0 exp(−t2) dt =√

π.

Este ejemplo muestra el uso de arcos rectangulares (véase la figura 1.3 izquierda). Nor-
malmente las integrales sobre los arcos verticales (de longitud fija) tienden a 0, mientras
que las integrales sobre los tramos horizontales tienden al valor deseado. Es conveniente
recordar el teorema integral de Cauchy.

4. Calcúlese
∫∞
0

sen(bx)
sh x dx para 0 < b.

En este ejemplo tenemos otra vez un circuito rectangular, con dos caracteŕısticas inte-
resantes: hemos de evitar que el circuito pase por singularidades y el tramo horizontal
superior se elige porque la función sh es 2πi -periódica.

b
i b

−R R

b

−R R−ε ε

2πi

Figura 1.3.: Los circuitos de los ejemplos 3 y 4.

5. Calcúlese
∫∞
0

dx√
x(1+x)2

.

Este ejemplo es conveniente por varias razones. En primer lugar aparece una ráız
cuadrada. Hemos de recordar que esta función no es univalorada. Insistimos que zα

debe ser evaluado por medio de exp(α log(z)), y según el logaritmo que elijamos aparece
una ráız u otra.

Otra caracteŕıstica importante del problema es que los puntos donde la función log
no es holomorfa no son singularidades aisladas, por eso el circuito (véase la figura 1.4
izquierda) evita a la semirrecta [0,+∞[.
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1. Funciones de variable compleja

6. Sean f una función holomorfa en C \ {z1, . . . , zn}, Re(zj) < a y a > 0 tales que existen
constantes M, b, c > 0 cumpliendo |f(z)| < M/|z|c cuando |z| > b. Pruébese que para
t > 0

V.P.

∫ a+i∞

a−i∞
eztf(z) dz = ĺım

R→∞

∫ a+i R

a−i R
eztf(z) dz = 2πi

n∑

j=1

Res(eztf(z), zj).

Este ejemplo es interesante pues la conclusión difiere a lo realizado hasta ahora y pro-
porciona un resultado útil para la transformada de Laplace.

d
¡

¡¡

@
@@

−R −1
d

dεei α

dRei α

dRei (2π−α)

da + i R

da− i R

Figura 1.4.: Los circuitos de los ejemplos 5 y 6.

Recomendamos como bibliograf́ıa del tema sobre todo [40]. Para profundizar más aspectos
colaterales proponemos [14, 39]. Para problemas podemos destacar [69] y para afianzar más
los conceptos vistos en cursos previos [3, 65].
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1. Introducción y preliminares.

• Conceptos previos: Valor adherente, ĺımites superior e inferior. Topoloǵıa en C.

• Convergencia uniforme. Criterio de mayoración de Weierstrass.

2. Funciones holomorfas.

• Definición de función holomorfa. Propiedades elementales de las funciones holo-
morfas.

• La propiedad de holomorf́ıa en C no equivale a la diferenciabilidad en IR2. Ecua-
ciones de Cauchy-Riemann.

• Fórmula de Cauchy-Hadamard. Propiedades de las funciones holomorfas y de las
series de potencias.

• Teoremas de Liouville y de Weierstrass.

3. Las funciones exponencial, trigonométricas y logaritmo complejos.

• Función exponencial. Propiedades.

• Funciones trigonométricas. Propiedades. Funciones trigonométricas hiperbólicas.

• Argumento complejo (principal, sub-pi).

• Logaritmo complejo (principal, sub-pi). Propiedades.

4. Singularidades aisladas. Series de Laurent. Cálculo de residuos.

• Singularidades aisladas. Ejemplos.

• Teorema del desarrollo en serie de Laurent. Clasificación de las singularidades.

• Residuos. Cálculo práctico del residuo.

5. Integración en el plano complejo.

• Definición de caminos y circuitos. Integración compleja. Propiedades.

• Lemas de la integración compleja.

6. El Teorema de los Residuos y su aplicación al cálculo de integrales.

• Teorema de los Residuos.

• Ejemplos de integrales reales resueltas por medio del teorema de los residuos.
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2. La transformada de Fourier

OBJETIVOS:

Estudiar las propiedades más importantes de las transformadas de Fourier dirigi-
das a la resolución de ecuaciones en derivadas parciales.

Pese al éxito e impacto de las series de Fourier1 como soluciones de ecuaciones en deri-
vadas parciales, uno de los mayores problemas del siglo XIX fue hallar soluciones de estas
ecuaciones en forma expĺıcita, esto es, en términos de las funciones elementales e integrales
de las funciones que aparecen como datos en tales ecuaciones.

El método más significativo para resolver ecuaciones en derivadas parciales en forma
expĺıcita fue el de la integral de Fourier. La idea se debe a Fourier, Cauchy y Poisson. Es
imposible asignar prioridad a este descubrimiento, pues todos presentaron ensayos orales en
la Academia de Ciencias en Paŕıs que no fueron publicados sino hasta algún tiempo después.
Pero cada uno escuchó los ensayos de los otros, y resulta imposible aseverar, a partir de las
publicaciones, lo que cada uno de ellos tomó de las versiones orales de los restantes. La idea
inicial fue tomar la serie de Fourier de una función 2p-periódica y hacer tender p a ∞. Los tres
matemáticos mencionados no se preocuparon de pasos hoy en d́ıa discutibles (intercambio de
ĺımites, de sumatorios por integrales,...).

2.1. Transformada de Fourier y primeras propiedades

Definimos lo que es una función absolutamente integrable, ya que sólo a estas funciones
se les puede aplicar la transformada de Fourier. Ahora definimos la transformada de
Fourier de una función f : IR → IR absolutamente integrable como una función F[f ] de
variable real ω, dada por

F[f ](ω) =
1√
2π

∫ ∞

−∞
f(x)e−i ωx dx.

Observamos que la definición está bien hecha (la integral converge) debido a que f es abso-
lutamente integrable. Como ejemplos calculamos las transformadas de e−|x|, e−x2

, χ[−1,1]. El
segundo ejemplo muestra la necesidad de utilizar circuitos de variable compleja.

Enunciamos las siguientes propiedades de la transformada de Fourier:

a) Linealidad.

1Históricamente las series de Fourier aparecieron antes que la transformada de Fourier.
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2. La transformada de Fourier

b) Si f y f ′ son absolutamente integrables, entonces

F[f ′](ω) = iωF[f ](ω).

c) Si f , f ′ y f ′′ son absolutamente integrables, entonces

F[f ′′](ω) = −ω2F[f ](ω).

d) Si f (k) son absolutamente integrables para k = 0, 1, . . . , n, entonces

F[f (n)](ω) = (iω)nF[f ](ω).

e) Si f es absolutamente integrable y si definimos g(x) = f(ax) para a > 0, entonces

F[g](ω) =
1
a
F[f ](

ω

a
).

f) Si f es absolutamente integrable y si definimos g(x) = f(x− a) para a ∈ IR, entonces

F[g](ω) = F[f ](ω)e−i aω.

Estas propiedades son de fácil demostración. De una manera bastante imprecisa, decimos que
de la propiedad d) se deduce que cuantos más grados de derivabilidad posea una función, su
transformada tiende más rápidamente a 0 cuando ω tiende a infinito.

También decimos que si f es absolutamente integrable entonces ĺımω→±∞ F[f ](ω) = 0 (no
lo demostramos aunque se deduce del lema de Riemann-Lebesgue) y que F[f ] es continua (de
hecho es uniformemente continua).

Explicamos la necesidad de acudir a tablas de integrales que permiten hallar transforma-
das y antitransformadas de funciones parecidas que aparecen en dichas tablas (aconsejamos
[23, 29]). Aplicamos estas propiedades para resolver los siguientes problemas sencillos sin
necesidad de calcular integrales.

a) Hallar la transformada de f(x) = exp(−ax2) para a > 0.

b) Hallar la antitransformada de F (ω) = exp(−ω2).

Una utilidad de la transformada de Fourier es convertir un problema complicado en otro
más simple. Es importante notar que una vez resuelto el problema más sencillo hay que
obtener la solución del problema original. Esto se logra mediante la transformación inversa.

Señalamos que la transformada de Fourier de dos funciones que difieren en un número
finito de puntos coinciden. Esto explica claramente que no se puede definir F−1 de una
manera puramente formal. Otra dificultad es que aunque f sea absolutamente integrable,
es posible que F[f ] no lo sea, por ejemplo la función χ[−1,1] claramente es absolutamente

integrable y sin embargo se puede probar (no lo hacemos) que F[χ[−1,1]](ω) =
√

2
π

sen ω
ω no es

absolutamente integrable.
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2.2. Resolución de la ecuación del calor en una varilla infinita

Enunciamos la fórmula de inversión de Fourier2: Sea f : IR → IR absolutamente
integrable tal que f ′ es continua a trozos, entonces para todo x ∈ IR se cumple

f(x + 0) + f(x− 0)
2

=
1√
2π

V.P.

∫ ∞

−∞
F[f ](ω)ei ωx dω.

Señalamos dos hechos que suelen aparecer en la práctica: Si f es continua en x, entonces
el miembro izquierdo se reduce a f(x). Si F[f ] es absolutamente integrable en IR, entonces se
puede suprimir el śımbolo de valor principal.

Hemos seguido [40], pero también se pueden consultar [20, 72].

2.2. Resolución de la ecuación del calor en una varilla infinita

Sea u(x, t) la temperatura de una varilla infinita en el punto x y en el tiempo t. Supon-
dremos que la temperatura inicial de la varilla es f(x) = exp(−x2). La ecuación del calor se
puede modelar por medio del problema

α2uxx = ut, −∞ < x < ∞, t > 0,
u(x, 0) = exp(−x2), −∞ < x < ∞.

Más adelante se resolverá el caso general donde exp(−x2) se reemplaza por una función
absolutamente integrable f(x).

Se fija una variable (en este caso t) y se considera la otra variable activa. La variable
activa tiene que estar en todo IR pues si no, no tendŕıa sentido la transformada de u(x, t). La
función exp(−x2) tiene que ser absolutamente integrable, ya que si no, no se le podŕıa aplicar
la transformada de Fourier. Mediante este ejemplo se explica el método usual: Supongamos
que para cada t > 0 fijo la función x 7→ u(x, t) es absolutamente integrable y sea U(t)(ω) =
F[u(·, t)](ω).

1. Transformar todos los miembros del problema original para obtener un problema de
valor inicial. En este caso, tras aplicar de modo informal la regla de Leibniz para
integrales impropias3.

−α2ω2U(t)(ω) =
d
dt

[U(t)(w)], t > 0,

U(0)(ω) = 1√
2
exp(−ω2/4).

2. Resolver el problema de valor inicial. Obtenemos en este ejemplo

U(t)(ω) =
1√
2
e−tα2ω2

e−ω2/4.

2En realidad se puede enunciar bajo condiciones más débiles (la condición de Jordan o la de Dini), pero tal
como se enuncia es suficiente para las aplicaciones de este curso.

3Sea f : [a, +∞[×[c, d] → IR. Si
R∞

a
f(x, y) dx converge puntualmente en ]c, d[ y si

R∞
a

fy(x, y) dx converge
uniformemente en ]c, d[ entonces se cumple

d

dy

�Z ∞

a

f(x, y) dx

�
=

Z ∞

a

fy(x, y) dx

para cada y ∈]c, d[.
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2. La transformada de Fourier

3. Antitransformar la solución del problema fácil mediante la fórmula de inversión o el uso
de tablas. En ese caso, aplicamos la fórmula de inversión y puesto que u es derivable,

u(x, t) =
1√
2π

∫ ∞

−∞
U(t)(ω)ei ωx dω =

1√
2π

∫ ∞

−∞

1√
2
eω2(α2t+1/4)ei ωx dω.

Observamos que la variable que conviene tomar (si fuera posible) como activa es aquélla
que aparece con un orden de derivación parcial mayor, ya que de este modo la ecuación
diferencial ordinaria transformada es de orden menor.

Hemos de indicar que lo que estamos hallando son las soluciones absolutamente integrables
del problema. Como ejemplo muy sencillo presentamos el siguiente: Si resolvemos f ′ = f
mediante la transformada de Fourier obtenemos f = 0, lo que no es extraño, pues la única
solución absolutamente integrable de f ′ = f es f = 0.

2.3. Convolución de funciones

Definimos la convolución de dos funciones f y g absolutamente integrables como la
función representada por f ∗ g : IR → IR dada por

(f ∗ g)(x) =
1√
2π

∫ ∞

−∞
f(t)g(x− t) dt,

si esta integral existe. Se pueden imponer varias condiciones sobre f y g para que f ∗ g
exista. Si alguna de las dos condiciones siguientes se cumple, entonces demostramos que la
convolución está bien definida:

a) f ó g están acotadas en IR.

b) |f |2 y |g|2 son absolutamente integrables en IR.

La demostración de a) es fácil y se deja como ejercicio. Es interesante hacer la de b) pues se
recuerda a los alumnos la desigualdad de Cauchy-Schwarz para integrales. También damos
el ejemplo de las dos funciones absolutamente integrables f(x) = x−1/2, g(x) = (1 − x)1/2,
definidas en ]0,1[ y fuera toman el valor 0 para ver que no basta que las funciones sean
absolutamente integrables para que exista la convolución.

El motivo de introducir la convolución de dos funciones es el siguiente: Como ya hemos
visto, el paso final en resolver ecuaciones diferenciales parciales mediante la transformada
de Fourier consiste en antitransformar una función. Si esta función se puede expresar como
el producto de dos transformadas, entonces la fórmula de convolución proporciona una
manera de hallar la antitransformada. Si f, g, f ∗ g son absolutamente integrables y si alguna
de las dos condiciones a) o b) mencionadas arriba se cumplen, entonces

F[f ∗ g] = F[f ]F[g].

Como ejemplo de la fórmula de convolución resolvemos la ecuación del calor de una varilla
infinita:

α2uxx = ut, −∞ < x < ∞, t > 0,
u(x, 0) = f(x), −∞ < x < ∞
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2.3. Convolución de funciones

siendo f absolutamente integrable.
Como antes seguimos los mismos pasos: Transformación del problema, resolución del

problema fácil, antitransformar la solución del problema fácil. La utilización de la fórmula
de convolución se hace patente en este ejemplo puesto que si U(t)(ω) es la transformada de
u(x, t) considerando t fija, entonces

U(t)(ω) = F[f ](ω)e−α2ω2t.

Es claro que podemos expresar exp(−α2ω2t) como F[g](ω) para cierta función g y aplicar la
fórmula de convolución.

Otro ejemplo que resolvemos es la ecuación de Laplace para un semiplano

uxx + uyy = 0 −∞ < x < ∞, y > 0,
u(x, 0) = f(x), −∞ < x < ∞,

donde f es absolutamente integrable y u(x, y) acotada.
De nuevo, los pasos son los mismos. Debemos tomar x como variable activa (pues la

otra no recorre todo IR). Sea, para y fijo, U(y)(ω) la transformada de x 7→ u(x, y). Aqúı la
dificultad del problema estriba en que al transformar el problema se obtiene

d2U

dy2
− ω2U = 0, U(0)(ω) = F (ω),

en donde F = F[f ]. La solución de este problema de valor inicial es

U(y)(ω) = C1(ω)eωy + C2(ω)e−ωy, C1(ω) + C2(ω) = F (ω).

Pero, como u está acotada, entonces U también está acotada, y de las soluciones anteriores
hay que tomar sólo

U(y)(ω) = F (ω)e−y|ω|.

Ahora acabar el problema es fácil si se aplica la fórmula de convolución, obteniendo la fórmula
de Poisson:

u(x, y) =
y

π

∫ ∞

−∞

f(t)
(x− t)2 + y2

dt.

Otro ejemplo es el cálculo de

∫ ∞

0

e−ω2

1 + ω2
cosωx dω

para x > 0.
Mediante una manipulación sencilla logramos convertir la integral, como un múltiplo de

la antitransformada de F (ω) = e−ω2
/(1 + ω2), con lo que es evidente el uso de la fórmula de

convolución.
Aparte de los libros mencionados en la sección anterior se pueden consultar [25, 73] para

problemas.
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2. La transformada de Fourier

2.4. Transformadas de Fourier en senos y cosenos

Una de las desventajas de la transformada de Fourier es que la función que hay que
transformar tiene que estar definida en todo IR. En muchas aplicaciones nos encontramos
que las funciones sólo están definidas en [0, +∞[. Para salvar esta dificultad se definen las
transformadas de Fourier en senos y cosenos. Si f es absolutamente integrable en
[0, +∞[ la transformada de Fourier en senos, Fs[f ], y la transformada de Fourier en cosenos
Fc[f ] son dos funciones definidas en [0, +∞[ dadas por

Fs[f ](ω) =
∫ ∞

0
f(x) sen(ωx) dx, Fc[f ](ω) =

∫ ∞

0
f(x) cos(ωx) dx.

Enunciamos a continuación las propiedades más importantes de estas transformadas:

a) Linealidad.

b) Si f y f ′ son absolutamente integrables en [0, +∞[, entonces

Fs[f ′](ω) = −ωFc[f ](ω), Fc[f ′](ω) = f(0) + ωFs[f ](ω).

c) Si f , f ′ y f ′′ son absolutamente integrables en [0, +∞[, entonces

Fs[f ′′](ω) = ωf(0)− ω2Fs[f ](ω), Fc[f ′′](ω) = −f ′(0)− ω2Fc[f ](ω).

d) Las fórmulas de inversión: Si f es absolutamente integrable en [0, +∞[ tal que f y f ′ son
continuas a trozos, entonces

f(x + 0) + f(x− 0)
2

=
2
π

∫ ∞

0
Fs[f ](ω) sen(ωx) dx =

2
π

∫ ∞

0
Fc[f ](ω) cos(ωx) dx.

Señalamos expĺıcitamente que la propiedad de convolución no se cumple para las trans-
formadas de senos y cosenos, aunque considerando las extensiones pares o impares (según
convenga) se puede conseguir algo parecido a la fórmula de convolución.

A continuación ponemos como ejemplo dos ecuaciones en derivadas parciales que se pue-
den resolver mediante este tipo de transformadas. En el primero no se puede aplicar la
transformada en senos pero śı la de cosenos y en el segundo problema no se puede aplicar la
transformada en cosenos, pero śı la de senos. Explicamos claramente la razón de que no se
pueda utilizar este tipo de transformadas.

uxx = ut0 x, t > 0,
ux(0, t) = g(t) t > 0,

u(x, 0) = 0 x > 0.





α2uxx = ut0 x, t > 0,
u(0, t) = A t > 0,
u(x, 0) = 0 x > 0.





El primer problema permite revisar el método de variación de parámetros para resolver
una ecuación diferencial ordinaria.
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• Resolución de dos ecuaciones en derivadas parciales mediante la transformada de
Fourier en senos y cosenos.

217



218



3. La transformada de Laplace

OBJETIVOS:

Saber las propiedades de la transformada de Laplace. Resolver ecuaciones en de-
rivadas parciales y ecuaciones integrales de Volterra mediante esta transformada.

En el ensayo Théorie analytique des probabilités, publicado en 1812, Laplace presentó lo
que ahora se llama la transformada de Laplace para la solución de ecuaciones diferenciales
lineales de coeficientes constantes; pese a que Euler en un trabajo publicado en 1743 hab́ıa
resuelto este tipo de ecuaciones de otro modo. En el método de Laplace se observa que la
solución general de la homogénea es una combinación lineal de n soluciones independientes.
Asimismo, Laplace prueba que la solución general de la no homogénea es la suma de la solución
general de la homogénea más una particular. Incidentalmente, la búsqueda de la solución le
llevó a hacer integraciones en el plano complejo para resolver las integrales reales que surǵıan.

En 1823 Poisson descubrió la fórmula de inversión para la transformada de Laplace en
donde tuvo que usar un circuito complejo. Tras el éxito de la transformada de Fourier para
la resolución de ecuaciones en derivadas parciales, se empezó a usar la transformada de La-
place para resolver este tipo de ecuaciones. Hoy en d́ıa la transformada de Laplace es una
herramienta indispensable para la resolución de problemas que surgen de la f́ısica.

3.1. Primeras propiedades

La principal ventaja que posee la transformada de Laplace con respecto a la de Fourier
es que es aplicable a una clase de funciones más amplia. Una función f : [0, +∞[→ IR es
original si cumple las propiedades siguientes:

a) f es localmente integrable y continua a trozos.

b) Existen constantes s0 ∈ IR, t0 > 0 y M > 0 tales que |f(t)| ≤ Mets0 para cualquier t > t0.

Si f es una función original definimos la transformada de Laplace como

L[f ](s) =
∫ ∞

0
f(t)e−ts dt.

Es sencillo ver que la integral existe si Re(s) > s0. El menor valor s0 que verifica la condición
b) se llama la abcisa de convergencia. Este valor proporciona una idea del mayor recinto
posible donde la transformada de Laplace existe. A partir de ahora cuando se escriba f ′(0)
se sobreentederá ĺımt→0+ f ′(t) y de forma análoga con las derivadas superiores.

Demostramos las propiedades más importantes de la transformada de Laplace:
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3. La transformada de Laplace

a) Linealidad.

b) Si f es original, b ∈ C y si g(z) = f(z)ebz, entonces L[g](s) = L[f ](s− b).

c) Si f es original, a > 0 y si g(z) = f(az), entonces L[g](s) = 1
aL[f ]( s

a).

d) Si f es original y si g(z) = f(z − a), entonces L[g](s) = e−asL[f ](s) (la propiedad de
retardo).

e) L[1](s) = 1/s para Re(s) > 0.

En este momento podemos calcular las transformadas de eat, cos t, sen t, sh t y ch t.
No demostramos que si f es una función original, entonces ĺımRe(s)→∞L[f ](s) = 0 (véase

[40]). Como corolario trivial, si una función no tiende a cero cuando Re(s) → ∞, entonces
esta función no puede ser la transformada de otra función.

Enunciamos y probamos las siguientes propiedades más avanzadas. Sea f una función
original.

a) Si además f ′, ..., f (n) son funciones originales, se tiene

L[f (n)](s) = snL[f ](s)− sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0).

b) Si F (t) =
∫ t
0 f(ξ) dξ es original, entonces L[F ](s) = L[f ](s)

s .

c) Si L[f ] es derivable, entonces d
dsL[f ] = −L[tf(t)], o más general, si L[f ] tiene derivada

de orden n entonces
dn

dsn
L[f ] = (−1)nL[tnf(t)].

Para probar esta propiedad usamos sin rigor la regla de Leibniz para integrales impropias.

d) Si f tiene periodo T , entonces

L[f ](s) =

∫ T
0 e−stf(t) dt

1− e−sT
.

Como un ejemplo de la aplicación de la propiedad a) demostramos que L[tn](s) = n!/sn+1.
Enunciamos la fórmula de convolución: Si f y g son dos funciones originales, entonces

f ∗ g es original y se verifica √
2πL[f ∗ g] = L[f ]L[g].

Notamos que la integral
√

2πf ∗ g(t) se reduce a
∫ t
0 f(u)g(t− u) du.

Hacemos algunos problemas de antitranformar funciones relativamente sencillas. Un libro
en donde vienen bastantes problemas para ir practicando es [64].
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3.2. La Fórmula de inversión de Laplace

3.2. La Fórmula de inversión de Laplace

El siguiente resultado, que se conoce como la fórmula de inversión, es importante puesto
que como un objetivo de la transformada de Laplace es reducir un problema de incógnita f en
otro más sencillo de incógnita L[f ]; una vez resuelto éste, tenemos que recuperar la función
f . Naturalmente tenemos que imponer algún tipo de condiciones porque es claro que dos
funciones que difieren en un número finito de valores, sus transformadas de Laplace coinciden.
Su enunciado es el siguiente: Sea f una función original tal que f y f ′ son continuas a trozos.
Si b > s0, donde s0 es la abcisa de convergencia, entonces para t ∈ IR

f(t + 0) + f(t− 0)
2

=
1

2πi
ĺım

b→∞

∫ a+i b

a−i b
L[f ](s)est ds.

Recordamos el ejemplo 6 de la sección del teorema de los residuos (en el primer caṕıtulo
del temario de esta asignatura) que permite calcular de forma cómoda en numerosas ocasiones
la antitransformada. Un caso particular que aparece en muchas ocasiones es cuando L[f ] es
una función racional con el grado del denominador mayor que el del numerador.

También hallamos la antitransformada de F (s) = e−
√

s/
√

s para s > 0. Incluimos este
ejemplo por varios motivos: en primer lugar resulta complicado el uso de tablas y en segundo
lugar utilizamos la fórmula de inversión de Laplace mediante el circuito de la figura 3.1 en el
plano complejo, viendo otra utilidad del logaritmo complejo.

a + iR

a− iR

@
@@

¡
¡¡

Figura 3.1.: El circuito para hallar la antitrasformada de e−
√

s/
√

s.

La siguiente herramienta útil para la resolución de antitransformadas es el teorema de
Efrós: Si f es una función original y F (s) es su transformada de Laplace, entonces

L−1

[
F (
√

s)√
s

]
=

1√
πt

∫ ∞

0
exp

(
−u2

4t

)
du.

No demostramos este teorema (la prueba se puede encontrar en [58]).
Analizamos dos ejemplos: Hallar la antitransformada de exp(−√s)/s y de exp(−√s)/

√
s.

El primer ejemplo es fácil de hacer usando el teorema de Efrós. Mientras que si se intenta
aplicar este teorema para el segundo ejemplo, resulta que hay que antitransformar la función
F (s) = e−s, que por la propiedad de retardo, hay que antitransformar la función constante
1; pero esto es imposible, puesto que la transformada de una función original debe tender a
0 cuando la parte real de su variable tiende a +∞.
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3. La transformada de Laplace

3.3. Las ecuaciones integrales de Volterra

El objetivo de esta sección es hallar todas las soluciones de la ecuación

φ(x) = f(x) +
∫ x

0
k(x− t)φ(t) dt, (3.1)

donde f y k son originales. El método es sencillo y consiste en aplicar la transformada de
Laplace a (3.1) y usar la fórmula de convolución. El problema se reduce a resolver una
ecuación algebraica para L[φ].

Con esta técnica se puede resolver el problema de la tautócrona. Una cuenta se mueve
sobre un alambre sin rozamiento partiendo del reposo y se desea hallar la forma que debe
tener el alambre para que el tiempo que tarda la cuenta en alcanzar el punto más bajo sea
constante. En primer lugar, demostramos que si la cuenta parte del punto (k, h) entonces el
tiempo T que tarda en llegar al punto (0, 0) es

T =
1√
2g

∫ h

0

ds√
h− y

,

en donde ds es el diferencial de longitud de arco e y = y(x) es la función cuya gráfica coincide
con el alambre. Si ds = φ(y) dy para alguna función φ (que hay que hallar), entonces hay
que resolver

T =
1√
2g

∫ h

0

φ(y) dy√
h− y

,

denonde T es una constante. Este problema se puede resolver fácilmente por medio de la
transformada de Laplace, obteniendo que

φ(y) =
T
√

2g

π

1√
y
.

Como

ds = φ(y) dy =

√
1 +

(
dx

dy

)2

dy,

de las dos últimas ecuaciones se puede encontrar una ecuación diferencial para y = y(x) que
nos da la forma que debe tener el alambre buscado. Este problema se ha obtenido de [64].

El resto de la sección se basa en [40]. También puede encontrarse material suplementario
en [5, 74].

3.4. La transformada de Laplace y las ecuaciones en derivadas
parciales

En esta sección resolvemos varias ecuaciones en derivadas parciales mediante la transfor-
mada de Laplace. El primer ejemplo es, para p ∈ IR

ut = −ux x > 0, t > 0
u(0, t) = p t ≥ 0
u(x, 0) = 0 x ≥ 0



 (3.2)
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3.4. La transformada de Laplace y las ecuaciones en derivadas parciales

Tras forzar que sean la variable t activa y la variable x pasiva, convertimos (3.2) en el siguiente
problema de valor inicial

sU(x) = − dU

dx
, U(0) =

p

s
, (3.3)

donde U(x) = L[u(x, ·)]. La solución de (3.3) es

L[u(x)](s) =
p

s
e−sx.

Se puede hallar u(x, t) fácilmente mediante la propiedad de retardo.
La siguiente ecuación en derivadas parciales que resolvemos es

ut = uxx x > 0, t > 0
u(0, t) = ux(0, t) t ≥ 0

u(x, 0) = u0 x ≥ 0





siendo u(x, t) acotada. Desarrollamos este ejemplo por varios motivos:

a) Normalmente conviene elegir la variable pasiva la que aparece con menor orden de deriva-
ción; pero en este caso no conviene hacer esto.

b) Necesitamos usar el hecho de que L[u(x, ·)] es una función acotada.

c) Utilizamos el teorema de Efrós.

d) Expresamos las integrales que aparecen en la solución en forma de la integral tabulada erf.

A continuación resolvemos otro ejemplo, la ecuación de la cuerda vibrante de longitud c
con extremos fijos, donde conocemos la posición inicial y sabemos que la velocidad inicial es
nula.

α2uxx = utt 0 < x < c, t > 0,
u(x, 0) = B sen(πx/c) 0 ≤ x ≤ c,

ut(x, 0) = 0 0 < x,
u(0, t) = 0 t ≥ 0,
u(c, t) = 0 t ≥ 0.





donde B es una constante real no nula Resolvemos esta ecuación en derivadas parciales por
los siguientes motivos:

a) Cuando la variable está acotada no puede tomarse como activa.

b) Utilizamos el hecho de que L[f ](s) → 0 cuando Re(s) →∞.

c) Utilizamos el ejemplo 6 de la sección 1.6.

La referencia básica de todo el tema es [40]. Para la resolución de ecuaciones en derivadas
parciales mediante la transformada de Laplace se pueden consultar [5, 57, 74], siendo el
primero especialmente indicado para observar las aplicaciones de la transformada de Laplace
en electrónica.
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1. Primeras propiedades.

• Funciones originales. Definición de la transformada de Laplace. Propiedades ele-
mentales.
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4. Soluciones de ecuaciones diferenciales de
segundo orden mediante series de potencias

OBJETIVOS:

Conocer el método de los coeficientes indeterminados para la resolución de ecua-
ciones diferenciales lineales de segundo orden en forma de series de potencias.
Conocer las funciones de Bessel.

Las series fueron consideradas en el siglo XVIII, y lo son hoy todav́ıa, una parte esencial del
cálculo infinitesimal. La única manera que tuvo Newton de manejar funciones no polinómicas
era desarrollándolas en serie de potencias y derivando e integrando término a término. Los
éxitos obtenidos mediante el uso de series fueron siendo más numerosos a medida que las
matemáticas se desarrollaban. Las dificultades con el nuevo concepto no fueron identificadas
como tales; las series eran polinomios infinitos. Por otro lado; parećıa claro, como Euler y
Lagrange créıan, que toda función pod́ıa expresarse en forma de serie de potencias.

Sabemos que Newton y Leibniz utilizaron series para resolver ecuaciones de primer orden
mediante el método de coeficientes indeterminados. En 1733 Daniel Bernouilli establece que,
para una cadena de densidad uniforme en suspensión que oscila, el desplazamiento y(x) a una
distancia x del extremo inferior satisface la ecuación diferencial

α
d
dx

(x
dy

dx
) + y = 0.

Utiliza el método de coeficientes indeterminados y establece una solución que en notación
moderna es y(x) = AJ0(2

√
x/α), donde J0 es la función de Bessel de orden 0. Ésta es la

primera vez donde se utilizan las funciones de Bessel.
Euler prosiguió el trabajo de Daniel Bernouilli en 1736 en donde plantea una ecuación de

segundo orden y obtiene la solución en forma de serie. Euler utilizó este método constante-
mente. Podemos citar que en 1735 el único método que teńıa Euler para resolver la ecuación
y(iv) = y era utilizando las series de potencias. En 1766 en un trabajo sobre la membrana
oscilante aparece

d2u

dr2
+

1
r

du

dr
+

(
1− β2

r2

)
u = 0,

hoy llamada ecuación de Bessel, que Euler la resolvió por medio de una serie. El primer
estudio sistemático de las soluciones de esta ecuación fue hecho por Bessel (1784–1846) en
1824 mientras trabajaba en el estudio de los planetas. En 1867, Hankel (1839–1873) continuó
el estudio de las ecuaciones de Bessel.

En 1769 Euler trató la ecuación

x(1− x)y′′ + (c− (a + b + 1)x)y′ − aby = 0, (4.1)
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4. Soluciones de ecuaciones diferenciales de segundo orden mediante series de potencias

de la que dió la solución en serie

y(x) = 1 +
ab

1!c
x +

a(a + 1)b(b + 1)
2!c(c + 1)

x2 +
a(a + 1)(a + 2)b(b + 1)(b + 2)

3!c(c + 1)(c + 2)
x3 + · · · = F (a, b, c; x).

(4.2)
Hoy llamada serie hipergeométrica (término usado por Pfaff (1765–1825)) El estudio de las so-
luciones de (4.1) fué llevado más lejos por Gauss. Demostró de forma rigurosa la convergencia
de la serie (4.2) y estableció la fórmula

F (a, b, c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

No fue hasta a mediados del siglo XIX cuando se enfatizó en la necesidad de comprobar las
operaciones no justificadas sobre series, como la derivación e integración término a término, o
que toda función puede desarrollarse en serie de potencias. En la última mitad del siglo XIX
se resolvió el problema de la derivación de series de funciones que culminó con el desarrollo
del método de Frobenius y el teorema de Fuchs (1833–1902) sobre el comportamiento de las
series de las soluciones de la ecuación diferencial lineal de segundo orden.

4.1. Soluciones mediante series alrededor de un punto regular

El objetivo de esta sección es resolver ecuaciones diferenciales lineales de segundo orden

p(x)y′′ + q(x)y′ + r(x)y = 0 (4.3)

en forma de serie de potencias centrada en x0 bajo ciertas condiciones que determinaremos
después.

Decimos que x0 es un punto regular de (4.3) si p(x0) 6= 0. Dividiendo por p(x) tenemos
que (4.3) se puede escribir como

y′′ + Q(x)y′ + R(x) = 0. (4.4)

Si Q(x) y R(x) son funciones continuas en x0, entonces el conjunto de soluciones de (4.4) es
un subespacio vectorial de dimensión 2.

Buscamos soluciones de (4.4) en forma de serie:
∑∞

n=0 an(x − x0)n. El método que pre-
sentamos consiste en forzar a que esta serie verifique la ecuación (4.4), habiendo desarrollado
previamente R(x) y Q(x) en forma de serie, derivando término a término e igualando los
coeficientes correspondientes por la unicidad del desarrollo de Taylor. Presentamos como
ejemplo la ecuación de Ayry: y′′ = xy.

Insistimos a los alumnos que la serie obtenida sólo converge en el itervalo de convergen-
cia. Para acotar este intervalo enunciamos el siguiente teorema. Sean Q(x), R(x) funciones
desarrollables en serie de Taylor alrededor de x0 siendo los radios de convergencia rQ y rR.
Entonces cualquier solución de (4.4) es desarrollable en serie de Taylor alrededor de x0, cuyo
radio de convergencia es mayor o igual que mı́n{rQ, rR}.

Finalizamos la sección resolviendo la ecuación de Legendre:

(1− x2)y′′ − 2xy + n(n + 1)y = 0,
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4.2. Soluciones mediante series alrededor de un punto singular-regular

donde n es un natural. Notamos que x0 = 0 es un punto regular, que rQ = rR = 1; y sin
embargo, al resolver la ecuación en forma de serie obtenemos que la ecuación admite una
solución polinómica de grado justamente n, por lo que converge en todo IR. Por lo que en el
teorema, el radio de convergencia puede ser mayor que el mı́nimo de rQ y rR.

4.2. Soluciones mediante series alrededor de un punto
singular-regular

Decimos que un punto x0 es singular-regular de la ecuación (4.3) si la función q/p es
holomorfa o posee un polo simple en x0 y r/p es holomorfa o posee un polo simple o doble en
x0. Observamos que entonces (4.3) puede expresarse como

(x− x0)2y′′ + (x− x0)Q(x)y′ + R(x)y = 0, (4.5)

donde Q y R son holomorfas en x0. Notamos que la ecuación de Euler-Cauchy es un caso
particular (4.5).

Buscamos soluciones de la forma

(x− x0)s
∞∑

n=1

an(x− x0)n. (4.6)

Donde s es un parámetro a priori desconocido. Nuestros objetivos son

1. Determinar los valores de s para los cuales la ecuación (4.5) admite soluciones de la
forma (4.6) con radio de convergencia positivo.

2. Determinar una relación de recurrencia que permita hallar los coeficientes an.

Obligando que la serie (4.6) verifique (4.5) e igualando términos independientes obtenemos
la ecuación indicial

E(s) := s(s− 1) + p(x0)s + q(x0) = 0

y una ley de recurrencia siempre y cuando que E(n + s) 6= 0 para todo n ∈ IN. Bajo esta
condición se puede resolver (4.5). La situación general, que resuelve todos los restantes casos,
se enuncia en el siguiente teorema. Sean Q(x) y R(x) holomorfas en x0, sea r el menor de los
radios de convergencia de las series de Taylor de Q y R y sean s, t las ráıces de la ecuación
indicial asociada a (4.5). Entonces (4.5) tiene dos soluciones linealmente independientes y1, y2

definidas en ]x0 − r, x0 + r[\{x0} de la forma:

a) Si s− t no es un entero

y1(x) = |x− x0|s
∞∑

n=0

an(x− x0)n, y2(x) = |x− x0|t
∞∑

n=0

bn(x− x0)n.

b) Si s = t

y1(x) = |x− x0|s
∞∑

n=0

an(x− x0)n, y2(x) = y1(x) log |x− x0|+ |x− x0|s
∞∑

n=0

bn(x− x0)n.
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4. Soluciones de ecuaciones diferenciales de segundo orden mediante series de potencias

c) Si s− t es un entero no nulo

y1(x) = |x− x0|s
∞∑

n=0

an(x− x0)n, y2(x) = αy1(x) log |x− x0|+ |x− x0|t
∞∑

n=0

bn(x− x0)n.

Ilustramos este teorema resolviendo la ecuación x2y′′ + 3xy′ + (1 + x)y = 0, teniendo la
ecuación indicial una ráız doble en -1.

La bibliograf́ıa que recomendamos al alumno es [11, 36, 40, 74].

4.3. Funciones de Bessel

En esta sección consideraremos la ecuación de Bessel

x2y′′ + xy′ + (x2 − η2)y = 0,

donde η ∈ IR. Independientemente de la importancia que tiene esta ecuación en la f́ısica, esta
ecuación ilustra adecuadamente los tres casos enunciados en el teorema de la sección anterior.
Estudiando la ecuación indicial tenemos tres casos diferentes, aunque estudiamos sólo dos de
estos casos:

• 2η /∈ Z. Desarrollando la solución en serie obtenemos dos soluciones independientes
llamadas funciones de Bessel de primera especie de órdenes η y -η, denotadas
respectivamente Jη y J−η.

• η = 0. Desarrollando la solución en serie obtenemos dos funciones independientes, una
es la función de Bessel de primera especie de orden 0, denotada J0 y la otra es la
función de Bessel de segunda especie de orden 0, denotada Y0.

Al ser ésta una sección basada en la anterior, la bibliograf́ıa es la comentada alĺı, aunque
un libro donde se trata exhaustivamente las funciones de Bessel y sus propiedades es [71].
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5. Series de Fourier

OBJETIVOS:

Saber las principales propiedades de las series de Fourier. Desarrollar el método
de separación de variables.

El análisis de Fourier, una de las más poderosas herramientas de la matemática y de la
f́ısica, surgió del problema de la cuerda vibrante, estudiado ya por Euler y Daniel Bernouilli
en el siglo XVIII. El trabajo de Fourier sobre la representación de funciones como sumas
trigonométricas fue publicado en su Théorie analytique de la chaleur en 1822. El objetivo de
Fourier fue resolver la ecuación del calor:

ut = α2uxx 0 < x < p, 0 < t,
u(0, t) = u(p, t) = 0 0 < t,

u(x, 0) = f(x) 0 ≤ x ≤ p,





donde u(x, t) representa la temperatura de una barra metálica de longitud p en el punto x
y en el tiempo t. Fourier, al intentar resolver esta ecuación por el método que hoy en d́ıa
conocemos por separación de variables, se vio obligado a expresar f(x) como

f(x) =
∞∑

n=1

bn sen(nπx/p).

Fourier, tras una serie de pasos nada rigurosos dedujo que

bn =
2
p

∫ p

0
f(x) sen(nπx/p) dx.

A pesar de que las series de Fourier se originaron dentro de la f́ısica matemática, su
importancia sobre el desarrollo del análisis ha sido fundamental. De aqúı surgen por citar
sólo algunos ejemplos la teoŕıa de los desarrollos en serie de funciones de Sturm-Liouville
que veremos en el caṕıtulo siguiente, los conjuntos ortonormales de funciones y la teoŕıa de
integración de Lebesgue.

El hecho de que la serie de Fourier converja a la función bajo ciertas condiciones es
un fundamental. Dirichlet y Dini a mediados del siglo XIX establecieron dos condiciones
diferentes bajo las cuales se cumple la convergencia. Éstas condiciones para la convergencia
son suficientes pero no necesarias. La mera continuidad de la función no es suficiente para
asegurar la convergencia como probó du Bois-Reymond en 1876.
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5. Series de Fourier

5.1. Primeras propiedades de las series de Fourier

Definimos los coeficientes de Fourier de una función f localmente integrable y 2π-
periódica:

an =
1
π

∫ π

−π
f(x) cos nx dx; bn =

1
π

∫ π

−π
f(x) sennx dx.

y su serie de Fourier:
a0

2
+

∞∑

n=1

an cosnx + bn sen nx.

Para una función f localmente integrable y 2L-periódica (lo que ocurre en la mayoŕıa de
las aplicaciones), mediante un simple cambio de variables se tiene que

an =
1
L

∫ L

−L
f(x) cos

nπx

L
dx; bn =

1
L

∫ L

−L
f(x) sen

nπx

L
dx.

y que su serie de Fourier es

a0

2
+

∞∑

n=1

an cos
nπx

L
+ bn sen

nπx

L
.

En este momento es importante observar que dos funciones diferentes, 2π-periódicas y
localmente integrables en [−π, π] pueden tener las mismas series de Fourier. Basta para ello
que se diferencien en un número finito de puntos. También es útil observar los siguientes
hechos elementales:

• Si f es par, entonces bn = 0 y an = 2
π

∫ π
0 f(x) cos nx dx.

• Si f es impar, entonces an = 0 y bn = 2
π

∫ π
0 sen nxdx.

El problema central de la teoŕıa es el siguiente: ¿cuándo una serie de Fourier converge a la
función de partida? Los resultados siguientes (debidos a Dirichlet y a Dini, respectivamente)
que se enuncian son, por este motivo, claves en todo el tema:

• Sea f localmente integrable, 2π periódica y de variación acotada en un entorno de x0.
Entonces

f(x0 + 0) + f(x0 − 0)
2

=
a0

2
+

∞∑

n=1

an cosnx0 + bn sennx0. (5.1)

• Sea f continua a trozos, 2π periódica tal que existen f ′−(x0) y f ′+(x0). Entonces se
verifica (5.1).

Observamos que si f es continua en x0, el miembro izquierdo de (5.1) se reduce a f(x0).
Como punto final enunciamos el lema de Riemann-Lebesgue: Si f es integrable en [−π, π],

entonces sus coeficientes de Fourier tienden a 0.
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5.2. Método de separación de variables.

5.2. Método de separación de variables.

El objetivo de esta sección es introducir el método de separación de variables para resolver
ecuaciones en derivadas parciales. Explicamos algunos ejemplos concretos que surgen de la
f́ısica.

La ecuación del calor homogénea. Si u(x, t) describe la temperatura de una varilla
metálica de longitud p en el punto x y en el tiempo t con temperatura fijas en los extremos
nulas y con temperatura inicial f(x), se puede probar utilizando argumentos f́ısicos que la
función u verifica la siguiente ecuación en derivadas parciales:

c2uxx = ut 0 < x < p, 0 < t,
u(0, t) = u(p, t) = 0 0 < t,

u(x, 0) = f(x) 0 ≤ x ≤ p.

Suponiendo que u(x, t) = X(x)T (t) (de aqúı el nombre de separación de variables), substitu-
yendo en las tres primeras ecuaciones tenemos que existen infinitas soluciones de la forma

uk(x, t) = Ak sen
kπx

p
exp

(
−

(
kπc

p

)2

t

)
.

Sumando todas las funciones uk obtenemos que

u(x, t) =
∞∑

k=1

αkuk(x, t)

también verifica estas tres ecuaciones. En este punto hemos de resaltar que estamos buscando
la solución formal del problema, puesto que en realidad intercambiamos una serie infinita por
la derivación. Haciendo t = 0, obtenemos la serie de Fourier de f (extendida de forma impar
y 2p-periódica), con lo que si f cumple alguno de los dos teoremas de convergencia ya hemos
resuelto el problema.

La ecuación del calor no homogénea. El problema es igual al anterior salvo que
la condición segunda de la ecuación del calor homogénea, se substituye por u(0, t) = A,
u(p, t) = B. Este problema se reduce mediante el cambio

u(x, t) = w(x, t) + v(x),

a la resolución de la ecuación del calor homogénea en w y a la resolución del problema

v′′ = 0; v(0) = A; v(p) = B.

La ecuación de ondas. Una cuerda de longitud p cuyos extremos están fijos y de la cual
se conoce la posición y velocidad inicial cumple

c2uxx = utt 0 < x < p, 0 < t,
u(0, t) = u(p, t) = 0 0 < t,

u(x, 0) = f(x) 0 ≤ x ≤ p,
ut(x, 0) = g(x) 0 ≤ x ≤ p.

La ecuación de Laplace es una de las ecuaciones que más frecuentemente aparece en
la f́ısica. La ecuación de Laplace en 2 dimensiones tiene la forma uxx + uyy = 0 y en tres
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5. Series de Fourier

dimensiones uxx +uyy +uzz = 0. Frecuentemente se utiliza la notación ∇2u = 0, siendo ∇2 el
operador laplaciano. La ecuación de Laplace aparece en muy diversos campos de la f́ısica,
por ejemplo, en la distribución de la temperatura estacionaria, el estado estacionario de una
membrana elástica o del potencial eléctrico en una placa. Las ecuaciones de la f́ısica que
contienen a ∇2 establecen que la naturaleza siempre actúa para establecer la uniformidad.

Eestudiamos la ecuación de Laplace cuando el dominio es un rectángulo. Antes de resolver
el caso general planteamos el siguiente problema particular

uxx + uyy = 0 0 < x < a, 0 < y < b,
u(x, 0) = u(x, b) = 0 0 ≤ x ≤ a,

u(0, y) = 0 0 ≤ y ≤ b,
u(a, y) = f(y) 0 ≤ y ≤ b.

Observamos que las tres primeras ecuaciones son homogéneas. Este hecho es fundamental
pues se aplica al principio de superposición. Aśı pues, buscamos una sucesión (un)∞n=1 de fun-
ciones que verifiquen las cuatro primeras ecuaciones. Entonces

∑∞
n=1 αnun es una candidata

formal para la solución del problema (por el principio de superposición). Ahora sólo falta
hallar los coeficientes αn usando la teoŕıa de las series de Fourier y la última ecuación. Aśı
hallamos la serie que es la solución formal del problema.

Ahora resolvemos la ecuación de Laplace en un rectángulo donde se conoce el comporta-
miento de la solución en la frontera. El problema es

uxx + uyy = 0 0 < x < a, 0 < y < b,
u(x, 0) = g1(x) 0 ≤ x ≤ a,
u(x, b) = g2(x) 0 ≤ x ≤ a,
u(0, y) = f1(y) 0 ≤ y ≤ b,
u(a, y) = f2(y) 0 ≤ y ≤ b.

La solución de esta ecuación en derivadas parciales podŕıa parecer dif́ıcil, ya que no hay
condiciones iniciales homogéneas. Sin embargo este problema tiene una resolución bastante
fácil si se descompone la solución u = u1 + u2 + u3 + u4, donde cada ui verifica un problema
parecido al que se acaba de resolver.

Si queremos resolver la ecuación de Laplace planteado en el disco de radio c centrado en el
origen, es natural usar coordenadas polares r, θ, donde el disco queda descrito por 0 ≤ r ≤ c,
0 ≤ θ ≤ 2π. La ecuación de Laplace en polares es

urr +
1
r
ur +

1
r2

uθθ = 0.

Si conocemos el valor que toma u en la frontera del disco tenemos la condición

u(c, θ) = f(θ),

en donde f es conocida. Puesto que 0 (ó 2π) en realidad es una “falsa frontera”exigimos
además que f(θ), u(·, θ), uθ(·, θ) sean funciones continuas 2π-periódicas.

Tras aplicar el método de separación de variables, u(r, θ) = R(r)T (θ), obtenemos que R
debe verificar una ecuación de Euler-Cauchy. Es conveniente recordar esta ecuación vista
en primer curso [37]. Además es preciso rechazar las soluciones no acotadas de R (debido
simplemente a una hipótesis f́ısica).
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5.2. Método de separación de variables.

En este problema, al igual que los anteriores, obtenemos una solución formal. Pero com-
probar la convergencia para 0 ≤ r ≤ c de la serie

u(r, θ) =
α0

2
+

∞∑

n=1

rn(αn cosnθ + βn sen nθ),

donde
αn =

1
πcn

∫ π

−π
f(θ) cosnθ dθ, βn =

1
πcn

∫ π

−π
f(θ) sen nθ dθ,

es fácil si se usa el criterio de mayoración de Weierstrass y el lema de Riemann-Lebesgue. Al
mismo tiempo conviene demostrar que

u(0, θ) =
1
2π

∫ π

−π
u(r, θ) dθ, r ∈ [0, c],

lo que indica que la solución del problema de Dirichlet en el centro de un disco es igual al
valor medio de sus valores a lo largo de la frontera del disco, resultado bastante intuitivo y que
conecta la f́ısica subyacente al modelo con el rigor matemático. Creemos que nunca hemos de
olvidar la fuerte relación entre las ideas provenientes de la f́ısica y las ideas matemáticas.

Las referencias de este caṕıtulo son [11, 16, 25, 40, 47, 59, 70].
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Contenido del Caṕıtulo 5

1. Primeras propiedades de las series de Fourier.

• Funciones localmente integrables. Coeficientes de Fourier. Series de Fourier de
funciones con peŕıodo arbitrario.

• Criterios de convergencia. Lema de Riemann-Lebesgue.

2. Método de separación de variables.

• La ecuación del calor.

• La ecuación de ondas.

• La ecuación de Laplace para un rectángulo.

• El problema de Dirichlet para un disco.
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6. Problemas de Sturm-Liouville y desarrollos
en serie de autofunciones

OBJETIVOS:

Estudiar los problemas de Sturm-Liouville y el desarrollo en serie de autofunciones.
Resolver un tipo de ecuaciones en derivadas parciales mediante autofunciones.

Los problemas que implican ecuaciones en derivadas parciales de la f́ısica contienen común-
mente condiciones sobre la frontera del dominio, tales como la condición de que la cuerda
vibrante debe estar fija en los extremos o que la temperatura de una barra metálica está
fija en sus extremos. Cuando el método de separación de variables se aplica a una ecuación
en derivadas parciales, esta ecuación se descompone en dos o más ecuaciones diferenciales
ordinarias, y las condiciones de frontera sobre la solución deseada se convierten en condicio-
nes de frontera sobre una ecuación diferencial ordinaria. Esta ecuación diferencial ordinaria
contiene generalmente un parámetro y sólo para valores particulares se obtienen soluciones
no triviales. Estos valores se llaman autovalores y la solución para cualquier autovalor es
llamada autofunción. Más aún, para satisfacer la condición inicial del problema es necesario
expresar una función dada en serie de autofunciones.

Estos problemas de determinar los autovalores y autofunciones de una ecuación diferencial
ordinaria con condiciones de frontera y de desarrollar una función dada en términos de una
serie infinita de autofunciones, que datan de aproximadamente de 1750, se hicieron más
prominentes al tiempo que se introdućıan nuevos sistemas de coordenadas y nuevas clases de
funciones tales como las funciones de Bessel y los polinomios de Legendre.

Sturm (1803–1855) y Liouville (1809–1882) decidieron atacar el problema general para
cualquier ecuación diferencial de segundo orden. Sturm trabajó desde 1833 en problemas de
ecuaciones en derivadas parciales, principalmente sobre el flujo del calor en una barra metálica
de densidad variable. Liouville, informado por Sturm de los problemas sobre los que estaba
trabajando, se dedicó a la misma materia.

6.1. Introducción al método de autofunciones

Comenzamos el tema con un breve repaso de la resolución de la ecuación del calor e
intentamos destacar las propiedades más destacables: si intentamos resolver

c2uxx = ut, u(0, t) = u(p, t) = 0

por el método de separación de variables, u(x, t) = X(x)T (t), tenemos que X debe satisfacer

X ′′(x) + λX(x) = 0,
X(0) = X(p) = 0.

(6.1)
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6. Problemas de Sturm-Liouville y desarrollos en serie de autofunciones

Vimos que existe una sucesión (λn)∞n=1 tal que problema (6.1) tiene solución no trivial, digamos
Xn. Después obtuvimos la solución de la ecuación del calor en forma de serie:

u(x, t) =
∞∑

k=1

Xk(x)Tk(t).

Por último, si queremos que u cumpla la condición u(x, 0) = f(x) debemos expresar f en
serie de Xk.

Para fijar más los conceptos de desarrollo en serie de autofunciones aplicamos estas ideas
para resolver la siguiente ecuación del calor no homogénea:

c2uxx = ut + h(x, t) 0 < x < p, 0 < t,
u(0, t) = 0, 0 ≤ t,
u(p, t) = 0, 0 ≤ t,

u(x, 0) = f(x), 0 ≤ x ≤ p.

Conjeturamos como solución

u(x, t) =
∞∑

k=1

Xk(x)Tk(t),

donde Xk son las soluciones no nulas obtenidas en la ecuación del calor homogénea. Si
forzamos que u verifique la ecuación en derivadas parciales, nos vemos obligados a desarrollar
h en serie de Xk.

Este ejemplo es interesante por varios motivos: permite introducir de modo natural los
problemas de Sturm-Liouville, se prevé que se generalizará la teoŕıa de las series de Fourier
y al mismo tiempo se intuye la idea fundamental del método de autofunciones: el desarrollo
en serie por medio de autofunciones.

También se puede advertir de la estrecha conexión que tiene este tema con el tema de
espacio vectorial eucĺıdeo estudiado en la asignatura de álgebra lineal: dados los espacios
eucĺıdeos IRn, C([−π, π]), observamos las siguientes analoǵıas:

IRn C([−π, π])
Posee una base ortogonal. {1, cosx, senx, . . . }

es un sistema ortogonal.
Todo vector de IRn es “Muchas” funciones se

combinación lineal de la base anterior. ponen en serie del sistema anterior.

Aunque advertimos que la analoǵıa se hará todav́ıa más patente cuando introduzcamos
cierto operador autoadjunto. Es muy conveniente para el alumno repasar los textos [2, 37].

6.2. Problemas de Sturm-Liouville homogéneos

Tras aplicar el método de separación de variables a

(pux)x − qu− rut = 0 0 < x < 1, 0 < t,
ux(0, t) + h1u(0, t) = 0, 0 ≤ t,
ux(c, t) + h2u(c, t) = 0, 0 ≤ t,
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6.2. Problemas de Sturm-Liouville homogéneos

siendo r, p, q funciones solamente de x. Además r, p, p′, q son continuas y r, p > 0, obtenemos
el siguiente problema llamado de Sturm-Liouville:

(py′)′ − qy − λry = 0,
y′(0) + h1y(0) = 0,
y′(1) + h2y(1) = 0.



 (6.2)

Los autovalores del problema son los valores de λ tales que (6.2) tiene solución no nula.
Estas soluciones se llaman autofunciones asociadas a λ.

Definiendo el subespacio V y el operador lineal L dados por

V = {f ∈ C2([0, 1],C) : f ′(0) + h1f(0) = f ′(1) + h2f(1) = 0},

L : V → V ; L(f) = 1
r [(pf ′)′ − qf ],

(6.3)

pretendemos dos objetivos: que el alumno entienda la conveniencia de la economización de
las expresiones por medio de una notación adecuada y demostrar que conceptos teóricos del
álgebra lineal (aplicaciones lineales) tienen aplicación directa en el estudio de las ecuaciones
diferenciales. Demostramos los siguientes hechos básicos de este operador:

• L es lineal.

• λ es un autovalor si y sólo si existe y ∈ V \ {0} tal que L(y) = λy, es decir λ es un valor
propio de L.

• f es una autofunción asociada a λ si y sólo si f es un vector propio asociado a λ.

• El conjunto de autofunciones asociado a un cierto autovalor es un subespacio vectorial
de V .

Una igualdad útil que probamos es la identidad de Lagrange: Si u, v son dos funciones
dos veces diferenciables, entonces

∫ 1

0
r[L(u)v − uL(v)] dx =

[
p(u′v − uv′)

]1

0
.

A partir de ahora consideramos a V dotado del siguiente producto escalar: Sean u, v ∈ V ,

〈u, v〉 =
∫ 1

0
r(x)u(x)v(x) dx. (6.4)

Gracias a la identidad de Lagrange podemos demostrar fácilmente que L es autoadjunto,
es decir, 〈L(u), v〉 = 〈u, L(v)〉 para todos u, v ∈ V . A partir de que L sea autoadjunto se
obtienen automáticamente las siguientes afirmaciones:

• Si λ es un autovalor del problema de Sturm-Liouville, entonces λ es real.

• Si λ y µ son dos autovalores diferentes y f , g son dos autofunciones asociadas, entonces
f y g son ortogonales respecto al producto escalar (6.4).
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6. Problemas de Sturm-Liouville y desarrollos en serie de autofunciones

La siguiente propiedad de los espacios vectoriales eucĺıdeos de dimensión finita es fun-
damental: si {u1, . . . , un} es una base ortonormal de un espacio vectorial V de dimensión
finita, entonces dado x ∈ V se tiene x =

∑n
i=1〈x, ui〉ui. Enunciamos el siguiente resultado

relacionado con esta afirmación: Dado un problema de Sturm-Liouville se verifica:

• Existe una sucesión de autovalores reales (λn)∞n=1 tales que ĺımn→∞ |λn| = ∞.

• El conjunto de autofunciones asociado a un autovalor es un subespacio de dimensión 1.

• Si f y f ′ son funciones continuas a trozos en ]0, 1[, entonces para cada x ∈]0, 1[

f(x + 0) + f(x− 0)
2

=
∞∑

n=1

〈f, φn〉φ(x),

considerando el producto escalar (6.4) y φn la autofunción asociada a λn de norma 1.
Esta serie se llama serie de Sturm-Liouville de f .

Observamos que este resultado generaliza la teoŕıa de las series de Fourier y que . si se
trunca la serie de Sturm-Liouville de f hasta el orden n se tiene la aproximación por mı́nimos
cuadrados de f sobre el subespacio generado por {φ1, . . . , φn}.

6.3. Problemas de Sturm-Liouville no homogéneos

Un problema de Sturm-Liouville es el siguiente problema de frontera:

(p(x)y′)′ − q(x)y = µr(x)y + f(x), 0 < x < 1,
y′(0) + h1y(0) = 0,
y′(1) + h2y(1) = 0.

(6.5)

verificando p, q, r las mismas condiciones que en la sección previa, µ ∈ IR y f una función
cuya segunda derivada es continua a trozos en ]0, 1[.

El método que describimos a los alumnos en este momento nos da una solución formal.
El problema (6.5) es equivalente a hallar y ∈ V tal que L(y) = µy + f/r, estando L y V
definidos en (6.3).

Sea la solución Φ(x) =
∑∞

n=1 bnφn(x), donde φn son las autofunciones de norma 1 y
bn ∈ IR están por determinar. La expresión de Φ en forma de serie es rigurosa, puesto que Φ
tiene segunda derivada continua, pero la manipulación de la serie exige un paso no riguroso
(este paso, expresado simbólicamente, es L(Σ) = Σ(L)). Tras imponer que L(Φ) = µΦ + f/r
obtenemos

f

r
=

∞∑

n=1

(λn − µ)φn,

en donde se ve la necesidad de desarrollar f/r en serie de autofunciones. Dependiendo del
valor de µ se obtienen el (los) valor(es) posible(s) de bn.
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6.4. Resolución de ecuaciones en derivadas parciales mediante series de autofunciones

6.4. Resolución de ecuaciones en derivadas parciales mediante
series de autofunciones

Veremos cómo encontrar soluciones de determinadas ecuaciones en derivadas parciales
mediante series de autofunciones de correspondientes problemas de Sturm-Liouville. Este
método sirve para resolver ecuaciones en derivadas parciales del siguiente problema:

(p(x)ux)x − q(x)y = r(x)ut + F (x, t), 0 < x < 1; 0 < t
ux(0, t) + h1u(0, t) = 0, 0 < t
ux(1, t) + h2u(1, t) = 0, 0 < t

u(x, 0) = f(x), 0 ≤ x ≤ 1

Más que dar un desarrollo excesivamente teórico del método, explicamos el método con
un ejemplo concreto. Los pasos son:

1. Separación de variables en el problema homogéneo.

2. Hallar los autovalores y las autofunciones en el problema de Sturm-Liouville correspon-
diente.

3. Normalizar las autofunciones.

4. Expresar la solución u(x, t) en forma de serie de Sturm-Liouville.

5. Resolver las ecuaciones diferenciales que cumplen los coeficientes de u(x, t).

Normalmente hay tres pasos conflictivos en donde el alumno se encuentra menos seguro.
El primero es, como ya hemos repetido, que las operaciones son formales. El segundo es
la necesidad de desarrollar F (x, t) en serie de Sturm-Liouville, los alumnos no distinguen
claramente entre variable activa y pasiva; pese a que esta distinción ya ha surgido antes.
El tercer paso problemático es que al tratar de resolver las ecuaciones diferenciales para los
coeficientes de la serie de u(x, t) surgen normalmente ecuaciones diferenciales que es preciso
resolver variación de parámetros.

Las referencias básicas son [11, 25, 40, 60].
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Contenido del Caṕıtulo 6

1. Introducción al método de autofunciones.

• Breve descripción de resolución de la ecuación del calor.

• Resolución de la ecuación del calor no homogénea.

2. Problemas de Sturm-Liouville homogéneos.

• Planteamiento de un problema de Sturm-Liouville homogéneo.

• Definición de autovalores y autofunciones de un problema de Sturm-Liouville.

• Operador lineal asociado. Propiedades.

3. Problemas de Sturm-Liouville no homogéneos.

• Forma de un problema de Sturm-Liouville no homogéneo. Planteamiento usando
el operador lineal asociado.

• Solución general. Condiciones de existencia y unicidad de soluciones.

4. Resolución de ecuaciones en derivadas parciales mediante series de autofun-
ciones.

• Planteamiento general de la ecuación.

• Método de resolución.
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A. Examen de Álgebra Lineal

Problema 1

Una persona se mueve en una serie de puntos como indica la figura:

P0• —
P1• —

P2• — · · · —
Pn−1• —

Pn• —
Pn+1•

Decide ir al punto de la derecha o de la izquierda lanzando una moneda. El “paseo”termina
cuando alcanza los puntos P0 ó Pn+1. El propósito del problema es calcular la probabilidad
de que la persona llegue al punto Pn+1 partiendo de Pr. Para ello se definen

A2 =
(

0 1/2
1/2 0

)
, A3 =




0 1/2 0
1/2 0 1/2
0 1/2 0


 , A4 =




0 1/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/2 0


 , · · ·

a) Halle los valores y vectores propios de A2 y de A3. Halle todos los valores de t ∈ [0, π] de
modo que cos t sea valor propio de A2. Lo mismo para A3.

b) Conjeture n valores de t ∈ [0, π] de modo que cos t sea valor propio de An. Pruebe que
(sen t, sen 2t, . . . , sen nt)t es un vector propio de An asociado al valor propio cos t.

Observe que la relación matricial que regula el proceso descrito al principio es

pk+1 =




1 x 0
0 An 0
0 y 1


pk,

donde x = (1/2, 0, . . . , 0), y = (0, . . . , 0, 1/2) y pk es un vector columna de IRn+2 cuya i-ésima
coordenada es la probabilidad de que la persona esté en el punto i− 1 tras k pasos.

c) Sea M una matriz cuadrada de orden n, sean u e v dos vectores fila de IRn y sea N la
siguiente matriz cuadrada de orden n + 2 formada por bloques:

N =




1 u 0
0 M 0
0 v 1


 .

Pruebe que

Nk =




1 u(I + M + · · ·+ Mk−1) 0
0 Mk 0
0 v(I + M + · · ·+ Mk−1) 1


 .
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A. Examen de Álgebra Lineal

d) Si I −M es invertible, pruebe que I + M + · · ·+ Mk−1 = (I −Mk)(I −M)−1.

e) Si M es diagonalizable, todos sus valores propios tienen módulo menor que 1 y si I −M
es invertible, entonces pruebe que si k →∞, entonces Nk tiende a .




1 u(I −M)−1 0
0 O 0
0 v(I −M)−1 1


 .

f) Sabiendo que An es invertible y que los valores propios de An tienen módulo menor que
1, utilice los apartados anteriores para demostrar que la probabilidad de que la persona
acabe en Pn+1 partiendo de Pr es y(I−An)−1er, siendo er el vector columna r-ésimo de la
base canónica de IRn. Demuestre que dicha probabilidad es r/(n + 1). Ayuda: demuestre
previamente que (1, 2, 3, · · · , n− 1, n)(I −An) = (n + 1)y.

Problema 2

Este problema estudia el comportamiento de f ∈ C1(IR) respecto a los valores de f y f ′

en a 6= b. Para ello se considera la aplicación lineal Φ : C1(IR) → IR4 dada por

Φ(f) = (f(a), f ′(a), f(b), f ′(b))t.

a) Sea Φn la restricción de Φ a Pn. Halle la matriz de Φn en las bases canónicas. Llame An

a esta matriz.

b) Halle el núcleo de Φ2 (en función de a y b).

c) Obtenga la factorización LU de A2. Use esta factorización para hallar el (los) polinomio(s)
p ∈ P2 tal(es) que Φ2(p) = (1 + a, 1, 1 + b, 1)t. Si no existe(n), diga la razón.

d) Para a = 0 y b = 1, demuestre que no existe ningún p ∈ P2 tal que Φ2(p) = Φ(cosπx).

e) Para a = 0 y b = 1, obtenga la factorización QR de la matriz A2. Use esta factorización
para hallar la solución por mı́ninimos cuadrados de Φ2(p) = Φ(cosπx). Compare los
resultados.
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B. Examen de Ecuaciones Diferenciales
Ordinarias

Problema 1

En este problema se estudia el efecto de un terremoto sobre un edificio de dos pisos.
Supondremos que el piso i tiene masa mi y que están unidos por un conector cuya acción se
parece a un muelle (normalmente, los elementos estructurales de un edificio son de acero, que
es un material muy elástico). Se puede demostrar que si xi(t) es el desplazamiento horizontal
del piso i, entonces se tiene

m1x
′′
1 = −k0x1 + k1(x2 − x1) + Fe cos(wt),

m2x
′′
2 = −k1(x2 − x1),

(B.1)

donde k0 es la constante de proporcionalidad de la fuerza de restitución entre el primer piso
y el suelo, k1 es la constante de proporcionalidad de la fuerza de restitución entre los dos
suelos. Se supone que la fuerza externa del terremoto, cuya amplitud es Fe, actúa sólo sobre
el primer piso y es de tipo oscilatorio (un terremoto suele durar entre 2 y 3 segundos, por lo
que si T = 2π/w es la duración, entonces normalmente 2 < T < 3).

a) Transforme (B.1) en un sistema de ecuaciones diferenciales de primer orden de la forma
Y′ = AY + F, donde Y,F son vectores de funciones y A es una matriz cuadrada.

En el resto de los apartados tome k0 = 6, k1 = 4,m1 = m2 = 1, w = 3.

b) Resuelva el sistema homogéneo asociado.

c) Si Fe = 21, halle una solución particular del sistema no homogéneo.

d) Si Fe = 21 y x1(0) = x2(0) = x′2(0) = x′1(0) = 0, resuelva el sistema completo.

Problema 2

Una cuenta está restringida a resbalar sin fricción a lo largo de una varilla ŕıgida recta
de longitud 2L. La varilla gira en el plano vertical con velocidad angular constante w > 0
en torno a un punto fijo P en la mitad de la varilla; pero el diseño permite que la cuenta se
deslice por toda la varilla. Sea r(t) la distancia (con signo) de la cuenta a P . La ecuación
diferencial que satisface r(t) es

r′′ = w2r − g sen(wt). (B.2)

a) Resuelva la ecuación homogénea asociada a (B.2).

b) Halle una solución particular de (B.2).
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B. Examen de Ecuaciones Diferenciales Ordinarias

c) Halle r(t) sabiendo que cumple (B.2) y que inicialmente está en la posición r0 y tiene
velocidad inicial v0 (es decir, r(0) = r0; r′(0) = v0). Determine r0 y v0 para que la cuenta
tenga un movimiento armónico simple (es decir, que r(t) sea una oscilación pura). Halle
una condición suficiente sobre r0 y v0 para que la cuenta salga disparada de la varilla.

d) En este apartado se investigará de forma numérica en qué tiempo T la cuenta sale de la
varilla suponiendo que r(0) = 0 y v0 = r′(0) = 1. En este apartado tome w = 3; L = 1 y
g = 9′8. Para ello se plantea el problema de contorno

r′′ = 9r − 9′8 sen(3t), r(0) = 0, r(T ) = 1.

Mediante diferencias finitas exprese r(T/3) y r(2T/3) en función de T . A continuación
aproxime r′(0) = 1 mediante una diferencia finita para encontrar una ecuación numérica
que debe cumplir T .

e) Este apartado ofrece otro enfoque para resolver la ecuación diferencial (B.2). Sea s(t)
una función que cumple s′′ = w2s (que debe hallar). Mediante el cambio de variables
r(t) = u(t)s(t) transforme (B.2) en una ecuación diferencial de primer orden que deberá
identificar y resolver. Ayuda: para este apartado necesitará el valor de las siguientes
integrales: ∫

eax cos(bx) dx =
eax

a2 + b2
(a cos(bx) + b sen(bx)) + C,

∫
eax sen(bx) dx =

eax

a2 + b2
(a sen(bx)− b cos(bx)) + C.
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C. Examen de Análisis Vectorial

Problema 1 Es sabido que el potencial eléctrico U en zonas libres de cargas cumple
∇2U = 0. En este problema, se abordará un pequeño estudio de estas funciones.

a) Sea f : R → IR con derivadas parciales continuas, donde R es un abierto de IR2. Sea
C ⊂ R una curva cerrada sin autointersecciones recorrida en sentido positivo que encierra
el recinto Ω. Pruebe que

∮

C
−f

∂f

∂y
dx + f

∂f

∂x
dy =

∫∫

Ω
(‖∇f‖2 + f∇2f) dxdy.

b) Pruebe que si U cumple ∇2U = 0 en Ω entonces está determinada por sus valores en C.
Para ello considere dos campos U1, U2 tales que ∇2U1∇2U2 = 0 en Ω y que U1 = U2 en
C, defina f = U1 − U2 y aplique el apartado anterior para probar que f = 0 en Ω.

c) Verifique la expresión del apartado a) para f(x, y) = x2 y las dos curvas siguientes: La
circunferencia x2 + y2 = 1 y el cuadrado de vértices (0, 0), (1, 0), (0, 1), (1, 1).

Problema 2 El campo dipolar magnético en un punto x respecto al origen es dado por

Bd(x) =
µ0

4π

[
3(m · x)

r5
x− 1

r3
m

]
,

donde m es el momento dipolar magnético que se supone constante y r = ‖x‖. Tras situar
los ejes de coordenadas de manera adecuada, podemos suponer que m = (0, 0,m).

a) Calcule (sin usar el teorema de la divergencia)
∫∫

S Bd dS si S es la esfera centrada en el
origen y de radio R.

b) Demuestre que divBd = 0.

c) Calcule
∫∫

S Bd dS si S es el cilindro {(x, y, z) : x2 + y2 = R2,−H ≤ z ≤ H} si H > 0.
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C. Examen de Análisis Vectorial
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D. Examen de Matemáticas

Problema 1

Úsese el rectángulo de vértices −R, R, R + 2πi, R− 2πi y la función

f(z) =
exp(i z)

1 + cosh z

para calcular ∫ ∞

0

cosx

1 + coshx
dx,

donde a > 0.

Problema 2

Resuelva mediante la transformada de Laplace la siguiente ecuación integral

φ(x) = senx + 2
∫ x

0
φ(t) cos(x− t) dt.
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D. Examen de Matemáticas
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[23] Erdélyc, A.; Magnus, W.; Oberhettinger, F; Tricomi, F.G. Tables of integrals transforms.
Ed. McGraw Hill, 1954.

[24] Farin, G. Curves and Surfaces for Computer Aided Geometric Design. A Practical Guide.
Academic Press, 1997.

[25] Farlow S.J. Partial differential equations for scientists and engineerings.
Wiley, 1968.
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variable compleja.
Ed. Mir, 1977.

[70] Williams W.E. Fourier Series and boundary value problems.
Ed. George Allen and Irvin, 1973.

[71] Watson, G.N. A treatise on the theory of Bessel functions.
Cambridge University Press, 1966.

[72] Weaver, J. Theory of discrete and continuous Fourier analysis.
Ed. Wiley, 1989.

[73] Weinberger, H.F. Curso de ecuaciones diferenciales en derivadas parciales.
Ed. Reverté, 1970
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