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0. Metodologia Docente

0.1. Matematica y matematica aplicada

i Cuéles son las cualidades fundamentales de las matematicas?: Abstraccidn, rigor 16gico,
el ineludible caracter de sus conclusiones y, finalmente, el amplio campo de sus aplicaciones.

En relacién con la abstraccién, podemos decir que es un rasgo fundamental de toda ciencia.
Sin embargo, en las ciencias de la naturaleza se realizan representaciones directas de fenémenos
de la realidad y posteriormente una generalizacion experimental, por lo que los conceptos o
teorias abstraidas pueden ser rechazadas en cuanto una nueva observacion asi lo exija. Por el
contrario en matemadticas, los conceptos tienen sentido por si mismos, inicamente dejan de
ser aceptados si se demuestra su inconsistencia y las teorias sélo son rechazadas si se descubre
algin error en los razonamientos. Por tanto, la abstraccién va mas alld que en ninguna otra
ciencia, pues aunque sus bases surgen de analogias directas con la realidad, su desarrollo
formal es totalmente independiente de ésta siguiendo su propio camino. Podemos decir que
las ideas matemaéticas se originan en la experiencia. Sin embargo, una vez axiomatizadas,
comienzan una vida propia.

La construccién del edificio matematico, aunque guiada por la intuicién, se realiza con
total rigor logico. Si alguna observacién de la realidad modifica los cimientos sobre los que
se asienta, no por ello la teoria matematica dejard de tener validez, inicamente su aplica-
cién a ese caso concreto habra dejado de tener valor. Por todo esto, las matemadticas van
creciendo, al mismo tiempo que crece el grado de abstraccién. Este rigor logico hace que los
razonamientos matematicos sean incontestables. Citando a J. Hadamard: “FEl objetivo del
rigor matemdtico es confirmar y legitimar las conquistas de la intuicion y nunca ha tenido
otra finalidad.” Gracias a esto, el rigor matematico es el responsable de que las matemaéticas
ocupen un lugar insustituible en las restantes ciencias en las que la creacién de modelos o
abstracciones de la realidad resultan imprescindibles.

Debemos resaltar la amplitud de aplicaciones de las matematicas en la industria, tecno-
logia moderna, mecénica, fisica, economia,... bien en procesos técnicos, bien en expresién de
leyes, influyendo de forma decisiva en su desarrollo. Sirva como ejemplo las importantes con-
tribuciones a estas disciplinas por muchos matemaéticos ilustres como Arquimedes, Newton,
Euler, Legendre, Laplace, Lagrange, Fourier, Gauss, Hamilton, Poincaré, Minkowski, Weyl,
Morgenstein, von Neumann, Nash, ...

Partiendo de la observacion, las ciencias producen una formulacién de leyes y expresiones
matematicas de éstas. De estas leyes vienen las deducciones y, finalmente, la teoria es llevada
a la practica que a su vez proporciona nuevos y poderosos impulsos al desarrollo de la teoria.
Como dos ejemplos destacados podemos citar los siguientes:

El estudio de los fenémenos electromagnéticos obligé a Maxwell a desarrollar las ecuaciones
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de Maxwell, para a partir de estas ecuaciones deducir, por métodos puramente matematicos,
la existencia de las ondas electromagnéticas y que su velocidad de propagacién debia de ser
la de la luz. Tras este resultado propuso la teoria electromagnética de la luz que motivd la
busqueda de ondas electromagnéticas. Estas ondas fueron descubiertas de manera empirica
por Hertz poco después.

Otro ejemplo es el descubrimiento del planeta Neptuno. Es una de las més fascinantes
historias de la astronomia y muestra la precision de la teoria matematica de movimientos
planetarios. En 1820 el astrénomo Bouvard construyé tablas de los movimientos de Jupiter,
Saturno y Urano. Las posiciones de Jupiter y Saturno fueron satisfactorias; pero encontré que
era imposible cuadrar las de Urano. En 1845 el astronomo Le Verrier propuso la existencia
de un planeta exterior para explicar las irregularidades del movimiento de Urano. El 31 de
Agosto de 1846 presenté una memoria en la Academia de las Ciencias francesa, escribié el
18 de Septiembre al astronomo Galle y el 23 de Septiembre el planeta fue descubierto en un
primer intento separdndose tan sélo 1° del lugar predicho por Le Verrier.

Un buen desarrollo matemaético permite obtener resultados potentes al investigador cienti-
fico. Pero también reciprocamente, una ciencia y técnica ambiciosa en sus proyectos empujan
las matematicas hacia cotas superiores de desarrollo a través de los problemas que obligan a
plantearse al matematico.

iDoénde estd la frontera entre la matemadtica pura y la aplicada? Tenemos que decir
que esta frontera es muy difusa puesto que es imposible afirmar a priori si unos resultados
determinados, aunque dentro de un marco de total abstraccién y sin ninguna conexién con
la realidad, podrian aplicarse o no. La investigacién matematica va alejandose de la realidad
empirica; pero a la vez tiene posibilidades totalmente insospechadas de actuar en un nivel
tedrico superior.

Podemos citar el ejemplo de la geometria euclidea. Cuando los griegos axiomatizaron la
geometria partieron de una serie de resultados empiricos obtenidos de los egipcios y babilo-
nios. La culminacién fueron los Elementos de Euclides donde todo el saber estaba rigorizado
al maximo permitido por la época, al tiempo que aparentemente inutil. Podemos citar la
siguiente anécdota atribuida a Euclides: Una vez un alumno le interrumpié su explicacién
sobre geometria preguntandole qué se podria ganar con aquellas elucubraciones tan extranas.
Fuclides se dirigié a su esclavo alli presente: “Dale una moneda y que se vaya, pues necesita
sacar ganancias de lo que aprenden”. Asi llegamos hasta el siglo XVI, cuando se descubrié
que las érbitas de los planetas son elipses, las trayectorias de la balistica son pardbolas, los
telescopios han de se paraboloides, ... Més ain la geometria euclidea fue hecha algebra por
medio de la geometria analitica de Descartes, a continuacion la generalizacién del estudio de
las coémicas llevd al estudio de la diagonalizaciéon de matrices simétricas, y posteriormente al
estudio de diagonalizacion de endomorfismos en espacios de infinitas dimensiones, que ayudé
a resolver las ecuaciones integro-diferenciales a principios del siglo XX que aparecen en mul-
titud de campos de la fisica. Asimismo el estudio de los operadores diagonalizables en los
espacios de Hilbert llevé al formalismo matemaético de la mecédnica cudntica.

Otro ejemplo sacado de la historia nos lo proporciona el imperio romano. Los romanos
eran un pueblo practico y hacian alarde de su practicismo. Disenaron y completaron grandes
proyectos de ingenieria; pero se negaron a considerar cualquier idea que no pudiera venir de
las aplicaciones practicas. La actividad romana acerca de las matematicas viene dada por
Cicerén: “Los griegos dieron al geometra el mds alto honor. Pero nosotros hemos establecido
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como limite de este arte su utilidad para medir y contar”. La incapacidad de los romanos para
desarrollar las matematicas era notoria. La leccién que se puede aprender es que los pueblos
que desdenan los trabajos de matemaéticos y cientificos altamente tedricos y desacreditan su
utilidad ignoran la forma en la que se han presentado importantes desarrollos practicos.

0.2. La ensenanza de las matematicas en las escuelas técnicas

La ensenanza de las matemaéticas en una escuela técnica plantea el problema de elegir qué
matematicas hay que impartir y como hacerlo.

Todo esto nos lleva a distinguir entre las necesidades externas de las matematicas, origi-
nadas por las demas ciencias y las necesidades internas relativas a unificacién, generalizacién,
... Son las primeras las que deben estudiarse en las escuelas técnicas, adecuando los planes
de estudio a tal fin. Estos planes deben proporcionar al estudiante la capacidad de atacar los
problemas que se planteardn en el ejercicio de su profesion.

Uno de los principales problemas que surgen en la ensenanza de las matemadticas en una
universidad tecnoldgica es el siguiente:

;. Coémo motivar al alumno en las clases de matematicas?

Es un error frecuente suponer que un estudiante de una carrera tecnoldgica estd interesado
en las matematicas como un fin en si mismas. En un curso demasiado formalista el alumno
ve hasta la saciedad el siguiente modelo secuencial de exposiciéon de la teoria:

Definicién | = | Ejemplos :’Teorema‘:’Demostracién‘:’Corolarios

La imponente sucesién de teoremas frustra al alumno, especialmente en los primeros anos
de universidad. El resultado inmediato es la falta de motivacién y la insatisfaccién del alumno,
lo que provoca un alto porcentaje de abandonos y la sensacién de que las matemaéticas son
demasiado abstractas y carentes de utilidad.

Una de las preguntas que se formulan los alumnos al ver contenidos matematicos en sus
planes de estudio es

(Para qué sirven las matematicas?

Creemos que no hay mejor manera de motivar al alumno que la conexién con otras asig-
naturas de la carrera. No debemos olvidar que la mayor parte de las teorias matematicas
surgieron de ejemplos fisicos concretos. Citamos a M. Kline [44]:

Mathematics is the key to our understanding of the physical world... Should such
uses and values of mathematics be taught in mathematics courses? Certainly!
Knowledge is a whole and mathematics is part of that whole... To teach mathe-
matics as a separate discipline is a perversion, a corruption and a distortion of true
knowledge. Fach subject is an approach to knowledge and any mixing or overlap
where convenient and pedagogically useful, is desirable and to be welcomed. Some
of these relationships can serve as motivation; others would be applications; and
still others would supply interesting reading and discussion material that would
vary and enliven the content of our mathematics courses.
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Mathematics is not an isolated, self-sufficient body of knowledge. It exists pri-
marily to help man understand and master the physical, the economic and the
social worlds... This is also the primary reason for the presence of mathematics
in the curriculum. We are therefore obliged to present this value of mathematics.
Anything less is cheating the student out of the fruit of his learning

The natural motivation is the study of real, largely physical, problems. Practically
all the major beanches of mathematics arose in response to such problems and
certainly on the elementary level this motivation is genuine. It may perhaps seem
strange that the great significance of mathematics lies outside of mathematics but
this fact be reckoned with. For most people, including the great mathematician,
the richness and values that do attach to mathematics derive from its use in
studying the real world. Mathematics is a means to an end. One uses the concepts
and reasoning to achieve results about real things.

Plutarch said, “The mind is not a vessel to be filled but a fire to be kind-
led.” Motivation kindles the fire. The use of real and especially physical problems
serves not only to motivate mathemaitics but to give meaning to it... Mathemati-
cal concepts arose from such physical situations or phenomena and their meanings
were physical for those who created mathematics in the first place. To rob the
concepts of their meaning is to keep the rind and to throw away the fruit.

Asi pues, surge una pregunta:
{Debe un profesor de matematicas ensenar contenidos no matematicos?

En nuestra opinién la respuesta debe ser no. Pero, también, el profesor de matematicas
debe tener conocimiemtos de otras disciplinas para apoyar la docencia de las herramientas
matematicas que el alumno necesita a lo largo de sus estudios. Es importante mostrar la
interactividad entre las matemadticas y las diferentes disciplinas cientificas [54, 67]. Por tanto,
creemos adecuado, en la medida de lo posible, seguir el siguiente esquema:

Problema real‘ = ’Formulacic')n matemética‘ = ’Teoria‘ = ’Validacién‘ = ’Predicciones

La teoria introducida puede alcanzar toda su amplitud generalizadora e incluso puede
finalmente construirse la teoria axiomaética de la que se deducen como casos particulares los
problemas concretos que hicieron introducir el tema.

La tendencia a tratar sélo el problema concreto puede conducir a que los cursos de ma-
tematicas se conviertan en recetarios. Esta desviacién se ha dado a lo largo del tiempo como
reaccion ante la ensefianza viciada de teoricismo que en algunos casos se ha producido. La
reaccion antitedrica provocé la proliferacion de “ingenieros de manual”, técnicos excesiva-
mente habituados a resolver los problemas mediante los numerosos manuales que proliferaron
por entonces. El constante ensanchamiento de la técnica y la creciente complejidad de los
problemas hacen inttil el empeno de dominar toda la casuistica. Las técnicas concretas enve-
jecen rapidamente, lo que hace mas patente ain la necesidad de dar una formacion abierta,
dindmica y polivalente que capacite al titulado profundizar posteriormente en otras dreas.

Como ya comentabamos, una gran parte del desarrollo tecnolégico se basa en la aplicacién
de los resultados obtenidos en investigacion bésica. Desdefnar la teoria frente a la practica nos
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parece imponer una limitacién en la formacién de nuestros alumnos que puede tener graves
consecuencias a la hora de abordar una especializacién seria.

De todo ello se desprende que durante su estancia en los primeros anos de universidad,
el futuro ingeniero debe adquirir una formacién bésica sin pretender altas especializaciones.
Sobre esta base el estudiante podra construir posteriormente una estructura sélida y cursar
la especialidad de modo adecuado.

Creemos que debemos aspirar a alcanzar un equilibrio: Definiendo los términos técnicos
claramente. Enunciando todos los teoremas. Demostrando todos salvo los que por limitacién
temporal sean excesivamente largos o los que la demostracién no aporte algo significativo.
Establecer teoremas tan generales como sea posible, exceptuando los casos en los que una
generalizacion obligue a complicar sustancialmente la demostraciéon de un resultado sencillo
o si no se utiliza efectivamente en la practica.

0.3. Métodos de ensenanza

Son multiples los métodos de ensenanza. Debemos tener presente que la ensenanza no
debe olvidar sus objetivos; por lo que una excesiva erudicién no es el conducto 6ptimo. Como
se ha dicho, el arte de ensenar consiste en callar lo que no es necesario decir.

Comencemos por examinar las dos técnicas pedagdgicas mas extendidas y en cierto modo
mas antagonicas.

Leccion magistral. El profesor expone un tema relacionandolo con los temas anteriores. Ca-
ben diversas posibilidades: exposicién ordenada de los temas (de acuerdo con el esque-
ma légico definicién-proposicién-demostracion) o el planteamiento por el profesor de un
problema practico cuya discusion origine el desarrollo de toda una teoria.

Método heuristico. El trabajo personal del alumno es fundamental. Se trata que el estu-
diante analice por su cuenta la materia bajo la supervisién del profesor que indica los
objetivos y ayuda con sus puntualizaciones y explicaciones (véase [53]).

Ambos métodos deben ser complementarios y un buen profesor ha de extraer lo mejor de
ambos. Desgraciadamente, el método heuristico es muy lento, por lo que sélo es aplicable a
grupos reducidos.

Hemos intentado construir un proyecto docente flexible que ocupa una posicién intermedia
entre los anteriormente descritos. No distinguiremos entre clases tedricas y de problemas,
plantearemos problemas para interpretar el significado de un teorema o una definicién o para
introducir una determinada parte de la teoria y al final de cada tema para asentar todos
aquellos resultados que se acaban de explicar y asi como sus aplicaciones.

Aconseja el matematico Puig Adam recurrir a la intuicién. Como homenaje a su figura
reproducimos su famoso decdlogo de la diddctica, donde cada precepto queda resumido en una
sola palabra:

| - Adaptacion. No adoptar una didactica rigida, sino acomodarla en cada caso al alumno,
observandole atentamente.

Il - Genetismo. No olvidar el origen concreto de la matematica ni los procesos historicos
de su evolucién.
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Il - Vitalismo. Presentar la matematica como una unidad en relacién con la vida natural
y social.

IV - Graduacion. Graduar cuidadosamente los planos de abstraccién
V - Heurismo. Ensenar guiando la actividad creadora y descubridora del alumno

VI - Interés. Estimular la actividad despertando interés directo y funcional hacia el objeto
del conocimiento.

VIl - Autocritica. Promover en todo momento la autocorreccion.
VIII - Maestria. Conseguir cierta maestria en las soluciones antes de automatizarlas.
IX - Expresion. Cuidar que la expresién del alumno sea traduccién fiel de su pensamiento.

X - Exito. Procurar a todos los alumnos éxitos que eviten su desaliento.

0.4. Desarrollo Tedrico

Hemos optado por la leccién magistral a la hora de comunicar al alumno los conocimientos
que necesita y que hemos fijado en nuestros objetivos. No significa esto que las clases tedricas
deban ser un mondlogo. El profesor debe estimular la participacion de los alumnos, por
ejemplo, mediante la intercalacién de preguntas que les obliguen a pensar. Es tarea del
profesor aprovechar estas preguntas para hacer méas dindmica su explicacién, distinguiendo
cudles son interesantes para ser contestadas en ese momento y cudles son preferibles declinar
la respuesta e invitar al alumno a seguir su intuiciéon y buscar dicha respuesta por si mismo.
Este didlogo permite al profesor conocer mejor a los alumnos, corregir errores, explicar con
mayor fluidez los puntos que a los alumnos les resulten faciles, insistiendo en los mas dificiles
e incluso alterar el ritmo de la clase a fin de adecuarlo mas a las caracteristicas del grupo en
ese momento.

Por otra parte, siempre que el tema lo permita, podremos cambiar el sistema de conferencia
por el heuristico, guiando al alumno mediante algunas sugerencias que le ayuden a superar los
pasos dificiles. Es provechoso seguir su razonamiento hasta el final, aunque haya escogido un
camino equivocado o excesivamente largo, ya que de los errores también se aprende. También
creemos conveniente dejar al alumno la demostracién de alguna cuestion tedrica que le sea
accesible, con lo que fomentaremos el habito de la deduccién y la préactica en el uso de los
conceptos adquiridos. Al mismo tiempo adquiriré practica en abordar problemas nuevos,
buscando un modelo conocido que se ajuste a la cuestion planteada.

Otro sistema para favorecer la presencia activa del alumno es entregar apuntes por an-
ticipado. La distribuciéon de apuntes tiene puntos a favor y en contra. Entre los aspectos
positivos el alumno no distrae su atencién con la necesidad de tomar notas. En contrapar-
tida este sistema puede degenerar en que los alumnos dejen de asistir a clase, no consulten
bibliografia, distraigan su atencién al tener la seguridad de poseer de antemano por escrito
la informacién necesaria, ... El método de apuntes es ideal en situaciones més bien utdpicas,
pocos alumnos por grupo, muy trabajadores e interesados en el tema; situaciéon que no es con
mucho la actual en nuestras aulas.

Los ejemplos pueden utilizarse como comprobacién de la teoria permitiendo en ocasiones
encontrar la técnica necesaria para la demostracién del caso general. Es indudable que dan
mayor valor a la teoria, pudiendo emplearse para generar y mejorar la intuicién. Asimismo,
no sélo deben mostrar porqué funcionan los métodos, sino también cuando no. Aprendemos
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mucho de problemas cuya solucién no corresponde con lo que esperabamos. A menudo se
desarrollan nuevas ideas al investigar las razones por las que algunos métodos fallan.

Por otra parte, los ejemplos no se referiran a las matematicas, sino también a otras ciencias
para captar por un lado la atencién del estudiante y por otro abrirle posibilidades de aplicacién
de los nuevos conceptos. Es por todo ello que los ejemplos irdn intercalados, precediendo en
unos casos y complementando en otros el desarrollo tedrico. Este es un ob jetivo para perseguir
en todos los temas y creemos que el programa que proponemos se presta a ello.

Es conocido que las demostraciones matematicas contribuyen a formar la mentalidad
critica del alumno y a hacerle despreciar argumentos falsos. Sin embargo, en ocasiones,
cuando la prueba no aporta nada nuevo de interés es recomendable suprimirla. En estos casos
es preferible la delimitacién, mediante ejemplos y contraejemplos de la validez del teorema.

0.5. Desarrollo practico

El desarrollo préactico es un complemento imprescindible del desarrollo tedrico ya que en
ocasiones un problema resuelto inmediatamente después de un resultado tedrico sirve para
su comprension definitiva, y en otras un problema puede generalizarse dando lugar a una
interesante propiedad.

A grandes rasgos, los objetivos del desarrollo practico son los siguientes:

1. Aclarar los resultados tedricos ya conocidos.
2. Aplicar la teoria en la resolucion de problemas de naturaleza real, fisicos, técnicos, ...

3. Adquirir habilidad tanto en el manejo de las técnicas de resolucién, como en reducir
problemas a modelos ya conocidos.

Creemos que el salto de la teoria a una aplicacién concreta es enorme. Exige estar muy
familiarizado con los factores que intervienen en la modelizacién del problema y podemos
decir que no se comprende bien un concepto hasta que no se aplica en numerosas situacio-
nes concretas, lo que permite asimilar el concepto probando su potencia y limitaciones. Es
por todo ello que las clases de problemas no pueden ser suprimidas en aras de una mayor
informacién tedrica.

Es importante no limitarnos a resolver una serie de problemas concretos en la pizarra;
sino que la participacién del alumno en el desarrollo practico debe ser totalmente activa. El
profesor también debe explicar porqué otros métodos no funcionan, resaltar la importancia
de algunas de las hipdtesis, corregir errores de concepto, etc.

0.6. Ubicacién de las asignaturas

La asignatura de Algebra Lineal es troncal, estd en el primer curso de la carrera de
ingeniero industrial tiene 6 créditos y es anual.

La asignatura de Ecuaciones Diferenciales Ordinarias es troncal, estd en el segundo
curso de la carrera de ingeniero industrial tiene 3 créditos y es del primer cuatrimestre.
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La asignatura de Analisis Vectorial es troncal, estd en el primer curso de la carrera de
ingeniero de telecomunicacién tiene 4’5 créditos y es del segundo cuatrimestre.

La asignatura de Matematicas es troncal, estd en el segundo curso de la carrera de
ingeniero de telecomunicacién tiene 6 créditos y es del primer cuatrimestre.

0.7. Evaluacion

La ultima etapa de la ensefianza es la evaluacion. El profesor ha de determinar de algin
modo cuando un alumno ha alcanzado los objetivos del programa. El método ideal consistiria
evidentemente en un conocimiento personal y profundo de las capacidades y aptitudes de cada
uno de los alumnos. El elevado niimero de alumnos en las aulas hace imposible llevar a la
practica este método en la mayoria de los casos.

Optaremos por el clasico examen con dos convocatorias por matricula. En cuanto a las
caracteristicas generales de estas pruebas debemos observar algunos criterios generales:

1. Cada prueba serd amplia, intentando evitar el factor suerte, y consistird de cuestiones
tedricas y de problemas. En cualquier caso deberan evitarse los exdmenes de naturaleza
puramente memoristica.

2. Se debe exigir al alumno la correcta utilizacién del lenguaje y terminologia propios de
la asignatura.

3. Es necesario valorar la exposicion légica, deduccion e intuicién de las cuestiones en la
resolucién de los problemas.

4. Las pruebas se haran simultaneamente a todos los alumnos del mismo curso, para evitar
los agravios comparativos que podrian surgir entre exdmenes distintos. Por otra parte,
un mismo profesor debe corregir la misma pregunta a todos los alumnos, incluso a los
de grupos a los cuales el profesor no imparta clase, de forma que la tendencia personal
afecte por igual a todos los alumnos del curso.

En los apéndices A, B, C y D hemos incluido un modelo de examen final de cada asigna-
tura.

0.8. El uso de libros

El libro de texto ha extremado posiciones como medio didactico, exagerando unas veces,
hasta hacerlo imperar en la ensefianza como exclusiva fuente del saber, negando otras su
eficacia.

En la ensenianza media la mayoria de los alumnos han tenido a su disposicién uno de estos
libros por cada asignatura. No ha habido consulta bibliografica adicional por el estudiante.
Llega, pues, a la universidad con el mal habito de consultar una tinica fuente de informacién.
Es ésta una costumbre que debemos ayudarle a olvidar.

Los contenidos de la asignaturas de las que consta este proyecto docente se encuentran
bédsicamente en un libro para cada asignatura: Para las asignaturas de Algebra Lineal y
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Ecuaciones Diferenciales Ordinarias proponemos [37], para la de Andalisis Vectorial usaremos
[50] y para la de Matemdticas ofrecemos [40].

Pero esto no significa que nos debamos restringir a un sélo libro para cada asignatura.
Como bibliograffa suplementaria incluimos los siguientes libros: Para Algebm Lineal: [51, 55,
68]. Para Ecuaciones Diferenciales Ordinarias: [11, 13, 45, 62, 75]. Para Andlisis Vectorial:
[12, 17, 61]. Puesto que los alumnos de la asignatura de Matemdticas ya son de segundo curso,
podemos dar una bibliografia mas abundante; para cada tema proponemos varios libros, que
se detallardn cuando se exponga el proyecto docente mas adelante. Podemos decir que los
contenidos de las asignaturas se encuentran dispersos en varios libros, aunque concentrados
en uno solo. Es tarea del profesor conseguir un todo homogéneo. No se trata, obviamente,
de elaborar una asignatura a base de “pegar”trozos de distintos libros.

Es conveniente senalar al alumno que, aunque la asignatura consiste en la materia expuesta
en clase, no se debe limitar a estudiar esta materia, ya que malas interpretaciones de lo dicho
en clase o errores no percibidos pueden crearle gran confusién. El alumno debe tomar apuntes
en clase y consultar con el profesor aquello que no entienda; pero al mismo tiempo debe
acostumbrarse a manejar libros de consulta que complementen la explicacion del profesor.

Pero la conveniencia de manejar libros de consulta se convierte en necesidad en las clases
practicas. Los alumnos no deben resolver sélo los problemas planteados en clase, sino que
han de usar la bibliografia que el profesor les ha suministrado, sobre todo de libros donde se
combinen los problemas resueltos con los propuestos, para conseguir la habilidad suficiente
en el manejo de los métodos y técnicas de resolucién.
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Introduccion

La finalidad de este curso es presentar la teoria basica y los métodos propios del algebra
lineal, en vista a posteriores estudios o aplicaciones.

Creemos que los ejemplos concretos han de preceder a la abstraccion. Sin embargo, en el
temario no hemos incluido las matrices y sistemas de ecuaciones lineales en primer lugar. El
algebra lineal trata de vectores y creemos que los estudiantes necesitan ver los vectores (en
IR? 6 IR? con el fin de adquirir percepcién geométrica.

El programa no es parco en aplicaciones. Es importante que los alumnos puedan apreciar
la gran variedad de problemas en los que puede aplicarse el dlgebra lineal.

Hemos distribuido la asignatura en estas unidades:
Capitulo 1 GEOMETRIA DE R? v IR?.
Capitulo 2 MATRICES.
Capitulo 3 SISTEMAS DE ECUACIONES LINEALES.
Capitulo 4 ESPACIOS VECTORIALES.
Capitulo 5 APLICACIONES LINEALES.
Capitulo 6 CURVAS DE BEZIER.
Capitulo 7 ESPACIO VECTORIAL EUCLIDEO.
Capitulo 8 APROXIMACION POR MINIMOS CUADRADOS.
Capitulo 9 TEORIA ESPECTRAL.
Capitulo 10 APLICACIONES DE LA TEORIA ESPECTRAL.

Comentamos brevemente el contenido de cada uno de los capitulo.

El CAPITULO 1 trata de vectores de IR? é IR y desarrolla muchos conceptos que se
repiten a lo largo del curso haciendo hincapié en la intuicién geométrica. En primer lugar
desarrollamos las operaciones elementales (suma y producto por escalares) e introducimos los
conceptos de independencia lineal, sistemas generadores y bases. A continuacién introducimos
el producto escalar usual y el producto vectorial. Aplicamos estas operaciones a problemas
geométricos concretos. Por dltimo se estudian algunas formas de las ecuaciones de rectas y
planos.

El CAPITULO 2 estudia las matrices. Introducimos las matrices para mostrar cémo escri-
bir sistemas de ecuaciones de manera compacta. Por medio de esta introduccién definimos las
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operaciones basicas: suma, multiplicacién por escalares, multiplicacién de matrices y poten-
ciacion de matrices. Estudiamos sus propiedades elementales, asi como aplicaciones a modelos
concretos, como los procesos estocdsticos o la teoria de grafos. El tema se completa con la
introduccién del determinante, la inversién de matrices y las operaciones por bloques.

En el CAPITULO 3 estudiamos los métodos directos de resolucién de los sistemas de
ecuaciones lineales. De todos los métodos disponibles utilizamos el algoritmo de eliminacion
de Gauss por ser el que menos operaciones necesita. Hacemos énfasis en la representacién
matricial del método de Gauss que permiten las factorizaciones LU y de Choleski. Explicamos
el algoritmo de Gauss-Jordan para el calculo de la inversa y el rango de una matriz. Aplicamos
la teoria desarrollada para resolver problemas concretos de otras ramas de la ciencia, como
son el modelo de trafico en una red de calles o el calculo de las intensidades en determinados
circuitos eléctricos.

En el CAPITULO 4 estudiamos la nocién de espacio vectorial, explicando los ejemplos
mads importantes y en especial los espacios de funciones. Definimos las ideas basicas del
algebra lineal: subespacios, dependencia lineal, sistemas generadores, bases, dimensién y
célculo coordenado.

El CAPITULO 5 estudia las aplicaciones lineales. Damos numerosos ejemplos geométricos.
Estudiamos las propiedades de las aplicaciones lineales y el ntcleo y la imagen. El punto
mas importante del tema es el estudio de la matriz asociada a una aplicacién lineal entre
espacios de dimension finita. Se procede a la construccion y se considera la relacién entre la
matriz de una aplicacion lineal y ésta. Se usan las aplicaciones lineales en muchos campos
diversos: encontrar soluciones polinémicas de determinadas ecuaciones diferenciales, estudio
de proyecciones en el diseno grifico, las férmulas de cuadratura de Newton y de Gauss, calcular
la primitiva de algunas funciones, ...

En el CAPITULO 6 se introducen las curvas de Bézier. Creemos conveniente la inclusién
de este tema por dos motivos: Estas curvas son muy usadas en el diseno industrial y una
introduccion a este tipo de curvas no requiere herramientas matematicas muy sofisticadas. El
algoritmo de de Casteljau (en forma matricial) es el elegido para implementar las curvas de
Bézier.

El CAPITULO 7 trata los espacios vectoriales euclideos. Podemos hablar de longitudes y
angulos entre vectores, de modo que la geometria que obtenemos es esencialmente idéntica
a la de IR?. Dos son los conceptos que, por su importancia y aplicacién, estdn presentes
a lo largo del tema: el de la proyeccion ortogonal y el de sistema ortogonal de vectores.
El primero de ellos juega un papel clave en el método de los minimos cuadrados. Como una
aplicacién aproximamos funciones mediante las proyecciones de éstas sobre ciertos subespacios
obteniendo entre otras cosas, aproximaciones de Fourier.

En el CAPiTULO 8 desarrollamos el método de los minimos cuadrados utilizado para
ajustar una recta a una nube de puntos obtenidos experimentalmente. Pero no nos detene-
mos en rectas, sino que aproximamos mediante parabolas, cibicas o incluso por una clase
mas amplia. También ajustamos mediante un modelo no lineal importante: el exponencial.
Asimismo, vemos un método sencillo para calcular la distancia entre variedades lineales de
R™.

En el CAPITULO 9 estudiamos los conceptos de valor propio y vector propio asi como
sus propiedades mas importantes. Este estudio nos permite descomponer una cierta clase de
matrices (las diagonalizables) como SDS™!, siendo S una matriz invertible y D una matriz
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diagonal. También estudiamos los valores y vectores propios de matrices simétricas, lo que
nos permite encontrar una factorizacién del tipo SDS*, siendo S una matriz ortogonal y D
una matriz diagonal.

En el CAPITULO 10 aplicamos la teoria desarrollada en el tema anterior. Vemos cémo
calcular de potencias de matrices diagonalizables, estudiamos las sucesiones dadas por una
recurrencia lineal, los procesos de Markov y las ecuaciones de cénicas y cuadricas.

El libro bésico que seguimos es [37], aunque en cada tema indicamos bibliografia suple-
mentaria donde el alumno puede ampliar temas o encontrar problemas propuestos y resueltos.
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1. Geometria de R* y R*

OBJETIVOS:

Saber las operaciones basicas en IR? y en IR3: suma, producto por escalares,
producto escalar y producto vectorial. Empezar a que se intuyan conceptos més
abstractos como independiencia lineal, sistema generador o base. Aplicar todo
lo anterior a problemas geométricos concretos. Reconocer las ecuaciones mas
importantes de rectas y planos.

Los! antecedentes histéricos del estudio de la geometria plana y espacial se remontan a la
introduccién por Descartes (1596-1650) en el siglo XVII de la geometria analitica que lleva
su nombre. La idea de vector entré en las matematicas calladamente. Stevin (1548-1620)
empleo la ley del paralelogramo en problemas de estatica y Galileo (1564-1642) enuncié esta
ley de forma explicita.

Después de la representacion geométrica de los nimeros complejos proporcionada por
Wessel (1745-1818), Argand (1768-1822) y Gauss (1777-1855) fuera algo familiar, los ma-
tematicos se percataron de que los nimeros complejos podian usarse para trabajar los vectores
en el plano. Sin embargo, la utilidad de los ntimeros complejos esta limitada a problemas
planos. La creacién de un analogo tridimensional 1util de los ntimeros complejos se debe a
Hamilton (1805-1865) cuando descubrié los cuaterniones en 1843.

Mientras Hamilton trabajaba con sus cuaterniones, Grassmann (1809-1877) estaba des-
arrollando la idea moderna de vector. En este sentido, Grassmann definié de forma moderna
la suma y el producto por escalares de vectores de IR" e introdujo dos clases de productos:
el interior (véase la introduccién al Capitulo 7) y el exterior. Aplicé estos productos para
resolver problemas geométricos concretos (el producto exterior de vectores no es hoy una
herramienta estdndar en la matemédtica moderna, véase [33] para un tratamiento moderno).

La formulacién final se debe a Gibbs (1839-1903) en un panfleto de circulacién privada
entre sus alumnos y por Heaviside (1850-1925) en el libro Electromagnetic Theory publicado
en 1893. En ambos libros se introdujeron el producto escalar y el vectorial de forma moderna.
1.1. La geometria y el dlgebra de vectores

Comenzamos por definir

R? = {(z,y) : v,y € R}, R®={(x,y,2):2,y,2 € R}

'La mayor parte de las notas hitéricas de este proyecto docente estén sacadas de [43].
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e interpretamos geométricamente lo que es un vector? de IR? y de IR® para a continuacién
definir de forma algebraica la suma de vectores y el producto por escalares. Al mismo tiempo
damos la idea geométrica de estas operaciones (para la suma, la regla del paralelogramos;
y para el producto por escalares, hablaremos de elongaciones, contracciones y sentido de
vectores). Véase la figura 1.1.

Y

a

Figura 1.1.: Un vector de IR?. Explicacién geométrica de la suma, resta y multiplicacién por
escalares.

Estas operaciones se generalizan facilmente a R™ y a C”. Las ideas de combinacion
lineal, independencia lineal y sistema generador se comprenden facilmente mediante
ejemplos geométricos.

Con esta élgﬁ)bra rudimentaria de Vﬂ:)tores podemos calcular el vector que une dos puntos
ay b. De a+ ab = b deducimos que ab = b — a. Véase la figura 1.2.

Y

Figura 1.2.: Vector que une dos puntos.

En realidad no es demasiado preciso lo que se ha hecho, pues hablando con rigor, no es lo
mismo un espacio de puntos (espacio afin) que un espacio de vectores (espacio vectorial) o
dicho de un modo mas coloquial: no es lo mismo saber dénde estamos que saber hacia dénde

2En todo el proyecto docente usaremos el convenio de representar a los vectores con letras mintsculas en
negrita: u,v,.... Debido a la imposibilidad de diferenciar las negritas en pizarra, creemos oportuno (tal
como se hace en el resto de asignaturas) representar a los vectores con una flechita encima: ,,.... Creemos
oportuno desde el punto de vista pedagdgico representar a los vectores y a los escalares de distinta manera,
aunque por el contexto sea claro.
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1.1. La geometria y el dlgebra de vectores

vamos?. Sin embargo, ya que como los puntos y vectores serdn representados de la misma

manera (mediante elementos de IR™), los vamos a tratar de la mima manera. Creemos que la
introduccién prematura de estructuras algebraicas perjudican, ya que el alumno no entiende
la razén de definir un nuevo concepto mas general sin encontrar aplicaciones concretas.

Pensamos oportuno incluir como ejemplos o problemas guiados una serie de teoremas
geométricos en donde el alumno pueda convencerse de la potencia de los métodos vectoriales.
Entre estos podemos incluir:

a) Si se unen los puntos medios de un cuadrilatero arbitrario se obtiene un paralelogramo.

b) Las tres medianas de un tridngulo son concurrentes.

—
c) Si a, b y ¢ son tres puntos no alineados y x, y son puntos que cumplen ax = lab y
— — — —
ay = Aac, entonces Xy = Abc (teorema de Tales).

a b a x b

Figura 1.3.: Tres teoremas de geometria afin.

Las demostraciones siguientes muestran con claridad la ventaja de usar vectores como
entidades fundamentales frente al calculo coordenada a coordenada:

a) Sean a,b,c y d los cuatro puntos. Hay que probar que el vector que une los puntos
(a+d)/2y (a+ b)/2 coincide con el vector que une los puntos (d +c¢)/2y (b+c)/2.

b) Sea p el punto medio del segmento be y sea g el punto del segmento ap tal que %a_f) = ag.
Poco cuesta probar que g = (a+ b + ¢)/3. De aqui ya se puede deducir que las tres
medianas concurren en g. Ademds se ha probado que la distancia entre el baricentro y el
pie de la mediana es la tercera parte de la longitud de la mediana.

c) Es trivial a partir de Xy =y —x = (a+ \aé) — (a + )\:i))).

Las pruebas coordenada a coordenada no hacen mas que obscurecer la situacién. Por
ejemplo, en la demostracién de la concurrencia de las tres medianas, atin tomando un sistema
adecuado, a = (0,0), b = (b,0), ¢ = (c1, c2), habria que probar que si r es la recta que pasa
por (0,0) y por ((b+ c1)/2,c2); si s es la recta que pasa por (b,0) y por (c1/2,c2/2) y sit es
la recta que pasa por (c1,c2) y por (b/2,0); entonces r, s y ¢ son concurrentes®.

3Esta distincién es clara en geometria diferencial, en donde hay una clara diferencia entre los puntos de una
variedad y los vectores tangentes a ésta.
4La introduccién de un sistema de coordenadas oblicuo hace la demostracién un poco més sencilla: basta
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1. Geometria de IR? y IR3

1.2. El producto escalar

Se define el producto escalar de los vectores u = (u,...,up) y v = (vi,...,v,) de R" de
la forma siguiente:
(u,v) = ugvy + -+ - + upvy.
La definicién abstracta de producto escalar en espacios vectoriales se dejard para més adelante.
De momento hacemos énfasis que el resultado es un ntmero real.
A continuacién damos las propiedades algebraicas mas importantes: Si u,v,w € R" y si
a € IR, entonces

a) (u,v) = (v,u).

o

au,v) = a(u, v).

) (
) (u,v+w) = (u,v)+ (u,w).
¢) (ou
) (

[N

u,u) >0y (u,u) =0siysélosiu=0.

Las demostraciones son muy rutinarias y sélo hacemos alguna de éstas. Recordamos cémo
se calculan longitudes en el plano y en el espacio. En IR?, la longitud del vector u = (a,b) es
Va2 4 b2, como se aprecia en la figura 1.4. Observamos que a® 4 b% = (u, u).

c
,
b u=(a,b) u = (a,b,c)
0 b
Va2 + b2 aﬁ y
a >

Figura 1.4.: Longitud de vectores en IR? y en IR3.

En IR?, si nos fijamos en la figura 1.4, la longitud del vector u = (a,b,c) (aplicando
el teorema de Pitdgoras dos veces consecutivas) vale V72 + ¢? = va? + b 4+ ¢2. De nuevo
tenemos que (u,u) = a? + b% + ¢®. Lo que motiva la siguiente definicién:

La longitud o norma de un vector u € R" se define como |ju| = ++/(u,u). Las
propiedades bésicas son las siguientes: Si a € IR y u € IR”, entonces

a) |lul| =0 siy sélo si u=0.

b) [ = |of[u].

tomar a = (0,0), b = (1,0) y ¢ = (0,1). Pero a un nivel temprano, un alumno medio no comprende
bien la diferencia entre conceptos afines y euclideos. Claramente, aqui se ha usado que los conceptos de
concurrencia y mediana son afines.
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1.3. Usos geométricos del producto escalar

Dividiendo un vector no nulo por su norma se obtiene otro vector de norma 1 con la misma
direccion y sentido. Este proceso se suele llamar normalizacion.

El producto escalar también sirve para medir dngulos. Para motivar la definicién de angulo
entre vectores de IR", primero vemos cémo se usa el producto escalar para calcular angulos
entre vectores de IR%. La herramienta bésica es ahora el teorema del coseno de trigonometria
plana. Vamos a calcular el angulo 6 entre los vectores u y v.

Figura 1.5.: Angulo entre vectores de IR?.

Tras aplicar el teorema del coseno obtenemos |[u — v||* = [Ju||? + [|v|?* — 2|ju]|||v]| cos 6.
Por otra parte, desarrollando de forma algebraica,

= v[* = {u—v,u—v) = [[ul® +|v[]* - 2(u,v).

Luego, en IR? se cumple que si 6 es el dngulo que forman los vectores u y v entonces (u, v) =
[lul|||v|| cos 8. Esto motiva la definicién general de dngulo entre vectores de IR". Sin embargo,
hemos de demostrar previamente la desigualdad de Cauchy-Schwarz-Bunjakowski para
que la definicién general de angulo entre vectores de IR" sea rigurosa. Con esta desigualdad
podemos definir el dngulo entre dos vectores u y v no nulos de IR"™ como el tnico valor de
0 € [0, 7] de modo que
u,v
cosf = <7>
[[ul[[[v]]
Decimos que dos vectores u y v son perpendiculares u ortogonales si (u,v) = 0. Podemos
enunciar y probar el teorema de Pitigoras en IR™: sean u,v € IR", entonces |[u + v|? =
[lul|? + ||v||? si y sdlo si {(u,v) = 0.

La desigualdad de Cauchy-Schwarz-Bunjakowski permite ademéas demostrar la desigualdad
triangular.

1.3. Usos geométricos del producto escalar

La nocién de norma de vectores permite hablar de la distancia d(a,b) entre dos puntos
a,b e R"

Hacemos algunos ejemplos de problemas geométricos concretos relativos a distancia y
dngulos en IR?, en donde el uso del producto escalar mecaniza los calculos (la mayoria estan
sacados del primer capitulo de [55]). Al igual que hemos hecho con la geometria afin, podemos
incluir, si el nivel de la clase lo permitiera, algunos ejemplos o problemas guiados sobre algunos
teoremas de la geometria euclidea. Por ejemplo, los siguientes (véase la figura 1.6):
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1. Geometria de IR? y IR3

Si uy v son dos vectores, entonces |[u+ v|? + [[u — v||? = 2|[u||? + 2||v||? (La ley del
paralelogramo).

Las tres alturas de un tridngulo son concurrentes (en un punto llamado ortocentro).

Las tres mediatrices de un tridngulo son concurrentes (en un punto llamado circuncen-
tro).

El baricentro g, el ortocentro h y el circuncentro q estan alineados (en la llamada recta
de Euler). Ademas, se cumple g = %h + %q.

h
v
u
a

Figura 1.6.: Algunos teoremas de la geometria euclidea.

Las demostraciones son casi triviales usando vectores como entidades fundamentales (las

demostraciones de b) y d) se han obtenido de [33]).

Basta desarrollar y simplificar [|[u+v|? + lu—v|?*=(u+v,u+v) + {u—v,u—v).

Basta comprobar que para todo h se cumple
(a—b,c—h)+(b—c,a—h)+(c—a,b—h) =0,

y observar que si se anulan dos sumandos, entonces se anula el tercero.

Si q estd en la mediatriz del lado ab entonces (a—b, % —q) = 0. Esta igualdad equivale
a d(a,q) = d(b,q).

Sumando (a—b,c—h) =0y (a—b,a+b—2q) = 0 se tiene (a—b,a+b+c—h—2q) =0,
es decir, (a—b,3g—h—2q) = 0, luego 3g —h —2q es perpendicular al lado ab. Razonando
de forma anéloga para los otros lados, 3g —h — 2q es perpendicular a todos los lados, luego
3g—h—-2q=0.

Quienquiera que haya intentado probar d) usando coordenadas se dard cuenta de la ele-

gancia del método vectorial. También podemos citar algunos teoremas sobre circunferencias
(véase la figura 1.7):

a)

Si ab es un didmetro de una circunferencia, entonces el angulo acb es recto para cualquier
punto c¢ de la circunferencia.
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1.4. El producto vectorial

Figura 1.7.: Dos teoremas sobre circunferencias.

b) Sea r una recta que pasa por un punto a y sean b y ¢ los dos puntos de corte de r con
una circunferencia de centro p y radio R. Entonces d(a,b)d(a,c) = |d(a,p)? — R?|. En
particular se sigue que d(a,b)d(a,c) no depende de la recta trazada por a.

Las demostraciones son de nuevo muy faciles:

a) Basta observar (a—c,c—b)=((a—p)+(p—c),(p—b)—(p—c))ya—p=p—Db.

b) La ecuacién de la circunferencia es [|[x —pl|* = R?. Sea v un vector de norma 1y X, u tales
que b =a+ AV y c =a+ uv. Puesto que b, c estan en la circunferencia, es facil ver que A
y p son raices de la ecuacién R* = ||a—p||*+2z(a—p, V) +z>. Luego A = [|a—p|* — R?.
Ahora la conclusién es trivial de obtener.

1.4. El producto vectorial

Definimos (sélo en IR?) el producto vectorial de los vectores u = (u1,ug,u3) y v =
(v1,v2,v3) como
u X v = (U203 — ugv2, Uzv1 — U1V3, U1V2 — UV1).

Decimos que una forma de acordarse de la definiciéon es usando el siguiente determinante
simbdlico:

Xy z
uxv=|u us usg|, (1.1)
v V2 U3

donde x = (1,0,0), y = (0,1,0) y z = (0,0, 1). Aunque en este momento no se haya definido
el concepto de determinante, la mayor parte de los alumnos si que lo saben (aunque no la
supieran, la definicién es totalmente independiente del concepto de determinante). Asimismo,
observamos que la expresién (1.1) no es rigurosa, puesto que las entradas del determinante
deben ser nimeros y no vectores.

Enunciamos las propiedades bésicas: Si u, v, w son vectores de IR? y si a € IR entonces

a) uXv=-—-vXxu
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1. Geometria de IR? y IR3

b) ux (v+w)=uxv+uxw.

c)uxu=20

e) u x v es perpendicular auy a v.

) u
)
d) (au) x v=a(u x v).
)
)

) [Jux v|? + (u,v)? = ||u||?||v|>. De donde se deduce que |[u x v|| = ||ul|||v|| sen §, siendo
0 el dngulo que forman u y v.
No demostramos ninguna propiedad pues son absolutamente rutinarias y no aportan mucho.

Aplicamos el producto vectorial para hacer algunos problemas geométricos, como calcular
un vector perpendicular a dos vectores dados o calcular el drea de un tridngulo. También se
puede demostrar o poner como ejercicio no rutinario demostrar el teorema de los senos de
trigonometria: si en la figura 1.5 llamamos w = v — u y si multiplicacmos vectorialmente
por u tenemos w X u = v X u. Aplicando las propiedades anteriores del producto vectorial
deberia ser facil probar este teorema.

1.5. Ecuaciones de rectas y planos

La experiencia docente nos muestra que si bien un alumno medio sabe manejar algu-
nas ecuaciones de rectas en el plano el conocimiento de las rectas y planos en el espacio es
practicamente nulo. Por esta razén incluimos este punto en el temario dando un breve repaso.

1.5.1. Rectas en IR?

Un dibujo muestra bastante bien la deduccién de la ecuacién paramétrica (o ecuacién
vectorial). Sila recta pasa por xg = (20, y0) y tiene un vector director u = (u1, u2), entonces

X = Xg + Au, (z,y) = (w0, y0) + Au1, u2), (1.2)
para A € R.

X0

Figura 1.8.: Una recta en IR?.
De (1.2) se obtiene facilmente la ecuacién de la recta que pasa por dos puntos: basta hacer

v =b —ay xg = a. Observamos que de esta manera se puede parametrizar el segmento
orientado ab de la forma siguiente: x(A) = (1 — A)a + Ab para A € [0, 1].
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1.5. Ecuaciones de rectas y planos

Si en (1.2) se multiplica escalarmente por un vector normal a la recta, sea n, se tiene que
(x,n) = (xg,n) o desarrollando, ax + by = ¢, de donde se sigue que (a,b) es perpendicular
a la recta. Otra forma de obtener esta tltima forma es a partir de (1.2) despejar A (siempre

que u; # 0 # ug).

1.5.2. Rectas en R®

La forma mas ttil es la paramétrica. La ecuacion de rectas como intersecciones de planos
la vemos mas adelante cuando estudiemos los planos en IR3 (puesto que si nj y ny son vectores
normales a los planos m; y 7o respectivamente, entonces un vector normal a 73 N7 €s Ny X ng).

1.5.3. Planos en IR?

El tratamiento es muy similar a las rectas en IR%: si u = (ug,u2,u3) y v = (v1, v, v3) son
dos vectores directores del plano linealmente independientes y xg = (xg, Yo, 20) €s un punto
del plano, entonces la ecuacién paramétrica o vectorial del plano es (véase la figura 1.9)

X =Xy —{—)\U—F/.LV, (:Evya Z) = ($0ay0720) +>\(U1,U2,U3) +M(U1>U27U3)' (13)
A
n
X
Vv
X0 u

Figura 1.9.: Un plano en IR3.

Multiplicando escalarmente (1.3) por un vector perpendicular a uy v, digamos n (se puede
calcular por medio de n = u x v), se tiene (x,n) = (xg,n), o de otro modo, ax + by + cz = d,
de donde (a,b,c) es un vector normal al plano. Si se observa la figura 1.9 se ve que los
vectores u,v,x — Xg son linealmente dependientes, por lo que los alumnos que conozcan los
determinantes pueden comprender que otra ecuacién del plano es det(u, v,x — xg) = 0.

Hacemos algunos problemas (hay miles de libros llenos de problemas de esta clase). El
calculo de la distancia entre las variedades lineales vistas hasta el momento preferimos dejarlo
hasta cuando estudiemos minimos cuadrados, ya que en ese momento se verd una forma
general de calcular estas distancias.
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2. Matrices

OBJETIVOS:

Efectuar con fluidez las operaciones basicas entre matrices. Estudiar las prin-
cipales propiedades de las matrices y sus operaciones. Conocer el concepto de
determinante y su relacién con el problema de la invertibilidad matricial. Saber
pasar de un sistema de ecuaciones lineales a una ecuaciéon matricial. Modelar
matricialmente algunos problemas extraidos de otras asignaturas.

Los determinantes surgieron cuando se empezaron a resolver los sistemas de ecuaciones
lineales. En 1693, Leibniz (1646-1716) us6 un conjunto sistematico de indices para los coefi-
cientes de un sistema de tres ecuaciones lineales con tres incégnitas obteniendo un determi-
nante. La solucién de ecuaciones lineales fue obtenida por Maclaurin (1698-1746) publicada
en 1748 en su Treatise of algebra. Cramer (1704-1752) publicé en 1750 el libro Introduc-
tion a l'analyse des lignes courbes algébriques la regla para determinar los coeficientes de
una cénica general pasando por 5 puntos dados utilizando determinantes. En 1776 Bezout
(1730-1783) demostré que la anulacion del determinante de un sistema de dos ecuaciones con
dos incégnitas homogéneo es una condicién necesaria y suficiente para que haya soluciones no
nulas. Vandermonde (1735-1796), en 1776, fue el primero en dar una exposicién coherente y
l6gica de la teoria de los determinantes como tales, aplicandolos a los sistemas de ecuaciones
lineales. Se le considera como fundador de la teoria.

La palabra determinante, usada por primera vez por Gauss, la aplicé Cauchy (1789-1857)
a los determinantes ya aparecidos en el siglo XVIII en un articulo publicado en 1815. La
disposicion de los elementos en tabla y la notacion de subindices dobles se le debe a él. Binet
(1786-1856), en 1812, enuncié el teorema de multiplicacién, demostrado correctamente por
Cauchy, que en notacién moderna es det(AB) = det(A) det(B).

Diriamos que el campo de las matrices estuvo bien formado ain antes de crearse. Los
determinantes fueron estudiados a mediados del siglo XVIII. Un determinante contiene un
cuadro de nimeros y parecia deducirse de la inmensa cantidad de trabajos sobre los determi-
nantes que el cuadro podia ser estudiado en si mismo y manipulado para muchos propdésitos.
Quedaba por reconocer que al cuadro como tal se le podia proporcionar una identidad in-
dependiente de la del determinante. El cuadro por si mismo es llamado matriz. La palabra
matriz fue usada por primer vez por Sylvester (1814-1897) en 1850.

Es cierto, como dice Cayley (1821-1895), que la idea de matriz es légicamente anterior
a la de determinante, pero historicamente el orden fue el inverso. Cayley fue el primero en
desarrollar de modo independiente el concepto de matriz en un articulo publicado en 1855, A
memoir on the theory of matrices. Defini6 las matrices nula y unidad, la suma de matrices
y senala que esta operacién es asociativa y conmutativa. Cayley toma directamente de la
representacion del efecto de dos transformaciones sucesivas la definiciéon de multiplicacién de

29



2. Matrices

dos matrices. Cayley senala que una matriz m x n puede ser multiplicada solamente por una
matriz n X p. En este mismo articulo establece la formula de la inversa de una matriz y que
una matriz tiene inversa si y soélo si su determinante es nulo.

A partir de este momento los trabajos sobre matrices se disparan. Debemos citar los
trabajos de Jordan (1838-1922), Rouché (1832-1910) y a Frobenius (1849-1917). En el siglo
XX es rara la rama de la matemaética aplicada que no use la teoria de matrices. Podemos
citar una afirmacién profética hecha por el fisico Tait (1831-1901) a mediados del siglo XIX:
“Cayley estd forjando las armas para las futuras generaciones de fisicos”.

2.1. Primeras definiciones

Definimos matriz como un conjunto de n x m elementos de IR o de C (en lo sucesivo el
cuerpo base se denotard IK) dispuestos en una tabla que denotaremos usualmente con letras
mayusculas y sus entradas con letras minusculas con dos subindices denotando la fila y la
columna. Definimos los tipos mas importantes de matrices: cuadrada, vector fila, vector
columna, diagonal, triangular superior y triangular inferior.

La introduccién del significado de matriz se hace senalando desde el principio la relacién
de éstas con los sistemas de ecuaciones lineales. Por ejemplo los sistemas

2t + 3y = 5 20 + 3v = 5
or — 2y = 3 ou — 2v = 3

tienen evidentemente las mismas propiedades y deben ser considerados los mismos.

El siguiente paso es definir la suma y la multiplicacién por escalares. Introducimos la
matriz nula de orden n x m denotada por O x,, (en lo sucesivo se denotard simplemente O
cuando el orden sea evidente por el contexto). Enunciamos las propiedades bésicas de estas
dos operaciones que se pueden resumir diciendo que el conjunto de matrices n X m es un
espacio vectoriall.

Para hacer més intuitiva la definicién, a primera vista extrana, de la multiplicacién ma-
tricial explicamos el siguiente ejemplo: Consideremos los dos sistemas siguientes:

aiyr + aiye = 21} biizr + broxa + bizrz = yl}
a21y1 + a2y = 2o bo1z1 4+ bagxa + bazrs = Yo

Al substituir los valores de y; en el primer sistema vemos que las z; se pueden expresar en
funcion de las x; obteniendo

c11r1 + ci2x2 + c13r3 = 21
C21T1 + €222 + €233 = 29

tras hallar explicitamente los coeficientes ¢;j. Definimos el producto de dos matrices de modo
que (ai;)(bij) = (¢ij). Indicamos que en este caso particular hemos obtenido que esta matriz
(¢ij) se ha obtenido “multiplicando las filas de (a;;) por las columnas de (b;;)”. A continuacién
definimos el producto de una matriz A de orden n X m por otra matriz B de orden m X p,
obteniendo una matriz AB = C' de orden n X p como sigue

m
Cij = Y _ aigbij.
k=1

! Aunque no se menciona el tecnicismo espacio vectorial ya que su definicién se posterga al Capitulo 4.
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2.2. Potencias de matrices

A continuacién escribimos un sistema de ecuaciones lineales como Ax = b, siendo A una
matriz n x m, x € IK™ y b € IK". Siendo ésta una conversién muy importante.

Algunas propiedades de las operaciones matriciales son andlogas a las correspondientes
de las operaciones escalares: si A, B, C son matrices de 6rdenes apropiados y A es un escalar
entonces

e A(BC) = (AB)C.

(A+ B)C = AC + BC.
e A(B+C)=AB+ AC.

o MAB) = (\)B = A(\B).

Si I, es la matriz cuadrada de orden n formada por ceros salvo por unos en la diagonal
principal (en lo sucesivo se denotard simplemente I cuando el orden sea evidente por el
contexto), entonces AI = A, IB = B.

Senalamos tres propiedades, dando ejemplos, validas para escalares y no para matrices:

e AB no es siempre igual a BA.

e AB = O no implica que alguna de las matrices sea nula.

e Si AB=AC y A # O no implica que B = C.

Definimos la transposiciéon de matrices y la conjugacion de matrices, enunciamos
las propiedades mas importantes y definimos las matrices simétricas y antisimétricas. Y
si consideramos las matrices complejas definimos las matrices hermiticas y antihermiticas.
Dos ejemplos importantes son los siguientes: si u, v son dos vectores columna de IR", entonces
(u,v) = utv = vtu es un escalar y uv' es una matriz cuadrada de orden n.

Aparte de [37], aunque el dlgebra matricial aparece en todos los libros de algebra lineal,
recomendamos [46, 51, 55].

2.2. Potencias de matrices

La potenciacién matricial se define de manera obvia. Hacemos notar que las siguientes
propiedades no son ciertas, dando ejemplos:

e Si existe n € IN tal que A™ = O entonces A = O.

o (A+B)? = A2+ 2AB + B? (en general la férmula del binomio de Newton no es vélida,
a no ser que A y B conmuten).

Usamos la potenciacién matricial en los dos ejemplos siguientes extraidos de la practica:
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2. Matrices

1. Aunque no mencionamos el tecnicismo procesos de Mdrkov, enunciamos el siguiente
problema:

Supongamos que los N habitantes de una cierta ciudad realizan sus compras en una
de las tres cadenas de alimentacion existentes X, Y, Z. Se observa un movimiento de
clientes de una cadena a otra. Concretamente, cada mes la cadena X conserva el 80%
de sus clientes, atrae el 20% de los de Y y el 10% de los de Z. Andlogamente, Y conserva
el 70% de sus clientes, atrae el 10% de X y el 30% de Z. Finalmente Z atrae el 10% de
los clientes de X y el 10% de los de Y. Encontrar el niimero de habitantes que compran
en cada una de las cadenas tras el mes n-ésimo.

En este momento definimos las matrices estocasticas y proponemos como ejercicio
la propiedad mé&s importante: Si A y B son estocésticas, entonces AB también es
estocastica. Como consecuencia de este hecho se tiene que si A es estocastica, entonces
AF 10 es también.

2. Introducimos muy brevemente al alumno en la teoria de grafos definiendo lo que es
un grafo dirigido y la matriz de adyacencia de un grafo. Enunciamos el siguiente

teorema. Si A = (a;j) es la matriz de adyacencia de un grafo dirigido y ag?)
elemento (i,j) de A¥, entonces ag-f) es el nimero de caminos de longitud k£ que hay
entre P; y P;. A continuacién vemos un ejemplo sencillo que aclara este teorema.

es el

Unos libros donde se pueden encontrar ejemplos y problemas resueltos son [41, 68].

2.3. Determinante de una matriz cuadrada

Son varias las formas de introducir el concepto de determinante. Algunos libros, como
[31], lo hacen desde el concepto de aplicacién multilineal. La definicién més extendida es
usando permutaciones. Son formas rigurosa de hacerlo, pero si tenemos en cuenta el enfoque
de la asignatura, nos parece mas pedagdgico ofrecer la definicion de determinante en forma
recursiva tal como aparece en [37]. Esta definicién es incémoda si se pretende a partir de ella
calcular determinantes. Hay que esperar al algoritmo de eliminaciéon de Gauss para ver un
modo efectivo. Enunciamos la regla de Sarrus para el calculo de determinantes de 6rdenes 2
y 3.

A continuacién enunciamos sin demostrar las principales propiedades de los determinantes:

e El determinante de una matriz coincide con el de su transpuesta. A partir de ahora
todas las propiedades que se refieran a filas, son validas para columnas.

e Si B se obtiene de A multiplicando una fila por A, entonces det(B) = Adet(A). En
general det(AA) = \"det(A), siendo n el orden de la matriz A.

e Si la matriz B se obtiene intercambiando dos filas de la matriz A, entonces det(B) =
—det(A).

e Si una matriz tiene dos filas iguales, entonces su determinante es nulo.
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2.4. Inversa de una matriz cuadrada

e El determinante de una matriz que tenga una de sus filas como suma de dos se puede
descomponer como suma de dos determinantes del modo siguiente:

ail o A1n aixp - Aln ailp Aln
det ail +bi1 0 ain + bin = det a;1  cc Qin +det bii - bin
Gnl tee Gnn Gn1 - QOnn anl - dpn

El alumno no tiene que confundir esta propiedad con la siguiente igualdad, que es falsa
en general: det(A + B) = det(A) + det(B).

e Si una matriz tiene una fila de ceros, entonces su determinante es nulo.

e Si B se obtiene de A suméandole o restandole una fila de A un multiplo de otra fila,
entonces det(A) = det(B).

e Si A es una matriz triangular entonces el determinante de A es el producto de los
términos de su diagonal principal. En particular el determinante de I es 1.

e det(AB) = det(A) det(B).

2.4. Inversa de una matriz cuadrada

Motivamos al alumno el concepto de matriz inversa con el caso escalar: Para resolver
ax = b, donde a,z,b € Ry a # 0, despejamos & = a~'b, siendo a~! un ntimero tal que

lg =1.

a

Desgraciadamente, el producto de matrices no es conmutativo, por lo que debemos tener
cuidado con la definicién. Decimos que una matriz A es invertible si existe otra matriz B
tal que AB = BA = I. Observamos que de la definicién se deduce que sélo las matrices
cuadradas pueden ser invertibles (pero no todas las matrices cuadradas son invertibles como
veremos a continuacién). Asimismo, demostramos que la inversa de una matriz invertible A
es Unica, esta matriz Unica se denotard A~'. Debido a la no conmutatividad del producto,
hacemos énfasis en que la division matricial no tiene sentido: ;qué es A/B? ;es B™1A 6
AB~1'? Enunciamos el resultado central que une los determinantes con el calculo matricial:
Una matriz A es invertible si y sélo si det(A) # 0.

Observamos que la férmula cldsica que han visto los alumnos en anos anteriores:

— 1 . t
= det(A)AdJ(A ), (2.1)

siendo Adj(B) la matriz cuadrada del mismo orden que B cuyo elemento (i,j) es el deter-
minante de la submatriz que resulta de quitar la fila ¢ y la columna j de B, es altamente
costosa en numero de operaciones y en la practica resulta altamente inoperativa. Senalamos
al alumno que ha de esperar al Capitulo 3 para ver un método eficaz de calcular inversas de
matrices. Vamos comentando que siempre que se pueda, se ha evitar este calculo prefiriendo
otras alternativas.

Las siguientes propiedades que demostramos son:
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2. Matrices

Si Ay B son invertibles entonces (A71)~! = A.

e Si Ay B son invertibles entonces AB es invertible y (AB)™! = B~1A~L

Si A es invertible y A # 0 entonces AA es invertible y (AA)~t = A71A~L,

Si A es invertible, entonces A® es invertible y (AY)~! = (471)%.

Demostramos la llamada férmula de Sherman-Morrison: Si A es una matriz invertible
de orden n y ¢, d son vectores columna de orden n tales que 1+d*A~'c # 0 entonces A + cd*

es invertible y
1

1+dtA-1c
Antes de hacer la demostracion, resaltamos la utilidad practica de la férmula: Supongamos
que A~! es conocido; pero ahora una entrada de A debe ser actualizada. No es necesario
calcular la nueva inversa de nuevo, basta aplicar la formula de Sherman - Morrison. Sean
c =e¢e; yd= aej, donde e; y e; son los i-ésimo y j-ésimo vectores (columna) de la base
canénica’ de IR™. La matriz cd® tiene o en la posicién (i,7) y ceros en el resto. Luego
B = A + cd' es la matriz actualizada.

(Ated)t=A"1— (A led'A™Y).

Para la demostracién observamos que d'A~!c es un escalar y conmuta con cualquier
matriz:

A~ ledtA! cdfA—1 +cdtAtedtA?
A4+ed) (A1 ) = JT4+edtal—
(A+e )< 1+th—1¢> te 11 d'ATc
B i -1 (1+d'A7c)ed' A
= J+cd'A Tt ddTe
= T.

Aunque la bibliografia existente es muy extensa (practicamente cualquier libro de 4lgebra
lineal podria servir) y los libros mencionados en las secciones anteriores podrian valer per-
fectamente, creemos que la bibliografia que consideramos mas ajustada para esta seccién es
[37, 46, 51, 55, 68].

2.5. Matrices por bloques

Ensenamos a los alumnos que el procedimiento de partir una matriz en bloques puede
ser de gran utilidad y permite en ocasiones operar cémodamente con matrices de orden
considerablemente grande. Para esto desarrollamos con claridad este ejemplo. Calcular la
potencia n-ésima de la siguiente matriz de orden n + 1:

1 v
=0 1)

en donde v € IR" (fila), 0 € IR" (columna) y A es una matriz de orden n. Si ademés A es
invertible, proponemos hallar la inversa de B.

2Aunque no se haya definido lo que es una base en IR"™, simplemente decimos que e; es el vector de IR™ con
un uno en la posicién i y ceros en el resto de sus componentes. A partir de ahora, siempre denotaremos
por {e1,...,e,} la base canénica de IK", en donde cada vector e; es una columna.
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2.5. Matrices por bloques

Para mostrar la utilidad de trabajar con matrices por bloques demostramos el siguiente
teorema: Sea A una matriz triangular con elementos no nulos en la diagonal, entonces la
inversa de A es triangular.
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Contenido del Capitulo 2

1. Primeras definiciones.

Definicién de matriz. Orden de una matriz.

Tipos basicos de matrices: cuadrada, vector fila, vector columna, diagonal, trian-
gular.

Definicién de suma de matrices y producto por escalares. Propiedades.

Introduccion al producto matricial. Definicién de producto matricial. Propieda-
des. Propiedades que son ciertas en IK y que con matrices no son ciertas. Matriz
identidad. Conversion de un sistema de ecuaciones lineales en un producto matri-
cial.

Definiciéon de la transposicion y conjugacién matricial. Propiedades. Matrices
simétricas, antisimétricas, hermiticas y antihermiticas.

2. Potenciacion de matrices.

Definicién y ejemplos.

Dos problemas donde surge la potencia de una matriz: procesos de Mérkov (ma-
trices estocdsticas), introduccién a la teoria de grafos.

3. Determinante de una matriz cuadrada.

Definicién. Reglas de Sarrus para calcular determinantes de érdenes 2 y 3.

Propiedades de los determinantes. Ejemplos.

4. Inversa de una matriz cuadrada.

Introduccion al concepto de matriz inversa. Definicion.
Una matriz es invertible si y sélo si su determinante no es nulo.
Propiedades de la inversiéon matricial.

Férmula de Sherman-Morrison.

5. Matrices por bloques.

Introduccion a las matrices de bloques.

Ejemplos.



3. Sistemas de ecuaciones lineales

OBJETIVOS:

Saber resolver un sistema de ecuaciones lineales por el método de Gauss. Entender
que el namero de operaciones es un factor esencial a la hora de evaluar la eficacia
de un algoritmo. Saber hallar la inversa de una matriz por el método de Gauss-
Jordan. Modelar problemas en forma de sistemas de ecuaciones. Conocer el
mecanismo de la pivotacion parcial para minimizar los errores de redondeo.

Como ya mencionamos en la introducciéon del Capitulo 2, los sistemas de ecuaciones li-
neales comenzaron a ser estudiados sistemdticamente por Leibniz y Cramer a mediados del
siglo XVIII. Este dltimo matemético, expuso lo que hoy conocemos como regla de Cramer
para los sistemas de orden 3. A mediados del siglo XIX fue Cayley, al estudiar las matrices,
quien dedujo la férmula general de la regla de Cramer y quien expuso claramente la condicién
necesaria y suficiente para que un sistema cuadrado de ecuaciones lineales tuviera solucién
Unica, a saber, que la matriz de los coeficientes del sistema fuera invertible.

Frobenius introdujo la nocién de rango de una matriz en 1879, aunque en relacién con
los determinantes. Esta definicién permitié generalizar el teorema que hoy conocemos como
teorema de Rouché-Frobenius.

Gauss dedujo a principios del siglo XIX un método que permite resolver cualquier sistema
de ecuaciones lineales. Este método cay6 en el olvido pues es mas engorroso que la presentacién
matricial hecha por Cayley y por Frobenius. Jordan' dedujo un algoritmo alternativo a la
férmula presentada por Cayley para calcular la inversa de una matriz. Hoy conocemos este
método como el algoritmo de Gauss-Jordan.

A medida que en otras disciplinas cientificas se iba encontrando que los problemas se
podian plantear en términos de sistemas de ecuaciones lineales los matematicos se empezaron
a preocupar de aspectos como el nimero de operaciones en un algoritmo. Pronto se dieron
cuenta que la férmula (2.1) para el cdlculo de la inversa es muy costosa por el nimero de
operaciones, mientras que el método de Gauss exigia un nimero considerablemente menor.

Un problema muy complicado es el siguiente: ;De qué forma contribuyen los errores de
redondeo individuales al error total? Fue atacado por primera vez por Von Neumann, si
bien sélo encontré estimaciones muy complicadas. Actualmente se utiliza el método de la
pivotacién parcial, una ligera variante del método de Gauss, para intentar que los errores
parciales sean los menores posibles.

! Aunque ha habido confusién sobre qué Jordan debe recibir el mérito por este algoritmo, ahora parece claro
que este método fue introducido por Wilhem Jordan (1842-1899) y no por el més conocido Marie Ennemond
Camile Jordan.
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3. Sistemas de ecuaciones lineales

3.1. Sistemas lineales

Como introduccién senalamos las diferentes formas de soluciones de un sistema de dos
ecuaciones con dos incégnitas basandonos en el modelo geométrico. Estudiaremos esta clasi-
ficacién mads rigurosamente en breve; pero conviene que el alumno se vaya familiarizando con
los sistemas incompatibles, compatibles determinados e indeterminados.

Vemos tres ejemplos que muetran la utilidad de los sistemas de ecuaciones y en donde apa-
recen sistemas de gran tamano: Un modelo de red de trafico, la distribucién de la temperatura
estacionaria en una placa metalica y un circuito eléctrico.

Introducimos las definiciones preliminares: Un sistema de ecuaciones lineales con n
incégnitas y m ecuaciones es

a1, + ajpxe + -+ apx, = by
a21%1 + agews + - - + azpxT, = bo
Gm1T1 + amaZ2 + -+ AGpnTn = by
donde a;;,b; € IK. Cuando by = --- = b, = 0 el sistema se llama homogéneo. Enfatizamos

la forma matricial del sistema Ax = b, donde A es una matriz m x n, x € IK" y b € IK"™.

Enunciamos la clasificacién de los sistemas en base a las soluciones.

e El sistema no tiene solucion. El sistema es incompatible.
e El sistema tiene una tnica solucién. El sistema es compatible determinado.

e FEl sistema tiene infinitas soluciones. El sistema es compatible indeterminado.

Si un sistema tiene mas de una solucion diferente, entonces tiene infinitas. En efecto, si
x e y son dos soluciones del sistema Ax = b, entonces x + A(y — x) con A\ € IK también es
solucién. La demostracién muestra la potencia del cdlculo matricial y la utilidad de razonar
geométricamente.

Al escribir el sistema como z1a; +- - - +x,a, = b, donde ay,...,a, son las columnas de A
observamos inmediatamente que el sistema es compatible si y sélo si b es combinacién lineal
de las columnas de A.

3.2. El método de eliminacion de Gauss

Empezamos explicando cémo se resuelven los sistemas triangulares superiores: por subs-
titucion regresiva.

A continuacién planteamos la pregunta si cualquier sistema se puede expresar como un
sistema triangular. La respuesta es afirmativa y la forma de hacerlo es eliminar la primera
variable de todas las ecuaciones excepto de la primera, la segunda variable de todas excepto la
primera y segunda ecuacién y asi sucesivamente. Este método se le conoce como algoritmo
de eliminacion de Gauss. Hacemos un ejemplo concreto.

Indicamos qué hacer cuando algtin término de la diagonal principal es nulo y no se puede
hacer ceros por debajo de este elemento. En este caso hay que recurrir a intercambiar filas.
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3.3. Factorizacion LU de una matriz

Si no se pudiese intercambiar filas porque debajo de este pivote todas las entradas son nulas,
entonces seguimos en la misma fila y nos ocupamos de la siguiente variable.

Una vez reducido el sistema es ficil investigar si el sistema es compatible determinado,
compatible indeterminado o incompatible, simplemente mirando las ecuaciones del sistema
reducido. Hacemos varios ejemplos de estos tipos y también uno con variables simbdélicas para
resaltar la supremacia de este método frente al teorema de Rouché-Frobenius, ya que permite
clasificar el sistema en un numero 6ptimo de operaciones y ademéds hallar las soluciones.
También podemos definir el rango de una matriz como el nimero de filas no nulas de la
matriz reducida; sin embargo preferimos no hacerlo, ya que el concepto de rango tiene poca
utilidad dentro del proyecto que se presenta.

3.3. Factorizacion LU de una matriz

Haciendo un estudio detallado de las operaciones hechas en los ejemplos observamos que
s6lo hacemos dos tipos de operaciones sobre las matrices:

e Sumar a una fila otra fila multiplicada por un escalar.

e Intercambiar dos filas.

La representacion matricial de estas dos operaciones permite encontrar una forma tutil de
factorizacién de matrices, la llamada factorizacion LU. A partir de ahora e; denotard el
i-ésimo vector columna de IK"

En vez de demostrar lo siguiente para una matriz de orden arbitrario, lo haremos con una
matriz de orden fijo, para que el alumno no se pierda con los muchos subindices y puntos
suspensivos que aparecen. Pensamos que con una 2 X 3 es suficiente

e La substituciéon de la fila ¢ de una matriz por la fila ¢ mas A veces la fila j # ¢ equivale
a multiplicar por la izquierda por la matriz I + )\eie;.

e El intercambio de las filas i, j de una matriz equivale a multiplicar por la izquierda la
matriz I — (e; — ej)(e; — e;)* (llamadas matrices permutaciones).

Si en una matriz A (que por simplicidad la supondremos cuadrada) hacemos ceros por
debajo de la entrada (1,1) obtenemos la matriz

(I + )\219295) cee (I + )\nlenei)A = (I + ()\2162 —+ e+ )\nlen)e'i)A = (I + cleﬁ)A.
Si triangularizamos A hasta obtener U tenemos
(I4+cn1e! ) +cpoe' o) (I +coel)(I+cre})A=U,

en donde c3 = Azze3 + - -+ + A\p2€y, ..., Ch1 = Ay p—1€,. Ahora por la férmula de Sherman-
Morrison, cada matriz I + ckef€ es invertible y (I + ckei)_l =1- Cke}C. Por tanto,
A = (I—-cel))(I —cel) (I —cy_1el_ ) U

= (I-ciel —-- —cp1et_,)U.
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3. Sistemas de ecuaciones lineales

Puesto que la matriz I — cje} — .-+ — ¢,—1€!,_; es triangular inferior, hemos obtenido la
factorizacién LU siempre que no se necesiten permutaciones de filas en el proceso de triangu-
larizacién. Ensenamos un ejemplo en donde se ve cémo se construye la matriz L. Indicamos
que el coste de calculo de la matriz L es nulo si se ha efectuado el proceso de Gauss.

Si se necesitan permutaciones de filas, es posible dar una factorizacién similar aunque cree-
mos (ue no es necesario en este curso introductorio. Aunque vemos como un simple ejercicio
(por la férmula de Sherman-Morrison) el célculo de la inversa de una matriz permutacion.

Explicamos la utilidad de la factorizacién LU cuando se resuelven varios sistemas Ax; =
by, ..., AXp = bg. Siya hemos factorizado A = LU, estos k sistemas se reducen a 2k sistemas
triangulares rapidos de resolver: Ly; = b;, Ux; =y;, parai=1,... k.

Insistimos que la regla de Cramer no es eficaz. Esta regla permite resolver un sistema
de orden n mediante n + 1 determinantes de orden n y n divisiones, nimero excesivamente
grande.

El desarrollo de esta seccién se ha obtenido de [51].

3.4. Algoritmo de Gauss-Jordan para el cdlculo de la inversa de
una matriz

Una operacion fundamental es una de las siguientes operaciones

e Sumar a una fila otra fila multiplicada por un escalar.
e Intercambiar dos filas.

e Multiplicar una fila por un escalar no nulo.

Vemos que la tercera operacién equivale a multiplicar por la izquierda por I + (o — 1)e;e!
(de nuevo la férmula de Sherman-Morrison permite calcular la inversa de esta matriz). A
continuacién demostramos que si A es una matriz cuadrada y si con operaciones elementales
transformamos A en I, entonces estas mismas operaciones aplicadas a I proporcionan A1,
En la practica se trabaja con la matriz [A|I]. La diferencia con el método de Gauss estriba en
que hemos de intentar hacer ceros por debajo y por encima de la diagonal principal. Hacemos
dos ejemplos para ilustrar el método, uno donde la matriz sea invertible y otro donde no lo
sea.

También senialamos que el nimero de operaciones es menor con este método de que si se
aplica (2.1) para calcular la inversa.

3.5. Pivotacion parcial

Ahora consideraremos factores que afectan a la precisién de la solucion del sistema Ax = b.
El siguiente ejemplo aclara la situacién. Si

3.021 2.714 6.913 12.648
A= 1013 —4.273 1.121 |, b=| —2.121 |,
5.084 —5.832 9.155 8.407

40



3.5. Pivotacién parcial

entonces el sistema Ax = b tiene por solucién x = (1,1, 1)*. Sise cambia la entrada (2, 2) de la
matriz A al valor —4.275, la solucién del sistema perturbado es x = (—1.7403,0.6851, 2.3212)".
Es decir, se trata de un sistema donde se cambia en un 0.1% el valor de un coeficiente y las
soluciones que aparecen son totalmente diferentes.

Al mostrar este ejemplo vemos cémo pueden aparecer soluciones muy poco parecidas si
modificamos ligeramente la matriz. Un sistema de ecuaciones lineales se dice que esta mal
condicionado si un pequeno cambio en las componentes de la matriz causa un gran cambio
en la solucién. En caso contrario se dice que esta bien condicionado.

Es facil ver lo que provoca que un sistema 2 X 2 sea mal condicionado. Las dos ecuaciones
con dos incdgnitas representan dos rectas y el punto de corte es la soluciéon. Un sistema mal
condicionado representa dos rectas casi paralelas. Véase la figura 3.1.

A

Figura 3.1.: Un pequenio cambio en las rectas provoca un gran movimiento en el punto de
corte.

Se puede demostrar que para que un sistema esté bien o mal condicionado es indiferente
el valor que tome el vector b (en el caso de sistemas de orden 2 esto deberia ser intuitivo).
Asi pues, se habla en realidad de matrices mal o bien condicionadas.

La pivotacién parcial resuelve parte de este problema. Como la aparicién en el proceso
de eliminacién un elemento ay j nulo obliga a intercambiar las ecuaciones, en la practica un
pivote muy pequenio va a producir una considerable inestabilidad numérica en el sistema. La
pivotacién parcial es la variante del método de eliminacién en la cual se elige el pivote como
el mayor, en valor absoluto, de todos los coeficientes de una columna. Explicamos un ejemplo
concreto. También mostramos como ejemplo la matriz de Hilbert, que es el ejemplo tipico
de matriz mal condicionada. Con este ejemplo vemos que la pivotacion parcial no arregla el
problema del mal condicionamiento inherente a las matrices de Hilbert.

Todo lo mencionado en este capitulo puede verse con todo detalle en [37, 51, 68]. En
cuanto a consultar colecciones de problemas extras, aparte de los mencionados, podemos
citar [41], en donde se tratan todas las aplicaciones mencionadas en este tema y otras que por
cuestiones de tiempo no hemos incluido.
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Contenido del Capitulo 3

1. Sistemas lineales.

e Introduccién. Ejemplos. Definicién. Sistemas homogéneos.

e Clasificacién de los sistemas de ecuaciones lineales.
2. El método de eliminacién de Gauss.

e Substitucién regresiva.

e Triangularizacion. Ejemplos.
3. Factorizacion LU de una matriz.

e Operaciones elementales.

e Representacion matricial de las operaciones elementales. Matrices elementales.

Propiedades de las matrices elementales.

Obtencion de las matrices L y U en la descomposicion LU de una matriz.

Utilidad de la factorizacion LU. Resoluciéon simultdnea de ecuaciones lineales.
Ejemplos.

4. Algoritmo de Gauss-Jordan para el cdlculo de la inversa de una matriz.
e Descripcién. Ejemplo.
5. Pivotacién parcial.

e Un ejemplo de una matriz donde una ligera perturbacién de sus entradas produce
soluciones muy diferentes. Matrices mal y bien condicionadas.

e Descripcién de la pivotacién parcial. Ejemplo.



4. Espacios vectoriales

OBJETIVOS:

Entender las propiedades bésicas de los espacios vectoriales. Conocer los ejem-
plos més importantes de espacios vectoriales: IR",C", P, y C([a,b]). Manejar
con fluidez la idea de dependencia e independencia lineal, sistemas generadores y
bases. Comprender la nociéon de dimension y saber diferenciar los espacios vecto-
riales de dimensién finita de los de infinita. Comprender el significado del calculo
coordenado.

Como ya se vié en el Capitulo 1, la idea de vector de IR"™ entré en las matema&ticas
de forma callada. Maés aun, podemos decir que la idea de vector abstracto fue introducida
por Euler (1707-1783) sin que éste se diera cuenta: al resolver la ecuacién diferencial que
hoy llamamos lineal de orden n homogénea de coeficientes constantes, Euler indica que la
solucién general ha de contener n constantes arbitrarias y que dicha solucién vendria dada
por la suma de n soluciones particulares independientes. Euler no aclara lo que para él
son funciones independientes. En trabajos posteriores, Lagrange (1736-1813) extendié este
resultado a ecuaciones lineales homogéneas de coeficientes variables. Fue Cauchy quien aislé la
nocién de independencia lineal y la aplicé al estudio de ecuaciones diferenciales. Curiosamente
se desarrollaron los conceptos basicos en el espacio de las funciones continuas antes que en
R™.

En 1844 Grassmann, en el libro Die lineale ausdehnungslehre, axiomatizé el concepto de
independencia lineal aplicdndolo a los elementos de IR". La exposicion de Grassmann estaba
ligada con ideas geométricas, pero a él se le deben los conceptos claves de la teoria de espacios
vectoriales. El primero en dar la definicién axiomatica actual de espacio vectorial fue Peano
(1858-1932) en su libro Calcolo geometrico secondo I’Ausdehnungslehre di H. Grassmann
preceduto dalle operazioni della logica deduttiva publicado en 1888.

4.1. Definiciones y primeras propiedades

Damos la definicién de espacio vectorial sobre un conjunto de escalares IK (que senala-
mos que es IR 6 C): Es un conjunto V' que cumple

1. Existe una regla que asocia dos elementos u,v de V' (su suma) y se denota u+ v, que
es también un elemento de V', que cumple las siguientes propiedades:

a) u+tv=v+uVvVuveV.
b) u+(v+w)=(u+v)+w,Vuv,weV.
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4. Espacios vectoriales

c) Existe un elemento de V' denotado 0 (vector cero) que cumple u+0 =u,Vu e V.
d) Para todo v € V existe v € V (opuesto de v, que se denota —v) tal que
v+v =0.

2. Existe una regla que asocia a un escalar o y a un vector v € V (su producto) y se
denota av, que es también un elemento de V', que verifica

a) a(fv)=(af)v,Va, e IK,VveV.

)
) lv=v,VvevV.
)
)

o

¢
d

(a+B)v=av+pv,Va,fecK,VveV.
alv+w)=av+aw,VaclK,Vv,weV.

A continuacion damos ejemplos para afianzar la idea de espacio vectorial. Entre ellos
los méas conocidos por los alumnos: IR"™ y C", pero también hacemos énfasis en otros menos
conocidos como P, y €([a,b]). Creemos que tenemos que detallar estos ejemplos, ya que el
alumno frecuentemente encuentra éstos mas complicados de entender.

Enunciamos y demostramos las propiedades inmediatas que se deducen de la definicién y
que resultan absolutamente imprescindibles:

e En cada espacio vectorial existe un tnico vector cero.
e Todo elemento de un espacio vectorial posee un tinico elemento opuesto.
e 0v=0vYveVl.!

o (—l)v=—v,¥vevV.

4.2. Subespacios vectoriales
Tras comentar la idea geométrica de que un plano de IR? pueda tener “estructura de IR?”,

definimos un subespacio vectorial de un espacio vectorial como un subconjunto de éste que
por si mismo es un espacio vectorial (véase la figura 4.1).

IR3

Figura 4.1.: Un plano U en IR?. Si U pasa por el origen, entonces U es un subespacio de IR?.

'Es interesante hacer notar que el 0 de la izquierda es un escalar y el 0 de la derecha es un vector.
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4.3. Bases en un espacio vectorial

En un principio damos ejemplos geométricos hablando de planos, rectas, etc. A continua-
cién explicamos la siguiente cadena:

P, C P C C¥([a,b]) € ([a,b]) C C([a,b]) € C([a,b]).

Caracterizamos los subespacios: Para que un subconjunto U de un espacio vectorial V' sea
subespacio es necesario y suficiente que dados x,y € U, «a,0 € IK, entonces ax + fy €
U. Utilizamos esta caracterizacién para demostrar que la interseccién de subespacios es un
subespacio vectorial. Creemos que la nocién de suma de subespacios no tiene cabida en este
curso, ya que el objetivo de este capitulo es introducir el lenguaje apropiado de la asignatura
y no despistar al alumno con unos conceptos que en una ingenieria tienen poca utilidad.

4.3. Bases en un espacio vectorial

El concepto de combinacién lineal es bésico en la teoria de espacios vectoriales. Deci-
mos que v es combinacién lineal de {vi,...,v,} si existen escalares «; tales que v =
a1vy + -+ + apv,. Damos ejemplos y decimos que la suma ha de ser finita. Definimos la
envoltura lineal de {vy,...,v,}, denotada por L({vy,...,v,}), como el conjunto de todas
las combinaciones lineales de vy,...,v,. Utilizamos la caracterizacién de subespacio para
probar que este conjunto es un subespacio vectorial. Ahora es ficil definir el concepto de
sistema generador: S es un conjunto generador del subespacio U si L(S) = U. Mostramos
varios ejemplos.

Mediante varios ejemplos geométricos definimos el concepto de dependencia lineal: Un
conjunto de vectores es linealmente dependiente si existe una combinacion lineal no trivial
de éstos igual a 0. Es linealmente independiente en caso contrario. Hacemos varios
ejemplos en IK™ y en el espacio de las funciones continuas.

El criterio de invertibilidad permite demostrar el siguiente teorema: Si existe z¢ €]a,b]
tal que

fi(xo) fa(zo) -+ fu(x0)
T I R R P
n—1 n—1 n—1
Do) H Vo) o B (o)
entonces las funciones f; (derivables hasta orden n—1 en ]a, b[) son linealmente independientes.
El determinante que aparece en este teorema se llama wronskiano de las funciones f1,..., f,

evaluado en xg.

La definicién de base de un espacio vectorial es una de las nociones mas importantes
del algebra lineal. Una base de un espacio vectorial es un conjunto de vectores linealmente
independiente y sistema generador. Damos los ejemplos més importantes en IK" y en P,,: las
bases candnicas de estos espacios. Hacemos énfasis también en un hecho que a veces olvida
el alumno: en un espacio vectorial hay infinitas bases diferentes.

Enunciamos, dependiendo del nivel de la clase, el tiempo disponible u otros factores se
demuestra o no (una demostracién sencilla se puede encontrar en [37]), que si una base de
un espacio vectorial tiene n elementos, entonces todas las bases de este espacio vectorial
también poseen n elementos. Este nimero, que es una caracteristica intrinseca de cada
espacio vectorial, se llama dimensién. Explicamos los ejemplos cldsicos: IK", P,. También
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4. Espacios vectoriales

demostramos y explicamos la utilidad del siguiente teorema: si en un espacio de dimensién
n hay n vectores linealmente independientes, entonces estos vectores forman base (también
hay un resultado andlogo que resulta de substituir linealmente independiente por sistema
generador; pero esto no es tan 1til y no lo mencionamos).

También senalamos que hay espacios que no tienen dimension finita, dando como ejemplos
Py €([a,b]). La teorfa de los espacios vectoriales de dimensién infinita es sutil y delicada.
Advertimos a los alumnos que haremos incursiones en los espacios de dimensién infinita para
poder apreciar la riqueza de las aplicaciones del dlgebra lineal.

4.4. Calculo coordenado en un espacio vectorial de dimension
finita

Finalizamos este tema con un concepto practico. Si v es un vector de un espacio vectorial
V con una base B = {vy,...,v,}, entonces existen escalares tnicos «; tales que v = ajvy +
4+ apvy. Bl vector (aq,...,a,)" de IK" se llama coordenadas de v en la base B. Lo
denotamos [v]z.

Enunciamos (la demostracién se puede dejar como ejercicio) las siguientes propiedades:

e Siu,v €V cumplen [u]g = [v] entonces u = v.
e Dado x vector de IK", existe un tunico vector v € V tal que [v]g = x.

e [av + pw]g = alv]s + [[V]s.

Explicamos la utilidad que tienen estas propiedades. Se pueden resolver problemas y
deducir propiedades de los espacios vectoriales de dimension finita simplemente trabajando
con las coordenadas de los vectores, es decir en IK".

El libro [37] contiene un capitulo dedicado a los espacios vectoriales, si bien el tratamiento
es rapido. Dos libro interesantes son [2, 32], que poseen ejemplos practicos y ejercicios. En
cuanto a la bibliografia de problemas, aparte de los anteriores conviene mencionar [56].

Somos conscientes que hemos dejado sin explicar cierto niimero de resultados importantes
dese el punto de vista tedrico, como por ejemplo el teorema de equicardinalidad de bases
en espacios de dimensién infinita, el teorema de la base incompleta o la matriz cambio de
base; pero se ha sacrificado algo de contenido tedrico en aras de contenidos mas aplicados en
capitulos posteriores.
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Contenido del Capitulo 4

1. Definiciones y primeras propiedades.

Definicién de espacio vectorial. Ejemplos: R", C", P,,, P, €"([a, b]).

Propiedades elementales.

2. Subespacios vectoriales.

Definicién de subespacios vectoriales. Ejemplos. P,, C P C €([a, b]).
Caracterizacién de subespacios vectoriales.

Interseccion de subespacios vectoriales.

3. Bases en un espacio vectorial.

Definicién de combinacién lineal. Ejemplos.

Definicién de envoltura lineal. Ejemplos. Toda envoltura lineal es un subespacio
vectorial. Definicion de sistemas generadores.

Dependencia e independencia lineal.

Definicién de wronskiano. Relacién del wronskiano con la independencia lineal de
funciones.

Bases en un espacio vectorial. Ejemplos. Bases canénicas de IK", P,,.

Si una base de un espacio vectorial tiene n elementos, entonces todas las bases
tienen n elementos. Dimension de un espacio vectorial.

Introduccion a los espacios vectoriales de dimensién infinita.

4. Calculo coordenado en un espacio vectorial de dimensién finita.

Coordenadas de un vector respecto de una base en espacios vectoriales de dimensién
finita.

Propiedades. Consecuencias.
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5. Aplicaciones lineales

OBJETIVOS:

Saber hallar y operar con la matriz asociada a una aplicacién lineal. Relacionar los
conceptos de inyectividad, sobreyectividad y biyectividad con el nticleo e imagen de
una aplicacién lineal. Modelar distintos tipos de problemas mediante aplicaciones
lineales.

Descartes, en uno de sus intentos por algebrizar la geometria plana estudié la relacion
entre (z,y) vy (2/,y) si el segundo se obtiene girando un dngulo « el primer punto. Jean
Bernouilli (1667-1748) en una carta a Leibniz en 1715 introdujo los planos coordenados en
IR? tal como los conocemos hoy en dia. Répidamente se empezaron a estudiar las ecuaciones
de las principales transformaciones geométricas en el espacio: proyecciones, simetrias y giros.

Los siguientes pasos los dieron Euler y Lagrange desde dos puntos de vista: el geométrico
y el analitico. Euler, al estudiar la ecuacion general de segundo grado en tres coordenadas
cambid los ejes para que la expresion resulte lo mas sencilla posible, de esta manera, fue capaz
de clasificar todas las cuddricas!. Lagrange, en un ensayo sobre la atraccién de los esferoides,
proporcioné la forma general de los movimientos que conservan distancias:

x = ana +apy +azd

/ / /
Yy = a21% + a2y + a3z
z = ane' +axny +azsd

donde los coeficientes a;; verifican

2 2 2

aj; +ay +az = 1 aiiai2 + agiaz + asjaza = 0
2 5 5

ajo taz +azp = 1 aiia13 + aziazs +azjazz = 0

a%g + a%g + G%g =1 a12a13 + ag2a93 + agzaszz = 0

La relacién entre matriz y aplicacion lineal se hizo méas patente cuando Cayley escribié
de forma matricial las ecuaciones de los diferentes tipos de transformaciones geométricas.
También escribié de forma matricial las ecuaciones obtenidas por Lagrange obteniendo un
tipo particular de matrices: las ortogonales. El concepto de aplicacién lineal en su forma
actual se le debe a Peano cuando axiomatizé la definicién de espacio vectorial.

Hoy en dia las aplicaciones lineales son importantes en las matematicas y en las ciencias
aplicadas. Las aplicaciones lineales modelan las transformaciones geométricas asi como las
ecuaciones lineales. Muchos problemas de la ingenieria se plantean usando matrices, y por
tanto, de las aplicaciones lineales. Muchos problemas complicados se aproximan mediante la
linealizacién prefiriendo estudiar los problemas lineales que surgen. Incluso en la mecénica
cuantica un observable es un operador lineal hermitico en un espacio vectorial complejo.

! Al hacer esta clasificacién Euler descubrié el paraboloide hiperbélico, superficie desconocida para los griegos.
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5. Aplicaciones lineales

5.1.

Definicion y ejemplos

Sean U y V espacios vectoriales sobre el mismo cuerpo IK. Una aplicacién lineal f :
U — V es una aplicacién que satisface:

° f(u1 + 112) = f(ul) + f(U_Q), Vup,uy €U.

o f(Au)=Af(u),VieK,uel.

Entre los ejemplos de aplicaciones lineales citamos los siguientes:

1.

Sea A una matriz m X n con coeficientes en un cuerpo IK. Definimos f : IK" — IK'™ por
medio de f(u) = Au. Este ejemplo muestra que si podemos representar una aplicacion
de esta manera, entonces es lineal. Aplicaremos este ejemplo en adelante.

. La proyeccién P en IR? sobre el plano z = 0. Geométricamente es evidente (véase la

figura 5.1, en donde sélo se muestra la propiedad P(u + v) = P(u) + P(v)). Pero
usamos ademds el primer ejemplo al tener P((z,y,2)") = (z,y,0)".

El giro en IR? de dngulo « y centro el origen. También debe ser evidente observando la
figura 5.1; pero ademéas demostramos que

cosa —sena x
sena  Cos Y
es el vector que se obtiene tras girar (z,y)" un dngulo « respecto al origen.

Si V' es un espacio vectorial de dimensiéon n y B una base de V', definimos ¢ : V' — K"
dada por ®(v) = [v]s.

T : C([a,b]) — IR dada por T'(f) = fabf(ac) dz.
D : CY(]a,b]) — C(]a,b]) dada por D(f) = f'.

u+tv Glu+v) =G(u) +G(v)
u ‘G(u)
P(v) v u+v
G(v)
Plu) ~

Pu+v)=P(u)+ P(v)

Figura 5.1.: Izquierda: La proyeccién P sobre el plano horizontal. Derecha: El giro G de

angulo « (en este dibujo se ha tomado o = 7/2).
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5.2. La matriz asociada a una aplicacién lineal

Si el alumno conoce algo de cédlculo vectorial se puede decir que otros ejemplos importantes
son los siguientes operadores: el gradiente, el rotacional y la divergencia.

Vemos las propiedades basicas de las aplicaciones lineales: Si f : U — V es una aplicacién
lineal, entonces

e f(0)=0.
e Si A C U, entonces f(L(A)) =L(f(A)).

5.2. La matriz asociada a una aplicacion lineal

A veces, operar directamente con aplicaciones lineales puede resultar complicado. Hay
un mecanismo que permite trabajar en IK" y matrices en vez de en espacios vectoriales
“complicados”y aplicaciones lineales “complicadas”.

En esta secciéon construimos la matriz de una aplicacion lineal f : U — V entre
espacios vectoriales de dimensién finita fijadas dos bases B y B’ de U y V respectivamente.
Indicamos como se construye y la relacion fundamental:

[f(0)]s = M(f)s,5[u]s. (5.1)

Mostramos que la matriz M (f)g s/ juega el mismo papel que la aplicacién f, con la salvedad
que mientras f actiia sobre vectores abstractos, la matriz actia sobre elementos de IK",
de aqui la utilidad de esta matriz. Incluimos varios ejemplos concretos. Desde luego, que si
f:IR™ — IR™ es lineal entonces la matriz de f en las bases candnicas es A = [f(e1), ..., f(en)]
y se cumple que f(x) = Ax.

Creemos importante hacer los siguientes ejemplos por dos motivos: muestran la utilidad
de las aplicaciones lineales y explican el uso de la matriz de una aplicacion lineal.

1. La proyeccién isométrica es muy usada en el disefio gréfico (véase la figura 5.2).
Geométricamente es evidente que es una aplicacién lineal (en la seccién siguiente se
demostrard de forma rigurosa). Esta aplicaciéon P : IR* — IR? cumple P(e;) =
(—V3/2,—1/2)t, P(e3) = (v/3/2,—1/2)' y P(e3) = (0,1)'. Ahora, usando (5.1) de-
be ser trivial calcular P((z,y,2)"), es decir, dénde debe ser dibujado en el plano el
punto (x,y, 2)*. En [10] se puede encontrar mds informacién.

P(er) P(ez)

Figura 5.2.: La proyeccién isométrica.
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2. Hallar la proyeccion P sobre un plano concreto que pasa por el origen. Puesto que
calcular P(e;) es complicado, en este caso es més facil utilizar la base de IR? formada por
{u,v,n}, siendo {u, v} una base del plano y n un vector normal al plano. Este problema
es facil si se usan matrices por bloques, puesto que si A es la matriz de P en las candnicas,
y como Au =u, Av = v y An = 0, entonces A[u,v,n| = [Au, Av, An| = [u,v,0]. De
aqui no tenemos més que despejar A. Obsérvese que planteado de esta manera, resulta
ahora trivial calcular, por ejemplo, la simetria respecto a este plano.

Si se hubiesen cogido los vectores u y v perpendiculares entre si y de norma 1, como

ut 1 0 0

vil[uvn]=[010]|=I,

n® 0 0 1

entonces
ut
A=[u,v,0][u,v,n] ! =[uv,0] | vt | =uu® +vv

t
n

lo que aparte de su elegancia, es mucho més répido de calcular que si la base {u, v}
no fuera ortonormal, al evitar calcular de forma explicita [u,v,n]~1. De esta manera
comenzamos a introducir la importancia de las bases ortonormales desde el punto de
vista del analisis numérico.

3. Hallar todos los polinomios p € Py que cumplen p”(x) — 2zp/(z) + 4p(x) = 2% — 1 (el
planteamiento, como se verd, permite substituir > — 1 por cualquier otro polinomio
de P3). Este problema se plantea de la forma siguiente: se define ® : Py — Py como
O(y) = y'(x) — 22y (x) + 4y(z). Si A es la matriz de ® en las candnicas, y si p(x) =
a + bz + cx? es el (o los) polinomio buscado, entonces A(a,b,c)® = (—1,0,1)% es un
sistema lineal cuya solucién proporciona la incégnita.

4. ;Qué debe verificar ¢ € Py para que exista p € Py tal que p”(z) —2xp' (x)+4p(x) = q(z)?
Claramente, si las coordenadas de g en la canénica son b = (a,b,c)® y si A es la matriz
del ejemplo previo, el problema se reduce a investigar cuando el sistema Ax = b es
compatible.

5. Hallar todos los polinomios p € Py tales que p(1) = y1, p(2) = y2 y p(3) = y3 para
y1,y2,y3 € IR dados. Si se define ® : Py — IR3, como ®(q) = (q(1),¢(2),q(3))*, el
problema equivale a resolver ®(p) = (y1,y2,y3)". De nuevo usando técnicas matriciales,
el problema deberia ser facil. En este ejemplo, la base {1, — 1, (x — 1)(z — 2)} es més
comoda de usar que la base candénica de Ps.

6. Se definen

1
L, :P,— R, Ln(p) = / p(w) dz, T,:P, — R, Tn(p) = wop(%) + e wkp($k)a
—1

donde wo, ..., wr € Ry xg,...,zr € [—1,1]. Se hallan las matrices de L,, y T}, en las
canénicas y denotadas respectivamente por M (L,) y M(T,). En los casos

a)n=2k=220=-1,21=0,20=1,
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b) n=3, k=1,

si se fuerza M (L,) = M(T,,) se obtienen, respectivamente, las férmulas de cuadratura
de Simpson y Gauss.

5.3. Aplicaciones afines

Las aplicaciones lineales no cubren todas las transformaciones geométricas interesantes,
puesto que éstas fijan el punto 0. Un tipo més general de aplicaciones son las que conservan la
razon simple. Una aplicacién 7' : IR™ — IR™ es afin cuando T'((1-A\)x+Ay) = (1-\)Tx+\Ty
para todo A € R y x,y € R" (los casos mas importantes son, desde luego n,m € {2,3}).

El siguiente teorema clasifica las aplicaciones afines y muestra la relacion con las aplica-
ciones lineales: Sean 7' : R" — R™ y f : IR" — IR™ definida por f(v) = T(v) — 7(0),
entonces T es afin si y s6lamente si f es lineal. De esta manera si T es afin observamos que
T es “la aplicacon lineal f seguida de la traslacién de vector 7(0)”.

La demostracion es como sigue: si f es lineal es practicamente trivial demostrar que 1" es
afin. El reciproco es un poco mas complicado e ilustra la conveniencia de razonar con figuras
(véase la figura 5.3): Si se desarrollan las expresiones

1

T((1- N0+ M) = (1= NT(0) +MT(v),  T(zu+ %v) - %T(u) 4 %T(v)

se obtienen respectivamente f(Av) = Af(v)y f(u+v) = f(u) + f(v).

Av (utv)/2

Figura 5.3.: Demostracién del teorema fundamental de las aplicaciones afines.

Como ejemplos de IR? a IR? citamos los siguientes:

a) La traslacién de vector vy es T'(x) = x + vo.

b) El giro de dngulo « y centro p es T'(x) = G(x — p) + p, en donde G es el giro de angulo
a centrado en el origen (véase la figura 5.4).

¢) Un shear de factor k se define mediante

(=G ()

Esta aplicacién se usa cuando se “italiza” una letra (por ejemplo A — A).
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5. Aplicaciones lineales

t

d) La simetria axial respecto de la recta r de ecuaciéon n*x = ¢ se construye como sigue (véase

la figura 5.4). Como S(x) — x es perpendicular a r entonces S(x) = x + An para algin

A € R. Como el punto medio de x y S(x) estd en r entonces n*(S(x) + x) = 2¢. De

aqui se sigue que A = 2(c — n'x)/(n'n). Operando de forma matricial y observando que

t t

n'xn = nn'x ya que n*x es un escalar y por tanto conmuta con todas las matrices:
2(c — n'x 2c 2nn' 2nn* 2c
S(x):x+¥n:x+— — x=|(1- n.
n'n ntn tn ntn n'n

Fécilmente el alumno comprende que puede modificar este ejemplo para tratar la proyec-
cién sobre una recta. Asimismo se pueden demostrar muy facilmente propiedades a partir
de la expresién matricial sin usar coordenadas.

e) La homotecia de razén k # 0 centrada en p se define como H(x) = p + k(x — p).

Figura 5.4.: El giro centrado en p y la simetria respecto a la recta r.

En IR? la teorfa es andloga y no insistimos.

Las transformaciones geométricas pueden servir también para demostrar resultados geo-
métricos. Como problema guiado incluimos el siguiente teorema (de Von Aubel): Si sobre los
lados de un cuadrilatero se levantan cuadrados y se unen los centros correspondientes a los
lados no adyacentes se obtienen dos segmentos perpendiculares y de la misma longitud (véase
la figura 5.5). Sea J el giro de dngulo /2 centrado en el origen y sean a, b, c,d los vértices

Figura 5.5.: El teorema de Von Aubel.
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del cuadrildtero. Los centros de los cuadrados son

_bt+a+J(b-a) c+b+Jc—-b) dtc+J(d-c) at+d+J(a—-d)

2 4 2 » T 2 ) 8 2

(5.2)
Basta probar J(q —s) = p — r. Pero esto es facil si se usa (5.2) y J? = —1I.

5.4. El nicleo y la imagen de una aplicacion lineal

Introducimos dos conjuntos importantes en el estudio de las aplicaciones lineales. Sea
f:U — V una aplicaciéon lineal.

e Llamamos nucleo de f, denotado por ker f, al subconjunto de U formado por todos
los vectores cuya imagen es el vector nulo de V.

e Llamamos imagen de f, denotado por Im f, al subconjunto de V' formada por todos
los vectores que tienen antiimagen.

Observamos que estos conjuntos nunca son vacios pues el vector nulo pertenece a ambos.
Damos ejemplos geométricos en IR? y en espacios menos familiares al alumno como el de los
polinomios o el de las funciones continuas.

A continuacién demostramos que si f : U — V es una aplicacién lineal entonces

e f esinyectiva si y solamente si ker f = {0}.

e f es sobreyectiva si y solamente si Im f = V.

Enunciamos, sin demostrar, la férmula de las dimensiones?: Sea f : U — V una aplicacién
lineal y U un espacio de dimension finita, entonces

dim(ker f) + dim(Im f) = dim U.

Como corolario importante dejamos como ejercicio el siguiente resultado: Sea f : U — V una
aplicacién lineal, si dimU = dim V' < oo, entonces

f es inyectiva < f es sobreyectiva < f es biyectiva.

Asimismo demostramos que una aplicacién lineal f es biyectiva si y sélo si la matriz de f en
cualquier par de bases es invertible. Como conclusion resolvemos el siguiente ejercicio: Hallar
los valores de o de modo que la ecuacién (de Hermite) y”(z) — 2zy/(z) + ay(x) = 0 admita
soluciones polinémicas no nulas.

El libro principal de consulta en todo el capitulo es [37], aunque como referencia extra se
puede consultar los textos [2, 46]. En cuanto a los libros de problemas, ademés de los citados
en capitulos previos, podemos anadir [41] en el que se combinan las matrices y aplicaciones
lineales para plantear problemas.

2La demostracién rigurosa requiere haber demostrado, por lo menos, el teorema de completacién de la base.
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6. Curvas de Bézier

La representacion de curvas mas usada en el disenio por ordenador fue descubierta de
manera independiente por Bézier (1910-1999) y por de Casteljau (quienes trabajaron para
las empresas automovilisticas de Rénault y Citréen respectivamente). En 1959 de Casteljau
redacté un informe confidencial en donde aparecié un algoritmo con el fin de generar por
ordenador curvas sencillas e intuitivas de manipular. Bézier en el principio de la década de
los 60 derivo de forma diferente el mismo tipo de curvas.

Los trabajos de Bézier y de Casteljau estaban orientados a la industria automovilistica.
Ahora las curvas de Bézier (en su versién plana) son la base de muchos programas informéticos
de diseno grafico (como Adobe Illustrator o Corel Draw) y del diseno de tipos de fuentes de
letras (como PostScript o TrueType).

Las ideas fundamentales de este capitulo han sido extraidas de [24, 30].

6.1. El algoritmo de De Casteljau

Comencemos con el siguiente algoritmo que genera una curva: Sean pg, P1, P2 tres puntos
en IR? y t € [0,1]. Construimos los siguientes dos puntos:

bg(t) = (1 —t)po + tp1, bl(t) = (1 —t)p1 + tpa.
A continuacién construimos un iltimo punto més:
bi(t) = (1 —t)bg(t) + thi(t).

Véase la parte izquierda de la figura 6.1. A medida que ¢ varfa entre 0 y 1, el punto b3(t)
describe una curva, como se puede ver en la parte derecha de la figura 6.1. La curva b% (t) se
llama curva de Bézier asociada a los puntos pg, p1, pP2-

Escribimos este algoritmo de forma matricial: si pg, p1, p2 son filas, entonces

Po
1—-t t 0
0 1-¢t ¢t ||P]> (6.1)

P2

[1-¢t t]

lo que proporciona
b3(t) = (1 — t)*po + 2t(1 — t)p1 + t*po.

Las parabolas son curvas planas; sin embargo es interesante en las aplicaciones construir
curvas tridimensionales. Esto se logra modificando el algoritmo anterior:

Dados los n + 1 puntos pg, p1,--.,Pn y t € [0,1], en primer lugar se calculan n puntos

bz‘l(t):(lft)pi+tpi+1, i=0,...,n—1.
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6. Curvas de Bézier

Figura 6.1.: Se muestra a la izquierda el algoritmo de de Casteljau. A la derecha se muestra
la curva de Bézier que resulta tras aplicar el algoritmo.

A continuacién se calculan n — 1 puntos
bi(t) = (1 —t)b}(t) +tbj,1(t), i=0,...,n—2.
Y asi progresivamente hasta calcular

b (1) = (1 — )by~ (1) + b}~ (1),

Este algoritmo se ve mejor si se pone en forma triangular, como se ve en la tabla siguiente
con cuatro puntos iniciales en donde se ha escrito b} por b} ().

Po
N\
p1 — by=(1—-1)po+tp:
N\ N\
p2 — bl=(1-tp1+tps — b= (1-1t)b}+tb]
N\ N\ N\
ps — bl=(1—-tpa+tps — b?=(1-t)bl +tb) — b}=(1-1t)bi+tb?
Los puntos pg,...,pn se llaman puntos de control y la curva final se llama cur-
va de Bézier asociada a los puntos pg,...,Pn, la cual serd denotada en lo sucesivo por

Blpo, - - -, Pal(t)-

Figura 6.2.: Una cuibica de Bézier.

La representacién matricial es andloga a (6.1). Escribimos sélo cuando hay tres puntos
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6.2. Curvas de Bézier y polinomios de Bernstein

iniciales y el alumno comprende facilmente la generalizacion.

1-—t t 0 0 Po
1-t ¢t 0 0 1-t ¢t 0 p1
e 0 0 1-t t P2 (6.2)

0 0 0 1-t¢ P3

Si el alumno conoce algo de programacién, se puede mostrar un cédigo que permite dibujar
las curvas de Bézier: el siguiente programa es una funciéon de Matlab:

function cast(P)
[m,n]=size(P);

for t=0:0.05:1

B=P;

for k=m-1:-1:1
ceros = zeros(k,1);
C=[(1-t)*eye(k) ,ceros] + [ceros,t*eye(k)];
B=Cx*B;

end

plot (B(1),B(2),’07)
hold on

end

6.2. Curvas de Bézier y polinomios de Bernstein

Como hemos visto, las curvas de Bézier se dibujan de forma recursiva mediante el algorit-
mo de de Casteljau; sin embargo es conveniente tener una forma explicita para estudiar las
propiedades de estas curvas. Esta forma no recursiva fue descubierta por Bézier independien-
temente de de Casteljau.

Aunque en (6.1) y en (6.2) se ha visto una representacién matricial, desde el punto de

vista tedrico, la aparicién de matrices no cuadradas hace dificil el estudio. Sea t € [0,1] y se
definen las siguientes matrices:

[(1—t ¢t 0 - 0 0 Po
0 1—-t t - 0 0 p1
cw=| O Tt 0 U i, p=| P2,
0 0 0 o 1—t t Pri
0 0 0 -~ 0 1—t| [ Pn

en donde la matriz I es la identidad de orden n + 1 y U es la matriz cuadrada de orden
n + 1 con unos en la diagonal superior a la principal y el resto de sus entradas nulas. Las
n primeras filas de C'P producen los n puntos tras la primera etapa en el algoritmo de de
Casteljau. Las n — 1 primeras filas de C(CP) = C?P producen los n — 1 puntos tras dos
estapas del algoritmo. Y asi sucesivamente. Por tanto la primera fila de C™P es el punto
final. Pero ahora

C"P = (tU + (1 — t)I)"P = Zn: <”> U1 — )RR p = Zn: Br(t)U*P.

k
k=0 k=0
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6. Curvas de Bézier

en donde se ha denotado By (t) = (})t*(1 — t)" . Pero es fécil comprobar que la primera
fila de U*P es justamente pj para todo k € {0,...,n}. Esto permite probar que la curva
generada por el algoritmo de De Casteljau con puntos de control po, ..., Ppn €s

B[po, -, Pal(t) = > BR(t)ps-
k=0

Emplear que B[po,...,pn](t) es la primera fila de C™P no es computacionalmente ade-
cuado, pues es preferible el uso de matrices no cuadradas como en (6.1) y en (6.2).

Los polinomios B} (t) que han aparecido han sido muy estudiados y se llaman polinomios
de Bernstein'. Dos propiedades importantes de estos polinomios son

a) 3o Bi'(t) = 1.
b) {B{, -+, B} es una base de P,,.

Las demostraciones son faciles: la primera se logra aplicando el binomio de Newton a
1= (t+ (1—1t))". La segunda es mas facil atin.

6.3. Propiedades de las curvas de Bézier

Vamos a ver por qué son importantes las curvas de Bézier desde el punto de vista del
diseno por ordenador.

6.3.1. Invarianza afin

Las aplicaciones afines juegan un papel importante en el disefio de objetos, pues a menudo,
éstos deben ser trasladados, girados, escalados, ...

Supongamos que hemos dibujado la curva de Bézier B[py,...,pn]. A continuacién nos
piden que dibujemos la imagen de esta curva mediante una aplicacién afin T : IR? — IR?;
es decir, tenemos que dibujar la curva T'(B[po, ..., Pxs]). La invarianza afin permite resolver
este problema de dos modos:

1. Calcular la imagen por T' de los puntos de la curva ya dibujada.

2. Primero calcular T'(pg),...,T(pn) y luego dibujar la curva de Bézier asociada a los
puntos de control T'(py),...,T(pn)-

Po,---,Pn — B[pO7)pn]

! l

Probar la invarianza afin es facil.

'Estos polinomios fueron introducidos por Bernstein (1880-1968) en 1913 al demostrar el Teorema de apro-
ximacién de Weierstrass.
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6.4. Vectores tangentes

6.3.2. La propiedad de la envoltura convexa

La curva de Bézier siempre estd contenida en el poligono cuyos vértices son los puntos
de control (como se ve en las figuras 6.1 y 6.2). No damos una demostracién formal de esta
propiedad, sino que de manera intuitiva decimos que el algoritmo de de Casteljau produce
puntos que estan entre los puntos de control.

Esta propiedad es 1til por lo siguiente: en muchas ocasiones es deseable saber si dos
curvas de Bézier se cortan o no. Esto computacionalmente es costoso (hay que decidir si
existen ¢, s € [0, 1] tales que a(t) = ((s)). Si comprobamos que los poligonos no se solapan,
que es menos costoso, entonces seguro que las curvas no se cortan (sin embargo, si los poligonos
se solapan, no podemos concluir nada).

6.3.3. Interpolacioén inicial y final

La curva de Bézier pasa por el primer y ultimo punto de control.

6.3.4. Pseudocontrol local

i, Qué tenemos que hacer para modificar una curva de Bézier? ;Qué ocurre si se mueve un
punto de control? Sean las curvas

Oé(t) = B[p07 c oy PE—1,P, Pk+15- - - 7pn](t)7 ﬂ(t) = B[12)07 o P19, Pk+1y - - - 7pn](t)

Es muy fécil probar que «(t) — 8(t) = B} (t)(p — q).

Por tanto, si movemos un punto de control, la variacion de la curva se hace maxima
cuando t = k/n y esto ocurre aproximadamente alrededor del punto de control que movemos.
Ademas la curva modificada se diferencia de la curva original en la direccién p — q.

6.4. Vectores tangentes

En el diseno grafico es importante saber calcular tangentes a las curvas de Bézier, es decir
hemos de saber simplificar

Blpo,.pal1)

Si nos fijamos en la figura 6.1 observamos que el segmento que une bj(t) con bi(t) es tangente
a la pardbola en B[po,p1,p2](t). Algo similar ocurra para cibicas (véase la figura 6.2).
Explicamos que por esta razén, el propio algoritmo de de Casteljau calcula la tangente sin
coste adicional. La demostracion es facil e instructiva si se usan matrices. Recordamos que

Blpo,. .., pal(t) = {C™(t)P = [By(¢)..... BL(t)]P.

Por lo que hay que mostrar previamente cémo se derivan matrices. En concreto mostramos
que (A™) = S"7_ AF"1A’ A"~k y en particular si Ay A’ conmutan entonces (A")" = nA" 1A’
Como C(t) = tU 4 (1 — t)I, entonces C' conmuta con C' = U — I, por lo que

d

= BP0, -, Pa](t) = €1 (nC"H(U = )P) = n[e;C" U P — e C" 1P,
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6. Curvas de Bézier

que prueba lo afirmado previamente.

Este no es momento para profundizar maés en esta teoria, ya que el objetivo de la asignatura
es mostrar alguna aplicacién sencilla del dlgebra matricial. Lo tinico que hacemos es senialar
algunos defectos de la teoria expuesta y cémo se han resuelto para indicar algunos esbozos
de una teoria mas avanzada.

e Si una curva tiene un trozo recto, entonces toda la curva debe ser recta. Por tanto,
es imposible disenar una curva que contenga partes rectas y no rectas. La solucién es
sencilla: disenar por separado trozos de curvas que se unen de manera adecuada.

e Si se desea generar curvas complicadas, el grado del polinomio debe ser elevado y por
tanto los calculos se ralentizan. La solucién es la misma que la del punto previo: disenar
curvas de grado bajo que se ensamblan de forma adecuada.

e Es imposible usar curvas de Bézier para dibujar circunferencias o hipérbolas. Hay dos
posibles soluciones: una es aproximar un trozo de circunferencia mediante una cubica
v la otra solucién es usar las curvas racionales de Bézier.

Proponemos el siguiente problema:

En este ejercicio se buscard una cibica de Bézier para aproximar un cuarto de circunfe-
rencia. Por simplicidad se supondra que la circunferencia esta centrada en el origen y que el
cuarto de la circunferencia esté en el primer cuadrante. Sea r el radio de la circunferencia. El
objetivo es hallar los puntos by, by, by, bs tales que r(t) = B[bg, b1, ba, bs](t) sea la ctibica
buscada (véase la figura 6.3). Ya que el cuarto de circunferencia debe pasar por (r,0)" y por
(0,7)%, se exige que que by = (r,0)* y by = (0, 7).

bs = (0,7)" by

b,

Figura 6.3.: Aproximacién de una circunferencia por una cibica de Bézier.

a) Como la tangente en (r,0)" es vertical se exige o/(0) = (0,\)* para algiin A > 0 y por
idéntico motivo se exige o/(1) = (—u,0)" para p > 0. Por cuestién de simetria, se toma
A = p. Pruébese que by = (r,\/3)" y que by = (\/3,7)".

b) Por tanto, sélo hace falta determinar A. Forzamos que el punto que estd en la mitad
de la curva de Bézier pase por la mitad del cuarto de circunferencia. Hagase r(%) =

(rv/2/2,7/2/2)t para hallar \.
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6.4. Vectores tangentes

Por curiosidad, las circunferencias dibujadas en este proyecto se han dibujado usando este
problema.

Mostramos ahora una utilidad de la invarianza afin: Sean
b() = (I,O)t, b1 = (S,t)t, b2 = (t, S)t, b3 = (0, l)t

los puntos de control para dibujar de forma aproximada la porcién de la circunferencia 2% +
y?> = 1 contenida en el primer cuadrante (véase la figura 6.4).

Figura 6.4.: Una aplicacién de la invarianza afin para dibujar elipses. En este dibujo se ha
tomado la aplicacién A(z,y) = (z,y/2).

Como la transformacién lineal A : R? — IR? dada por A(z,y) = (ax,by) transforma la

. . . . 2 2 . g
circunferencia mencionada en la elipse %5 + Z—Q = 1, entonces esta elipse se puede dibujar de

forma aproximada como la curva de Bézier cuyos puntos de control son

co = (a, O)t, c| = (as,bt)t, cy = (at, bs)t7 c3 = (0,b)".
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7. Espacio vectorial euclideo

OBJETIVOS:

Conocer las propiedades de los espacios euclideos y los ejemplos méas importantes.
Saber aplicar el teorema de la mejor aproximacion. Apreciar las ventajas que
supone trabajar con una base ortogonal. Efectuar con fluidez el proceso de Gram-
Schmidt y la factorizacién QR de una matriz.

Cuando los matematicos posteriores a Descartes desarrollaron la geometria analitica no
se dieron cuenta que el concepto de perpendicularidad era independiente del concepto de
paralelismo. Los desarrollos obtenidos por los matemaéticos en los siglos XVIII y principios
del XIX los consideraron como parte del mismo tipo de geometria.

Fue a principios del siglo XIX, con el estudio de la geometria proyectiva y las geometrias
no euclideas cuando se observé que las ideas de paralelismo e incidencia son conceptos in-
dependientes de la métrica del espacio. El desarrollo de la teoria que hoy conocemos como
producto interno vino de dos caminos diferentes: el algebra y el analisis.

Grassmann definié en su libro Die lineale ausdehnungslehre lo que llamé cantidad extensiva
(un tipo de hiperntimero con n componentes). Para Grassmann un hipernimero es una
expresion del tipo

a = aie] + ageg + - -+ apen,

donde los «; son ntimeros reales y donde e; son unidades cualitativas representadas geométri-
camente por segmentos de linea dirigidos (de una unidad de longitud) trazados desde un origen
comun determinando un sistema de ejes ortogonal. Las «a;e; son miultiplos de las unidades
primarias y estan representadas por longitudes a; a lo largo de los ejes respectivos, mientras
que « estd representado por un segmento de linea dirigido en el espacio cuyas proyecciones
sobre los ejes son las longitudes «;. Grassmann define la suma y el producto por escalares

(are1+ -+ anen) + (Brer + -+ + Buen) = (a1 + Br)er + - + (an + Bn)en,
Majer + -+ apen) = (Aag)er + -+ (Aay)en

Grassmann introdujo dos clases de productos, el interno y el externo. Para el primero
Grassmann postul6 e;|e; = d;5, la propiedad distributiva con respecto a la suma, la conmuta-
tiva y (ae)|f = a(elf), siendo e y f dos hipernimeros. Grassmann define el valor numérico
de un hipernimero (lo que hoy llamamos norma) y angulo entre dos hipernimeros.

Desde el punto de vista del andlisis, ya Euler se dio cuenta, al estudiar el desarrollo de
una funcién en serie trigonométrica, la relacién

[ h@@ae =0, i),
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7. Espacio vectorial euclideo

siendo f;, f; cualesquiera funciones del llamado sistema trigonométrico:
{1,cos z,sen x, cos(2x),sen(2x), ... }.

Legendre (1752-1833) obtuvo, al estudiar la ecuacién diferencial que hoy lleva su nombre,
una serie de polinomios p; que satisfacen

1
/1pi(x)pj(w) do = §;5.

Sturm (1803-1855) y Liouville (1809-1882) generalizaron este tipo de funciones (véase la
introduccién al Capitulo 6 del programa de Mateméticas) y establecieron una clara analogia
del comportamiento de todas estas funciones con el desarrollo hecho por Grassmann. La
teoria tuvo que esperar a los trabajos de Hilbert (1862-1943) sobre las ecuaciones integrales
definiendo con claridad un producto interno en el espacio de las funciones que generaliza al
producto de Grassmann.

Aunque Hilbert no desarrollé un lenguaje geométrico puso los fundamentos para el des-
arrollo de la teoria general que fue hecha por Schmidt (1876-1959) a principios del siglo XX.
Consideraba las funciones como elementos de un espacio de dimensién infinita, introdujo la
notacién que hoy utilizamos, definié el concepto de perpendicularidad, norma y dedujo los
principales teoremas: Pitdgoras, desigualdad de Bessel, desigualdad de Cauchy-Schwarz y la
desigualdad triangular.

7.1. Producto escalar

En esta seccién empezamos definiendo un producto interior en un espacio vectorial real
V. Es una regla que asocia dos elementos u,v € V a un escalar denotado (u, v) que cumple
para todos u,v,w € V y A € R.

a) (u+v,w) = (u,w)+ (v, w).
b) (u,v) = (v,u).

c) (Au,v) = Au,v).

d) (u,u) > 0.

e) (u,u) =0 u=0.

Un espacio vectorial euclideo es un espacio vectorial con un producto interior.

Explicamos los ejemplos més importantes con los productos escalares usuales:
a) R™ (u,v) =>", ujv; = u'v.
b
b) C([a,b]): {f,9) = [, f(z)g(x)dz.

c) C([a,b)): (f,9) = f;w(x)f(q:)g(:v) dx, donde w : [a,b] — IRT es continua.
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Podemos dotar a un espacio vectorial de varios productos escalares, por ejemplo, conside-
ramos P, con los siguientes productos escalares diferentes:

a) (p,q) = [, p(x)q(z)dz.

b) (p,q) = [ pla)q(z)dz.

7.2. Norma y angulo en un espacio euclideo

La norma de un vector v de un espacio euclideo se define como ||v|| = \/(v,v). Hay que
recordar la idea geométrica que subyace a esta definicién (véase el capitulo 1). A continuacién
se demuestran las siguientes propiedades de la norma: sean u,v € V, siendo V un espacio
euclideo y A un escalar, entonces

1. |v] > 0.

2. [v[[=0&v=0.

3. vl = AVl

4. 1w, v)] < Julv]|

5. [[lu+v| < |ul| +||v]. (Desigualdad triangular).

Es conveniente, en la medida que sea posible, realizar dibujos en la pizarra para propor-
cionar al alumno una mayor base intuitiva.

La desigualdad de Cauchy-Schwarz-Bunjakovski permite definir el dngulo 6 € [0, 7| entre
dos vectores no nulos u, v por medio de

cosf = M
[[ul[[[v]]

En particular podemos definir el concepto de perpendicularidad. Dos vectores son perpen-
diculares u ortogonales cuando su producto escalar es nulo. A continuaciéon demostramos
el teorema de Pitagoras en un espacio euclideo. Insistimos en representar graficamente los
resultados.

7.3. Proyecciones sobre subespacios
Un concepto originado de la geometria, que tiene importantes aplicaciones, es el de com-

plemento ortogonal de un subespacio. Si U es un subespacio de un espacio euclideo V,
entonces definimos este subconjunto como

Ut ={veV:(v,u)=0,YucU}.

Enunciamos los siguientes hechos bésicos (las demostraciones de las dos primeras se pueden
dejar como ejercicios):
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7. Espacio vectorial euclideo

a) Ut es un subespacio de V.

b) Si {uy,...,u,} es una base de U, entonces v € U~ si y sélo si (v,u;) = 0 para todo
1=1,...,n.

c) Si U es un subespacio vectorial de dimensién finita de un espacio vectorial euclideo V,
entonces todo vector v de V' se puede expresar de manera tinica como v = u + w, siendo
ucU,we Ut (véase la figura 7.1).

Figura 7.1.: La proyeccién sobre U y sobre U-.

Esta tltima afirmacién se puede enunciar como V = U @ U+. No la hacemos asi al no
haber definido la suma de subespacios ni la suma directa.

Es necesaria hacer la demostracién de la dltima propiedad, ya que la prueba proporciona
un método para hallar la proyeccion de un vector v sobre un subespacio U conocida una base
{u1,u,...,u,}. Si suponemos que existe u € U tal que v —u € UL, si u = Y1 | au,
obtenemos el siguiente sistema de n ecuaciones lineales con n incognitas:

Zai<ui,uj> =(v,uy), j=1,...,n (7.1)
i=1

Demostramos que este sistema es compatible determinado. Esta propiedad nos permite definir
las proyecciones ortogonales sobre subespacios (denotaremos Py la proyeccién ortogonal
sobre el subespacio U).

Enunciamos el teorema de la mejor aproximaciéon: Sean U un subespacio de dimensién
finita de un espacio euclideo V' 'y v € V. Si u € U cumple v — u € U~ (es decir, u = Py(v))
entonces se verifica

v —ul < |v—-1|, vu eU.

Es interesante hacer la demostracién del teorema, al mismo tiempo que se ilustra en la
pizarra la figura correspondiente (véase la figura 7.2), ya que esta figura nos proporciona casi
automaticamente la la demostracién: el teorema de Pitagoras aplicado al tridngulo de vértices
u, u’ y v. También la siguiente definicién es intuitiva si se hace este dibujo: La distancia de
un vector v a un subespacio U es ||[v — Py(v)].

Hacemos el ejemplo concreto de aproximar una funcién f € €([0, 1]) mediante polinomios
de grado menor o igual que 2 en el intervalo [0,1]. Es conveniente representar f con un
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7.4. Bases ortogonales y proceso de Gram-Schmidt

Ut v

Figura 7.2.: El teorema de la mejor aproximacion.

ordenador y su aproximacién para convencer al alumno de la bondad del método. En este
ejemplo ha surgido la matriz de Hilbert de orden 3. Esta matriz es el ejemplo clasico de
las matrices mal condicionadas. Posteriormente describiremos una serie de conceptos para
mejorar la situacion.

La siguiente observacion ayuda a introducir el siguiente punto. ;Qué condiciones tiene
que cumplir la base {uj,us,...,u,} para que el sistema (7.1) sea lo més sencillo posible de
resolver, es decir, diagonal? Facilmente vemos que esta condicién debe ser (u;,u;) = 0, si
1 # j, concepto éste con claras connotaciones geométricas.

7.4. Bases ortogonales y proceso de Gram-Schmidt

Decimos que {uy,...,u,} es un sistema ortogonal si los vectores uy,...,u, son per-
pendiculares dos a dos. Si ademaés tienen norma uno se dice que el sistema es ortonormal.
Demostramos que todo sistema ortogonal de vectores no nulos es linealmente independiente.
Para establecer que el reciproco no es cierto, mediante la intuicion geométrica, instamos al
alumno a buscar un contraejemplo.

Una de las ventajas de trabajar con bases ortogonales es que el sistema (7.1) es diagonal.

Al resolverlo, si una base ortogonal de U es {uy,...,u,}, obtenemos
~ (v, u;)
PU(V) = Z ’ 12 u;.
2 ]

Ahora las siguientes propiedades son ficiles de demostrar y se pueden dejar como ejercicios.
Conviene efectuar dibujos en la pizarra explicando intuitivamente las propiedades:

a) Py es lineal.
b) ker Py = UL; Im Py = U.

Es facil ahora probar la identidad de Parseval y la desigualdad de Bessel. En este momento
introducimos los coeficientes de Fourier' de una funcién f € @([—m,n]). Es conveniente
aclarar que sélo vamos a trabajar con sumas finitas y subespacios de dimensién finita y que

!Para una mayor informacién de las series de Fourier véase el Capitulo 5 del temario de Mateméticas.
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7. Espacio vectorial euclideo

la teoria completa no se podra ver hasta segundo curso de la carrera, ya que ahora el alumno
no dispone de las herramientas necesarias.

Utilizando el hecho de que el sistema trigonométrico
{1, cos z,sen z, cos(2x), sen(2zx), . . ., cos(nx), sen(nx)}

es ortogonal respecto al producto usual en C([—m, 7|), obtenemos que de todas las funciones
que pertenecen a la envoltura lineal del sistema trigonométrico, la mas “préxima” a f(z) es
el polinomio trigonométrico

(f,cos kx) (f,sen kzx) T
+ Z oskx + ———= senkx = 5t Z a, cos(kx) + by sen(kz),

]1H2 || cos k:cH2 || sen kz||2 —
donde
1 ™
ap = — f(x) cos(kx) dx; k=0,1,2,...
™ —T
1 s
by = — f(z)sen(kz) dz; k=1,2,3,...
™ —T
Entendemos por méas “préxima’, la funcién g(z) € L{l,cosz,senz,...,cosnz,sennx} de

modo que minimice el valor de la integral

™

2 _ 2

I£ =9l = [ (£(a) - gla))?
—T

Este valor se llama error cuadratico medio y mide si la aproximacién es buena o no.

Cuanto menor sea este valor, mejor sera la aproximacién. Conviene hacer un ejemplo concreto

y dibujar las gréaficas para que el alumno se familiarice con esta técnica.

Debido a las ventajas de tener bases ortogonales es preciso incitar al alumno a preguntarse
si hay un proceso que permita hallar bases ortogonales. La respuesta es si. Ensenamos en
este punto el proceso de ortogonalizacién de Gram-Schmidt. Si {ui,...,u,} es una
base de U, entonces los siguientes vectores definidos de forma recursiva (véase la figura 7.3)
forman una base ortogonal.

q1 = uy, dn = Up — PL{ql,...,qn_1}(un)v n>1
u9 us
q3
q2
q2
> q1 a1
Priqyy(u2) P gy a3 (13)

Figura 7.3.: Proceso de ortogonalizacion de Gram - Schmidt.

Creemos que es conveniente dar dos tipos de ejemplos, en IR™ y hallar una base de P,,
(con n = 2 6 3) con el producto escalar usual en C([—1, 1]), introduciendo los polinomios de
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7.5. Matrices ortogonales. Factorizacién QR

Legendre. Nos detenemos un poco en este ejemplo, efectuando un problema de aproximacién.
Ademsds, explicamos que mediante un cambio t — ax + b, podemos trabajar en cualquier
intervalo cerrado y acotado usando los polinomios de Legendre ya tabulados.

De paso conviene explicar que hemos obtenido el siguiente importante resultado tedrico:
Todos los espacios euclideos de dimensién finita poseen una base ortogonal.

7.5. Matrices ortogonales. Factorizacion QR

Geométricamente interesa definir aquellas aplicaciones que conservan el producto escalar
en IR™ puesto que son transformaciones geométricas que conservan las distancias. Facilmente
demostramos la equivalencia

(x,y) = (4Ax, Ay) Vx,y € R" = A'A=1T.

Este tipo de matrices se llaman ortogonales. Se observa facilmente que los vectores columna
de una matrices ortogonal forman un sistema ortonormal. También se deduce que si A es
ortogonal, entonces A' también, y por tanto los vectores fila de A son ortonormales.

Si se aplica el proceso de Gram-Schmidt a las columnas de una matriz A, si son linealmente
independientes, entonces se obtienen una matriz ) del mismo tamano que A cuyas columnas
son ortonormales y una matriz R cuadrada triangular superior cumpliendo A = QR. Esta es
la factorizacion QR de la matriz A. Si A es cuadrada, entonces () es ortogonal. Creemos
conveniente efectuar un ejemplo con una matriz concreta.

La bibliografia para este tema es muy extensa y el tratamiento es practicamente similar en
los libros de dlgebra lineal, aunque nos hemos cenido al texto [37]. También puede consultarse
[32]. El texto [41] es adecuado para problemas. Para una introduccién a los espacios de
dimensién infinita, en especial a una introduccién a las series de Fourier resulta ttil [2].

71



72

Contenido del Capitulo 7

1. Producto escalar.

e Definicién de producto escalar y de espacio euclideo.
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8. Aproximacion por minimos cuadrados

OBJETIVOS:

Conocer la técnica de los minimos cuadrados, en particular resolver de manera
aproximada sistemas incompatibles, aproximar por rectas, parabolas, polinomios,
modelos lineales y exponenciales una nube de puntos. Calcular la distancia entre
variedades lineales.

En el primer dia del afio 1801, un cuerpo, posteriormente identificado como un asteroide
y llamado Ceres, fue descubierto mientras que se aproximaba al Sol. Los astrénomos fueron
incapaces de calcular su érbita, a pesar de que pudieron observar este cuerpo durante 40 dias
seguidos hasta que lo perdieron de vista. Después de sélo tres observaciones Gauss desarrollé
una técnica para calcular su Orbita con tal precisién que los astrénomos a finales de 1801
y principios de 1802 pudieron localizar Ceres sin ninguna dificultad. Con este avance en
astronomia, Gauss logré un rapido reconocimiento en el &mbito cientifico. Su método, que no
fue descrito hasta 1809 en el libro Theoria motus corporum coelestium, todavia es usado hoy
en dia y sélo requiere unas pocas modificaciones para adaptarse a los ordenadores modernos.

Tres anos antes y de modo independiente, Legendre en su Nouvelles méthodes pour la
détermination des orbites des cométes, desarrolld el primer tratamiento del método de los
minimos cuadrados.

En esencia el método de Gauss fue como sigue. Si se obtiene una tabla de medidas entre
las variables x e y ligadas por medio de la relacién y = a + bx:

x‘xl Ty o Ty
vyl vz o um

Y se busca la recta y = a 4+ bx que mejor se “ajusta”’ a esta tabla de puntos, se debe intentar
hacer minima la funcién de dos variables

n

f(a,b) = Z(a + bz — i),
i=1
Para ello se iguala 0f /da y 0f /0b a cero obteniendo un sistema de ecuaciones. Modernamente
se prefiere deducir este sistema por métodos algebraicos, ya que si lo que se pretende es
minimizar la norma de cierto vector de IR", parece claro que podemos utilizar técnicas de
producto interior.

8.1. Método de los minimos cuadrados

Comenzamos enunciando con generalidad el método de minimos cuadrados cuyo ob-
jetivo es “resolver” de manera aproximada sistemas incompatibles.
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8. Aproximacion por minimos cuadrados

Consideremos el sistema incompatible Ax = b, siendo A una matriz m xn, x € R" y
b € R™. Es claro que Ax — b # 0 para cualquier x € IR". Pero nos interesa encontrar
xg9 € IR" de modo que Axy — b sea lo més préximo posible a 0, es decir hay que encontrar
xp € R" tal que ||Axo — b|| sea lo menor posible (véase la figura 8.1).

Rm
b

$AXO
{Ax:x € R"}

Figura 8.1.: Deduccién de las ecuaciones normales.

Por el teorema de la mejor aproximacién obtenemos que xp cumple (Axg — b, Ax) = 0
para todo x € IR". De aqui es facil deducir las ecuaciones normales:

A'Axy = A'b.

La solucién x se llama solucién éptima y la cantidad || Axo—b|| se llama error cuadratico.
Esta cantidad mide la bondad del ajuste.

Finalizamos la seccién indicando que si las filas de A son independientes (lo que ocurre
en practicamente todas las situaciones interesantes), entonces disponemos de la factorizacién
QR de la matriz A. Ahora el sistema de las ecuaciones normales se reduce a Rx = Q'b. Esta
factorizacién permite probar que si las filas de A son linealmente independientes, el sistema
de las ecuaciones normales tiene solucién tnica.

En cursos posteriores, cuando el alumno disponga del concepto de ntimero de condiciéon
de una matriz, se estudiardn las ecuaciones normales desde el punto de vista del calculo
numérico, llegando a la conclusién de que la matriz A'A suele estar mal condicionada. Para
arreglar esta deficiencia se utiliza precisamente la factorizacién QR de la matriz A.

Preferimos no dar ejemplos concretos en esta seccién ya que en la seccién siguiente se
encontraran numerosos ejemplos de aplicacién de las ecuaciones normales.

8.2. Ajuste de datos

El primer ejemplo que desarrollamos es el ajuste por rectas. Sea la tabla de valores
obtenida empiricamente que relaciona las variables x e y:

x‘xl o -+ Tp
vyl v o um

(8.1)

Deseamos encontrar los valores ag, a; tales que la recta y = ag + a1x se ajusta mejor a los
datos. Esta recta se llama recta de regresion. Si forzamos que los datos pasen por la recta
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8.2. Ajuste de datos

planteamos el siguiente sistema:

1
Lo <ao>_ o
1 “

Tn Yn

El sistema es compatible si y sélo si los puntos (x1,y1), ..., (Zn,yn) estén alineados, lo que
normalmente no ocurre en la practica. Las ecuaciones normales del sistema anterior son

(1 1) oo <ao>_<1 1) n
xl a’;n al - xl ':L'TL ’
1 T, Yn

(. B)(2)- ()
Z?:Nfi Z?:lng ai Z?:V’Uiyi ’

que proporcionan las formulas para calcular los coeficientes de la recta buscada.

es decir,

Las féormulas son mucho mas sencillas si trabajamos en un sistema de referencia diferente.
En efecto, vamos a hallar la recta y = ¢+ d(x — T) que mejor ajusta a los datos de la tabla
(8.1), siendo 7 la media aritmética de los valores 1,9, ..., z,. Forzando a que los puntos
(x4, y;) pasen por la recta obtenemos el sistema

ry—x ¢\ Y1
o =1

1 x,—7x

1

y las ecuaciones normales son

R LY S WA WA TR S N
X1 —% -+ Tp—T 1 _ d) \z1-% - x,—72

Teniendo en cuenta que

n n n
E (zi —) =0, E (zi — @)y = E Yy — NT - Y,
i=1 i=1 i=1
siendo ¥ la media aritmética de y1,¥y2,. .., yn, las ecuaciones normales se reducen a

(6 smme ) ()= (2 Z s )

por lo que la recta buscada es

Y=+ Yo Ty —nf‘ﬂ(aj
Yoy (zi — T)?

Es conveniente introducir las siguientes cantidades (estos valores son importantes en es-
tadistica). Si nos fijamos en la pendiente de la recta de regresién, dividiendo el numerador y
el denominador por n y denotando E(z) la media aritmética de la variable z, obtenemos

E(zy) — E()E(y)
E((x —7)?)

— ).

d =
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8. Aproximacion por minimos cuadrados

El denominador mide cuan dispersas estan distribuidas las medidas de la variable x, este
valor se llama varianza de = y se denota o(z)?. En general, dada la variable z, la varianza
de z es 0(2)? = E[(z — E(2))?].

Por otra parte, si la pendiente es nula entonces la recta de regresién es una constante (la
media de las y;), esto quiere decir que las x;s no han influido para nada en los valores de las
yis, por tanto el numerador mide el grado de dependencia entre las variables x e y. Se llama
covarianza entre x e y y se denota o(x,y). Por tanto la recta de regresion es

La férmula del error cuadratico para este ajuste es
n
E=(c+d@ —7) -y
i=1
siendo ¢ y d los valores obtenidos. Esta expresién se puede simplificar:

o(@)o(y) — olz,y)’

B=n o(@)

Observamos que de paso hemos obtenido o(x)o(y) > o(x,y), al ser el error una cantidad
mayor o igual que cero.

Pero esta forma de medir el error no es buena porque, si por ejemplo aumentamos el
namero de experimentos, es decir, incrementamos el valor de n, el error aumenta, lo que no
es logico. Introducimos el indice de determinacién como otra medida de la bondad de un
ajuste con el cual se corrige este defecto:

o(x,y)?

" o(x)?0(y)?

Es trivial que 0 < R < 1. Cuanto més préximo esté R a 1, o(x)o(y) — o(z,y) serd mas
cercano a 0, por lo que el error cometido es méas pequenio y mejor es el ajuste.

El siguiente ajuste que hacemos es por pardbolas. Dada la tabla (8.1), deseamos encontrar
los valores ag, a1, as tales que la pardbola y = ag + a1z + asx? se ajusta mejor a los datos.
Si forzamos que los datos pasen por la pardbola entonces planteamos el siguiente sistema
matricial:

2

I @ oy a Y1
2

1 xo x5 . Y2
.. al - . ?
2 az

1 =z, =i Yn

El sistema es compatible si y sélo si los puntos (z1,¥y1),...,(Zn,yn) yacen en una unica

pardbola, lo que normalmente no ocurre en la practica. Las ecuaciones normales del sistema
anterior son

n D1 T Dy %2 ao Doy Yi
Dic1 s die wz die fﬂz a | = XL iy
n n n n
Zi:l Ty Zi:l Ly Zi:l Z; az D i1 TiYi
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8.2. Ajuste de datos

Considerando los ejemplos previos inducimos el caso general. El polinomio p(x) = ag +
a1x + -+ + apmzx™ de grado n que mejor ajusta a los datos debe cumplir

n Z:‘L:l Tg e Z:‘L:I 5'3?11 ao Z;Ll Yi
D i1 Ti D1 95? e i x;n+ ai _ D i Ty

YTt Do x;n—i—l R W xzzm—2 am > T

Los ajustes anteriores son sdlo casos particulares del ajuste por modelos lineales. Dada
la tabla (8.1) deseamos encontrar una funcién de la forma

y = appo(z) + ar1d1(x) + - - - amdm(x)

que mejor ajusta a los datos. En este caso las incégnitas son ag,aq,...,a, y las funciones
¢i(x) son conocidas. En primer lugar forzamos a que los puntos de la tabla verifiquen la
ecuacién de la curva:

Y1 do(r1) -+ dm(z1) ap

Yn Go(rn) - Im(wn) Am

Las ecuaciones normales son como antes: A'b = A'Axq. Ilustramos el ejemplo con dos tipos
de modelos lineales: ae” + be™, a + b/x.

A veces los datos responden a un comportamiento que no se puede modelar linealmente.
El ejemplo méas importante es el ajuste exponencial. Supongamos que disponemos de una
tabla como las anteriores y que los datos siguen una relacién de tipo y = aexp(bx). Si
forzamos a que los puntos (x;,y;) verifiquen la ecuacién obtenemos

y1 = aexp(bxy)

Yn = aexp(bzy)

Obviamente este sistema (las incégnitas son a y b) no es lineal; pero lo podemos linealizar
tomando logaritmos:
log(y1) = log(a)+ bx;

log(yn) = log(a)+ bz,
obtenemos un sistema lineal cuyas incégnitas son log(a),b. Escribimos este sistema en forma
matricial, planteamos las ecuaciones normales y hallamos los valores 6ptimos. Explicamos
el siguiente ejemplo concreto: En un caldo de cultivo se halla una colonia de bacterias en
crecimiento. Para averiguar el ritmo de crecimiento se cuenta el nimero de bacterias en el
tiempo t, obteniéndose esta tabla:

t (tiempo) [0 1 2 3 4
n (bacterias) | 20 41 83 170 331

1

por razones tedricas” se supone que las variables n y t estan relacionadas por la ley n =

aexp(ft).

1Cuando se estudian problemas de poblaciones donde la razén de crecimiento es proporcional al nimero de
habitantes surge la ecuacién diferencial y'(t) = ky(t).
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8. Aproximacion por minimos cuadrados

8.3. Minimos cuadrados ponderados

Empezamos esta seccién con un ejercicio sencillo: Si obtenemos una serie de medidas

Y1, ,Yn, icudl serd el valor mas probable? Planteando las ecuaciones normales obtenemos
que este valor es la media aritmética de y1,--- , yn.
De alguna manera este valor es el esperado, puesto que los datos 1, ..., ¥, juegan un

papel simétrico. Pero puede pasar que no todas las medidas estuviesen hechas con la misma
precision. Por lo que tenemos que dar mayor “peso” a las medidas més precisas. Esto mismo
puede pasar cuando estamos ajustando por una recta o cualquier curva a una tabla de puntos.
Esta situacion se corrige utilizando un producto escalar que no es el usual de IR". El ajuste
que efectuamos se llama por minimos cuadrados ponderados.

Six=(z1,...,22)% y = (¥1,...,¥n)", definimos el siguiente producto escalar:
<XaY> =wir1Y1 + 0+ WpTpYn = XtWy,

siendo w; nimeros positivos (llamados pesos) y W una matriz diagonal cuyas componentes
de la diagonal principal son w;. El significado intuitivo de w; es que si la medida ¢ es més
precisa que la medida j, entonces debemos de dar a w; un valor mayor que wj.

Sea A una matriz n X m, b € IR". Queremos hallar el vector xy € IR" que minimiza el
valor de ||Ax — b||. Este vector debe cumplir Axy —b L Ax para todo x € IR™. Utilizando el
producto escalar definido en esta seccion deducimos las ecuaciones normales ponderadas:

AW Axy = A'Wh.

Crremos conveniente repetir el ejemplo hecho al principio de esta seccién, obteniendo en este
momento que el mejor valor debe ser

W1Yr + -+ WpYp
w4t w,

8.4. Distancia entre variedades lineales

Como una aplicacién geométrica, explicamos un método general para calcular la distancia
entre dos variedades afines de IR¥ (véase [6]). Sean las variedades lineales de ecuaciones

n m
P+ Y Aiw, g+ > v
i=1 j=1

Tenemos que encontrar \;, 4; que minimicen

A1
n m An
o+ A= (a+ D pvill = v ova) || = (@ =p)l = 4% - b,
=1 =1
i
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8.4. Distancia entre variedades lineales

donde A = (uy,..., Wy, Vi, ..., Vin), X = (A1, ..., Apy i1, - - -, fim)' v b = g — p. Por tanto hay
que resolver

A'Ax = A'b. (8.2)

Este sistema proporciona un método general para calcular la distancia entre variedades (y los
puntos que minimizan la distancia). Hacemos un ejemplo concreto.

Ademads, observamos que este método proporciona un corolario: el vector que une los
puntos de minima distancia es perpendicular a los subespacios soporte de las variedades. En
efecto, si denotamos

U=(u,....u,), V=(vi,....vm), L=, M) M= (..., pim)",

entonces (8.2) puede escribirse como
Utv uUtv L (U
ViU Vv -M ) V' )’

U'(WUL-VM —b)=VY(UL-VM —b)=0.

de donde

Luego el vector

UL-VM~-b=Y Xui—> uv;—(q-p) =[P+ Aw)—(q+ > uv;)
i=1 j=1 i=1 J=1

es perpendicular a {uy,...,up,vi,...,Vy}. Vemos que cuando las bases de los subespacios
soporte son ortogonales, el sistema (8.2) se simplifica.

Este capitulo se halla desarrollado en [37], si bien anadimos [51, 55, 68] por el estudio
detallado que hace del método de los minimos cuadrados. Los problemas planteados en [41]
son un buen complemento de los libros anteriores.
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Contenido del Capitulo 8

1. Método de los minimos cuadrados.

e Ecuaciones normales. Solucién 6ptima. Error cuadratico.

e Propiedades de las ecuaciones normales.
2. Ajuste de datos.

e Ajuste por rectas. Varianza, covarianza, indice de determinacién. Propiedades del
indice de determinaciéon. Ejemplo.

e Ajuste por parabolas. Ejemplo.

e Ajuste por polinomios. Ejemplo.

e Ajuste por modelos lineales. Ejemplo.

e Ajuste exponencial. Ejemplo.
3. Minimos cuadrados ponderados.

e Introduccion a los minimos cuadrados ponderados.

e Ecuaciones normales ponderadas.
4. Distancia entre variedades lineales.

e Planteamiento y resolucion del problema.

e Ejemplo. Consecuencia geométrica.



9. Teoria espectral

OBJETIVOS:

Saber calcular valores y vectores propios. Entender y aplicar las caracterizaciones
de las matrices diagonalizables. Encontrar la factorizacion espectral de una matriz
diagonalizable. Saber las propiedades de las matrices simétricas y encontrar una
base ortonormal de vectores propios.

El tema de los valores propios aparecié cuando Euler, en el primer tercio del siglo X VIII,
estudié sistematicamente la ecuacion general de segundo grado en dos y tres variables en
el plano y en el espacio respectivamente. Demuestra que existen unos ejes perpendiculares
donde la expresion de la cénica o cuddrica es especialmente sencilla. Posteriormente en 1760
en su libro Recherches sur la courbure des surfaces, al estudiar las secciones normales de una
superficie en un punto encuentra que hay dos planos mutuamente ortogonales cuyas secciones
proporcionan las curvas de méxima y minima curvatura. Posteriormente se vio que estas dos
situaciones son casos particulares del hecho de que un operador autoadjunto es ortogonalmente
diagonalizable. La nocién de polinomio caracteristico aparece explicitamente en el trabajo
de Lagrange sobre sistemas de ecuaciones diferenciales en 1774 y en el trabajo de Laplace
(1749-1827) en 1775.

Cauchy reconocié el problema del valor caracteristico comiin en la obra de Euler, Lagrange
y Laplace. En 1826 tom¢ el problema de la reduccién de la forma cuadratica en tres variables
y demostré que la ecuacién caracteristica es invariante para cualquier cambio en los ejes
rectangulares. En 1829 Cauchy prueba que los valores propios de una matriz simétrica son
reales. Las matrices hermiticas fueron introducidas por Hermite (1822-1901). Frobenius
en 1878 prueba la diagonalizabilidad de las matrices ortogonales, extendiendo en 1883 la
demostracién a matrices unitarias. El teorema espectral para operadores normales es debido
a Toeplitz (1881-1940).

Jacobi (1804-1851) dio la solucién del sistema de ecuaciones diferenciales Y’ = AY’, siendo
A una matriz diagonalizable. Jordan resolvié el caso no diagonalizable usando los conceptos
de matrices similares y de ecuacién caracteristica. En el libro Traité des substitutions (1870)
demostré que una matriz puede ser transformada a una forma candnica hoy llamada forma
canodnica de Jordan.

Un paso simultaneo hacia el concepto de valor y vector propio en un espacio vectorial
abstracto lo dieron Sturm y Liouville al estudiar las ecuaciones que hoy llevan su nombre
(véase el capitulo 6 de Mateméticas). Observaron que si ¢ es cierto operador diferencial,
entonces existe una cantidad numerable de valores A, tales que existen funciones ¥, no nulas
ortogonales entre si verificando ¢(y,) = A\nyn.

Desde 1904 hasta 1910, Hilbert estudié la ecuacién integral u(x) = )\f; K(z,y)u(y) dy.
Supone que K es simétrico y define lo que es un operador autoadjunto para un espacio de
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9. Teoria espectral

funciones, lo que le permite hacer uso de las propiedades de las matrices simétricas en el caso
finito. En concreto demuestra que el operador ¢(u)(x) = f; K(z,y)u(y)dy es autoadjunto.
Las autofunciones asociadas a los distintos autovalores son perpendiculares dos a dos. Con
estos resultados Hilbert puede demostrar lo que se conoce como el teorema de los ejes princi-
pales generalizado en espacios de dimensién infinita. Hilbert llevé a cabo un proceso de paso
al limite que le permitié generalizar resultados sobre sistemas finitos de ecuaciones lineales.
Sobre esta base decidid que un tratamiento de las formas cuadraticas infinitas “vendria a
completar de una manera esencial la teoria bien conocida de las formas cuadrdticas con un
numero finito de variables”.

9.1. Conceptos basicos

Sea A una matriz cuadrada cuyas entradas estan en C. Decimos que A € C es un valor
propio si existe v € V no nulo tal que Av = Av. Decimos que v € V es un vector
propio asociado al valor propio A si Av = Av. Creemos que es conveniente abstenerse de
hacer ejemplos porque el siguiente teorema proporciona un método facil para calcular valores
y vectores propios. Sea A una matriz cuadrada, entonces A es valor propio si y sélo si
det(A — AI) = 0. El polinomio det(A — AI) = 0 (no demostramos que es un polinomio de
grado igual al orden de A) se llama polinomio caracteristico.

Ademis es evidente que el conjunto de vectores propios asociados a A se obtiene resolviendo
el sistema indeterminado (A — AI)x = 0. Estos resultados proporcionan un método para
calcular valores y vectores propios: primero calculamos los valores propios y para cada valor
propio calculamos el subespacio de vectores propios correspondientes.

También senalamos que una matriz real puede tener valores y vectores propios complejos.
Se tiene el siguiente resultado importante: vectores propios correspondientes a valores propios
diferentes son linealmente independientes.

9.2. Diagonalizaciéon de matrices

Definimos la multiplicidad algebraica de A, denotada por m4 (), como la multiplicidad
de A como raiz del polinomio caracteristico. La multiplicidad geométrica de A, denotada
por mgy(A), es la dimension de las soluciones del sistema (A — AI)x = 0. Facilmente se puede
probar que mg(A) < mq ().

Una matriz cuadrada A es diagonalizable si tiene una base de vectores propios. Enun-
ciamos sin demostrar una equivalencia 1til para comprobar si una matriz es diagonalizable:
una matriz es diagonalizable si y sélo si my(\) = m4(A) para todo valor propio A. De aqui
se puede deducir ficilmente que si una matriz cuadrada de orden n tiene n valores propios
diferentes entonces es diagonalizable. El reciproco es falso, como puede verse tomando la
matriz identidad. Hacemos un par de ejemplos concretos.

Uno de los resultados més importantes del tema es el siguiente resultado, llamado factori-
zacién espectral de una matriz, sencillo de demostrar con las herramientas desarrolladas
hasta ahora: Si una matriz A es diagonalizable, entonces A = SDS™!, siendo S la matriz
cuyas columnas son los vectores propios de A y D la matriz diagonal cuyas entradas son los
valores propios de la diagonal. Hacemos un ejemplo.
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9.3. Diagonalizaciéon de matrices hermiticas

9.3. Diagonalizacion de matrices hermiticas

Esta seccién completa los resultados sobre diagonalizacién de las secciones anteriores.
Recordamos que una matriz real simétrica A cumple A = A*. Esta definicién es equivalente
a decir que con el producto usual de IR" se verifica

(Ax,y) = (x, Ay), Vx,y e R"
Las propiedades més importantes de las matrices simétricas son:

a) Todo valor propio de una matriz simétrica es real.

b) Si v y w son vectores propios asociados a dos valores propios diferentes de una matriz
simétrica, entonces v y w son ortogonales.

¢) Toda matriz simétrica tiene una base ortonormal de vectores propios.

Creemos conveniente probar los dos primeros, mientras que la prueba del tercero (que
usualmente es por induccion sobre el orden de la matriz y usa el teorema fundamental del
algebra, véase por ejemplo [51, 55]) no es constructiva. Este ultimo enunciado traducido a
una matriz simétrica A es que existe U ortogonal y D diagonal tal que A = UDU®. Hacemos
varios ejemplos concretos de obtencién de estas matrices, uno de éstos cuando la multiplicidad
geométrica de algin valor propio es mayor que 1, en donde hay que acudir al proceso de
ortogonalizaciéon de Gram-Schmidt.

Para calcular los valores propios de una matriz de orden elevado nos vemos obligados a
recurrir a métodos numéricos, los cuales necesitan una aproximacién inicial. A continuacién
describimos un método para encontrar estas aproximaciones iniciales para matrices simétricas.
Sea A una matriz simétrica de orden n, llamamos cociente de Rayleigh a la siguiente funcion
definida en IR™\{0}

(v, Av)
Iv]]?
Es trivial, y se deja como ejercicio, probar que si v es un vector propio asociado a A, entonces

R(v) = \. El siguiente resultado muestra la utilidad de este cociente. Si A es una matriz
simétrica, Apm es el menor valor propio y Ansx €s el mayor valor propio, entonces

R(v) =

)\min < R(V) < )\méx; vV velR"

Efectuamos un ejemplo sobre como se utilizan estas desigualdades para encontrar estimaciones
del menor valor y valor propio.

Somos conscientes de que dejamos sin explicar la forma canénica de Jordan. Debido
a la dificultad del tema, la falta de tiempo disponible y a que en la mayor parte de problemas
pricticos es suficiente manejar matrices diagonalizables!, creemos oportuno no mencionar este
delicado asunto. Para estudiar la forma canénica de Jordan se puede consultar [51, 68].

Para este tema hemos seguido fundamentalmente [37]. Recomendamos al alumno [6§]
por su cardcter aplicado y sus numerosos ejemplos. Como texto de problemas podemos citar
[41, 56].

'De hecho el conjunto de matrices diagonalizables de orden n es denso en el conjunto de las matrices cuadradas
de orden n (véase [34]).
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Contenido del Capitulo 9

1. Conceptos basicos.

e Introduccién. Valores y vectores propios.
e Calculo practico de valores y vectores propios. Polinomio caracteristico. Ejemplos.

e Vectores propios asociados a valores propios diferentes son independientes.
2. Diagonalizacién de matrices cuadradas.

e Multiplicidades geométrica y algebraica. Propiedades.
e Diagonalizabilidad de matrices. Caracterizacion.

e Factorizacion espectral de una matriz.
3. Diagonalizacién de matrices simétricas.

e Propiedades de los vectores y valores propios de las matrices hermiticas.

e Cociente de Rayleigh. Estimaciéon de los valores propios de una matriz simétrica.



10. Aplicaciones de la teoria espectral.

OBJETIVOS:

Conocer algunas aplicaciones de la teoria de vectores y valores propios como el
calculo de potencias de matrices, estudio de las ecuaciones en diferencias, procesos
de Markov, conicas y cuddricas.

Como se vio en la introduccion histérica del capitulo anterior, Cauchy se dio cuenta de la
estrecha relacion entre los valores y vectores propios de una matriz simétrica con las direcciones
principales y las longitudes de los ejes de la cénica asociada a esta matriz simétrica. El motivo
de introducir el concepto de ortogonalmente diagonalizable fue precisamente éste.

Una de las primeras aplicaciones de la teoria de los valores y vectores propios fue el
estudio de las sucesiones dadas por recurrencia lineales, por ejemplo la sucesién de Fibonacci.
La técnica que atn usamos hoy en dia se reduce al calculo de la potencia de una matriz.

Mérkov (1856-1922) fue el primero en estudiar los procesos estocasticos no dependientes
del tiempo, llamados hoy cadenas de Markov. Una cadena de Markov es una sucesion de va-
riables dependientes X (t;) = (x1(t;),. .., zn(t;)) identificadas por valores discretos crecientes
de t; (usualmente el tiempo) con la propiedad de que cualquier prediccién de X(t;) es sélo
funcién de X (t;—1). Esto es, el valor futuro de la variable X depende sé6lo del valor presente
y no de los valores en el pasado. Utilizando la teoria de diagonalizacién de matrices Markov
pudo estudiar completamente las cadenas de Mérkov donde la relacién entre X (¢;) y X (t;—1)
es lineal. Su trabajo ademads ha sido aplicado a la biologia. En [55] se describen las matrices
de Leslie (introducidas en 1945) con el fin de estudiar problemas de evolucién de poblaciones
de animales.

10.1. Potencias de matrices

La utilidad del cédlculo de la potencia de una matriz ya se vio en el Capitulo 2. Aqui
presentamos un método para calcular la potencia de una matriz diagonalizable. Esta matriz
puede escribirse como SDS™!, siendo S invertible y D diagonal, por lo que A® = SD"S~
Realizamos el ejemplo del calculo de A", siendo

a b
=5 2);
donde a,b € IR, b # 0. En este ejemplo observamos que al ser A simétrica, normalizando los

vectores propios, podemos escribir A = SDS*, lo que es mejor que A = SDS™L.
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10. Aplicaciones de la teoria espectral.

10.2. Calculo de sucesiones dadas por recurrencia lineal

Una sucesion (u, )peN estd dada por recurrencia lineal si existen escalares agq, ..., ag
tales que

Up = QUp—1 + -+ + QUp_k; n>k

y ademas se conocen los primeros k términos de la sucesién. Presentamos la forma de hallar
la férmula de u,, con un caso concreto: la sucesion de Fibonacci.

Up = Up_1 + Up_92; N > 2 ug = ug = 1.

La técnica estriba en definir el vector de IR? (en el caso general de IR¥) vy, = (uni1,un)t y
encontrar una matriz A de orden 2 (en el caso general de orden k) constante de modo que
v, = Av,_1. El ejemplo se termina expresando v,, = A"vq y hallando A™ mediante la técnica
descrita en la seccion previa.

10.3. Cadenas de Markov lineales

Tras recordar el concepto de matriz estocastica, decimos que una cadena de Markov
lineal es una sucesién de vectores (X, )nen de IR*, de modo que existe una matriz estocdstica
A tal que x, = Ax,_1. Ilustramos la definicién con un ejemplo concreto y hallamos la
solucién.

Es conveniente definir el término estacionario, es decir el limite de x,, cuando n — oo
y explicar el significado intuitivo de esta expresiéon. En muchas ocasiones es 1til encontrar
el término estacionario de una cadena de Markov sin hallar de forma explicita x,. Para
encontrar este término sin tener que hallar la férmula general es conveniente enunciar los
siguientes hechos:

a) A =1 es valor propio de toda matriz estocastica A (se propone como ejercicio dando como
ayuda que demuestren (1,...,1)" es vector propio asociado a A = 1 de A"Y).

b) Si A es un valor propio de una matriz estocdstica, entonces |A\| <1 (ni lo proponemos
como ejercicio ni lo demostramos puesto que la demostracién requiere herramientas que
no podemos incluir en este curso!).

c) Si A es una matriz diagonalizable y estocdastica y ningiin valor propio tiene médulo 1 (salvo
A = 1), entonces existe estado estacionario y es un vector propio asociado a 1.

Presentamos un ejemplo concreto y otro ejemplo de una cadena de Méarkov que no tiene
estado estacionario. Ademads hacemos el siguiente problema relacionado con las cadenas de
Mérkov (pero donde la matriz que se obtiene no es estocéstica):

Un modelo energético (muy simplificado) es el siguiente: hay dos tipos de energia, la
fosil y la eléctrica. Tras cada ano, las reservas energéticas se modifican, la fésil se puede
transformar en eléctrica, mientras que al contrario no. Asimismo, debido a las reservas
hidraulicas podemos suponer que hay un incremento constante de energia eléctrica. También
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10.4. Identificaciéon de cénicas y cuddricas

a b
T
F | E FI|E —
c
Afion Anon+1

Figura 10.1.: Un modelo simple para la energia.

suponemos que hay unos porcentajes que se pierden debido a que el rendimiento nunca es del
100 %. Las conversiones se muestran en la figura 10.1

Los niimeros a, b y ¢ son tantos por uno y estén en |0,1[. La cantidad x es fija y
estrictamente positiva. Sean e, y f, las cantidades de energia eléctrica y fosil tras n anos.

Sea vy, = (en, fn)".
Halle una matriz A y un vector u tales que v,4+1 = Av, + u para todo n € IN.

Pruebe que v, = A"vq + (I — A")(I — A)"tu.

)
)
c¢) Describa cuéndo la matriz A es diagonalizable.
) Calcule A™.

)

Dé una expresién para las cantidades de energia tras n anos. Calcule el término estacio-
nario. ;Con este modelo, se agotard algtin tipo de energia?

10.4. Identificacién de cénicas y cuadricas

La ecuacién general de una conica es
a112” + 2a12xy + agey® + b1z + bay + ¢ = 0,
que se puede escribir de forma matricial
X'Ax +b'x + ¢ =0,
siendo

A= ( @i di ) . b= (b,b)', x=(z,9)".
aiz a2

Como A es simétrica, existen S ortogonal y D diagonal de modo que A = SDS*, por lo que
la cénica es
(S*x")D(S*) + b'S(S*x) + ¢ = 0.

A continuacién mediante la técnica de completar cuadrados se halla la ecuacién reducida de
la conica. Presentamos un ejemplo concreto con una serie de preguntas: identificar la curva,

'Por ser A estocéstica se cumple || A1 = 1. Ahora se tiene que si v es un vector propio no nulo asociado a A
entonces X[Vl = [Avlls = |Av]ly < [Alls[v] = [[v]}1, de donde || < 1.
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10. Aplicaciones de la teoria espectral.

las longitudes y direcciones de los ejes, el centro, ... Muchos de estos problemas se hallan
directamente y otros deshaciendo los cambios de variables.

El problema de la identificacién de cuadricas es analogo al caso de las conicas.

La bibliografia para este tema es muy extensa, como cabria esperar. Mencionaremos
los textos [37, 41, 68]. Para una introduccién sencilla a las cadenas de Mérkov, sobre todo
pensando en aplicaciones a la probabilidad y estadistica, puede consultarse [26].

88



Contenido del Capitulo 10

1. Potencias de matrices.
e Potencia de una matriz diagonalizable. Ejemplo.
2. Calculo de sucesiones dadas por recurrencia lineal.

e Recurrencia lineal. Célculo de la férmula en funcién de n. Ejemplo: La sucesion
de Fibonacci.

3. Cadenas de Markov lineales.

e Cadenas de Markov lineales. Ejemplo.
e Término estacionario.

e Matrices estocasticas. Propiedades. Ejemplo.
4. Identificacion de cénicas y cuadricas.

e (Coénicas. Ejemplo.

e Cuédricas. Ejemplo.
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Programa de Ecuaciones Diferenciales
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Introduccion

A la hora de elaborar un proyecto docente para esta asignatura hay que tener en cuenta la
relacién con otras asignaturas y la carrera universitaria en la que se ubica. Recordemos que
esta asignatura estd en el primer cuatrimestre del segundo curso de una ingenieria, por lo que
el alumno domina, en cierta medida, el dlgebra lineal y las funciones diferenciables de varias
variables. Ademas, hemos procurado dar a la asignatura un enfoque eminentemente practico,
desentendiéndonos, hasta cierto punto, de resultados interesantes pero excesivamente tedricos.

Hemos distribuido la asignatura en estos cinco grandes bloques tematicos:

Capitulo 1 ECUACIONES DIFERENCIALES DE PRIMER ORDEN. APLICACIONES.

Capitulo 2 ECUACIONES DIFERENCIALES LINEALES DE ORDEN n.

Capitulo 3 APLICACIONES DE LAS ECUACIONES DIFERENCIALES LINEALES DE ORDEN n.
Capitulo 4 SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES.

Capitulo 5 CALCULO VARIACIONAL.

El objetivo del CAPITULO 1 es saber clasificar y resolver los diferentes tipos de ecuaciones
diferenciales de primer orden mas comunes. Todo esto se usard para resolver problemas
extraidos de la fisica y de la geometria. Entre otros, hallamos la temperatura de un cuerpo
caliente en un medio frio, la desintegracién de un cuerpo radiactivo y resolvemos el problema
de las trayectorias ortogonales.

En el CAPiTULO 2 estudiamos las ecuaciones diferenciales lineales de orden n. Hacemos
énfasis cuando los coeficientes son constantes.

En el CAPITULO 3 vemos cémo las ecuaciones diferenciales lineales de orden n sirven para
estudiar los muelles y los circuitos RLC.

En el CAPITULO 4 estudiamos los sistemas de ecuaciones diferenciales lineales y més con-
cretamente lo de coeficientes constantes. Estos sistemas surgen de forma natural al estudiar
sistemas de muelles acoplados y redes eléctricas. Aplicamos la teoria espectral de matrices.
Evitamos en este tema hacer uso de la exponencial matricial, ya que consideramos que es-
to obligaria al estudio de las normas matriciales y conceptos de convergencia relativamente
complicados.

El objetivo del CAPITULO 5 es estudiar el ciaculo de variaciones. Sin profundizar mucho
en la teorfa, explicamos las ecuaciones que surgen y aplicamos estas ecuaciones para resolver
varios problemas extraidos de la fisica y de la geometria.

El libro bésico que damos como bibliografia es [37] para los capitulos 1, 2, 3 y 4. Para el
quinto hemos seguido [18, 22].
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Introduccién al programa de ecuaciones diferenciales

indice del programa

Capitulo 1 Ecuaciones diferenciales de primer orden.

1.1. Ecuaciones separables y reducibles a separables.

1.2. Ecuaciones exactas y reducibles a exactas.

1.3. Ecuaciones lineales de primer orden y reducibles a lineales.

1.4. Algunos ejemplos de las ecuaciones diferenciales de primer orden.

1.5. Trayectorias ortogonales y oblicuas.
Capitulo 2 Ecuaciones diferenciales lineales de orden n.

2.1. La ecuacién lineal de orden n.
2.2. Ecuacién lineal de orden n homogénea de coeficientes constantes.
2.3. Busqueda de soluciones particulares de la ecuacion lineal no homogénea.

2.4. Ecuacién de Euler-Cauchy.
Capitulo 3 Aplicaciones de las ecuaciones diferenciales lineales de orden n.
3.1. Vibraciones en sistemas mecanicos y circuitos eléctricos.
Capitulo 4 Sistemas lineales de ecuaciones diferenciales.

4.1. Introduccion.
4.2. Propiedades de los sistemas de ecuaciones diferenciales lineales.
4.3. Sistemas homogéneos de coeficientes constantes.

4.4. Busqueda de una solucién particular en los sistemas no homogéneos.
Capitulo 5 Célculo variacional.

5.1. Introduccién.
5.2. La ecuacién de Euler.
5.3. Integrales con més de una funcién argumento.

5.4. Problemas condicionados.
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1. Ecuaciones diferenciales de primer orden

OBJETIVOS:

Saber resolver las ecuaciones mas importantes de primer orden. Aplicar las ecua-
ciones de primer orden para resolver problemas geométricos y fisicos.

Los intentos para resolver problemas fisicos mediante el calculo diferencial llevaron gra-
dualmente a crear una nueva rama de las matematicas, a saber, las ecuaciones diferenciales.
A mediados del siglo XVIII las ecuaciones diferenciales se convirtieron en una rama indepen-
diente y su resolucién un fin en si mismo.

Desde el punto de vista de la concepcién de funciéon de la época, se disponia, a partir
de Newton (1643-1727), de un método general de integraciéon de ecuaciones diferenciales
mediante el desarrollo de funciones en forma de serie. Sin embargo a los matemaéticos de
la época les interesa obtener soluciones en forma de funciones elementales. Los Bernouilli
atacaron el problema de estudiar las ecuaciones lineales de primer orden. Ricatti (1707-775)
en 1722 estudia la ecuacién que hoy lleva su nombre. Es Clairaut (1713-1765) en 1734 el
que introduce la idea de los factores integrantes para conseguir que una ecuacion diferencial
de primer orden sea la diferencial exacta de una funcién U(x,y), de la cual las funciones
implicitas U(z,y) = C sean las soluciones de la ecuacién. Fue el mismo Clairaut quien se
planteé el problema de la “solucién singular”.

Euler desarrolla un método en 1743 para resolver las ecuaciones lineales de orden n de
coeficientes constantes. D’Alembert (1717-1783) observa que el conocimiento de una solucién
particular y de la solucién general de la homogénea conduce, por adicién, a la solucién general
de la no homogénea. Lagrange estudia como obtener soluciones particulares y a él se le debe
también el método de variacién de parametros.

A principios del siglo XIX se desarrollé una fase importante en la que se trataba de
demostrar algunos hechos dados por vélidos en el siglo anterior. En 1820 Cauchy probd
la existencia de soluciones de la ecuacién diferencial ' = f(¢,y) bajo ciertas condiciones.
En 1890 Picard (1856-1941) establecié un método de aproximaciones sucesivas que permite
establecer con precision el teorema de existencia y unicidad de las ecuaciones diferenciales de
orden n.

Las investigaciones de Poincaré (1854-1912) sobre la estabilidad del sistema solar le con-
dujeron al inicio de la teoria de las ecuaciones diferenciales no lineales. Obtuvo a finales del
siglo XIX una serie de resultados de indole topoldgico que fueron mejorados por Bendixson
(1861-1935) y por Liapunov (1857-1918).

Las ecuaciones diferenciales es hoy un tema importante dentro de la matematica y de las
ciencias aplicadas pudiendo decir que no hay ninguna ciencia en donde no aparezca alguna
ecuacion diferencial.
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1. Ecuaciones diferenciales de primer orden

1.1. Ecuaciones separables y reducibles a separables

La forma general de una ecuacién diferencial de orden 1 es?

f(ta Y, y/) =0, (11)

donde el objetivo es hallar la(s) funciones y(¢) que cumplen (1.1). En muchos problemas que
surgen de la fisica se suele conocer la condicién inicial, esto es y(ty). De forma andloga
definimos una ecuacién diferencial de orden n como una expresion de la forma

Ft .y y™) =0,

En este caso las condiciones iniciales son los valores que toman y, 1/, ...y 1) en t.

Es interesante enunciar el teorema de Picard de existencia y unicidad local de los problemas
de valor inicial. Creemos que su demostracion, que requiere herramientas poderosas del
calculo infinitesimal, nos desvia excesivamente de los objetivos. La demostracién que se suele
encontrar en los textos hace uso del teorema del punto fijo de Banach. En [18] se puede
consultar una demostracion que no usa este teorema aunque si usa la sucesion de Picard.
Para ver otra demostracién que hace uso de las quebradas de Euler, véase [22]. Pese a que se
puede enunciar el teorema de Picard de forma mas general, preferimos enunciar este teorema
como sigue. Si las funciones f,df/0y son continuas en un rectangulo R de IR? y si (o, yo)
estd en el interior de R existe una y sélo una funcién y(t) definida en |ty — e, to + [ para algin
e > 0 que cumple ¥ = f(y,t) e ¥/ (to) = yo.

El tipo de ecuaciones mas sencillas de resolver son las ecuaciones de variables sepa-
rables. Son las que pueden ser escritas de la forma

a(t)dt = b(y) dy,

su forma de resolucién es simplemente integrando a ambos lados. Proporcionamos un ejemplo
concreto.

Como se ve, estamos haciendo un uso totalmente informal de los diferenciales. Esto
no es riguroso; pero es la practica comun en otras asignaturas y asi lo haremos durante
el curso. Obsérvese que la forma rigurosa es la siguiente. En primer lugar, la ecuacién
diferencial anterior es a(t) = b(y)y’. Resolver esta ecuacién diferencial es encontrar una
funcién ¢(t) tal que a(t) = b(¢(t))@'(t) = (bo ¢)'(t). Si A(t) y B(t) son primitivas de a(t) y
b(t) respectivamente, entonces integrando se obtiene A(t) = B(¢(t)) + C' que proporciona la
solucién. Esto es mas laborioso que el procedimento informal de operar con dy é dt como si
fuesen entidades numéricas.

Otro tipo importante son las ecuaciones homogéneas. Una ecuacion es de este tipo si
se puede escribir como
=)
dt 7 \¢/’

que se puede resolver mediante el cambio u = y/t. Hacemos un ejemplo concreto. Hemos de
senialar que es imposible que en una ecuacion diferencial se hallen mas de 2 variables.

'En todo la parte dedicada a las ecuaciones diferenciales se usars el convenio de que ¢ es la variable indepen-
diente. Se trata de una notacién inspirada en la fisica, ya que ¢ suele denotar al tiempo. Utilizaremos las
notaciones dy/dt 6 y’ por igual.
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1.2. Ecuaciones exactas y reducibles a exactas

Un tipo importante de ecuaciones reducibles a homogéneas son las ecuaciones racionales:

dy F(at+by+c>'

dr dt +ey+ f

1.2. Ecuaciones exactas y reducibles a exactas

El objetivo de esta seccién es encontrar soluciones en forma implicita F(t,y(t)) = C de
una ecuacion diferencial. Recordamos a los alumnos la utilizacion la regla de la cadena de
varias variables obteniendo

OF L OFdy
ot Oy dt
Esto motiva a la siguiente definicién: Una ecuacién diferencial M (¢,y) + N(t,y)y' (y) = 0 es
exacta si existe F(t,y) tal que 0F/0t = M y OF /0y = N. En este caso la resolucion es facil:
F(t,y)=C.

Enunciamos el siguiente teorema. Si M, N,0M /0t, 0N /0y son continuas en un rectdngulo
R del plano, entonces la ecuaciéon M dt + Ndy = 0 es exacta si y sOlo si en R se cumple

OM /)y = ON/ot.

Una implicacién es trivial y la demostramos: si la ecuacién es exacta, entonces

oM 0 0F 00F ON
Oy Oyot Otoy ot
Demostramos la otra implicacién sélo si los alumnos conocen las caracterizaciones de los

campos conservativos. Si OM /0y = ON/0t entonces el campo G = (M, N) es conservativo,
por lo que existe un campo escalar F' tal que VF = G. Resolvemos un ejemplo concreto.

Tenemos que decir que las ecuaciones exactas son realmente raras, pero mas facil es
encontrar una funcién u(t,y) no nula de modo que la ecuacién Mudt + Nudy = 0 si sea
exacta. En este caso u se llama factor integrante. Deducimos la férmula de los factores
integrantes: u = p(v) es un factor integrante si y solamente si

oM 9N
oy ot
)Y
ot oy
es funcién solo de v. En este caso
oM ON

Oy ot d
dvget—gi— =<t
=N-Z—Mm H
ot y
Buscar factores integrantes por medio de esta férmula es méas complicado que el problema
original; sin embargo, en muchos casos se puede encontrar un factor integrante que depende

de y, de t, 6 de at + by en donde a,b € IR. Hacemos para cada uno de estos casos un ejemplo
concreto.
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1. Ecuaciones diferenciales de primer orden

1.3. Ecuaciones lineales de primer orden

La forma general de una ecuacion lineal de primer orden es

Y +p(t)y = q(t).

Es facil ver que esta ecuacién tiene un factor integrante que depende sélo de t. Utilizando la
férmula de los factores integrantes tenemos que este factor es

p(t) = exp [ p(t) )

Multiplicando la ecuacién lineal por p y teniendo en cuenta que p' = up, podemos resolver
la ecuacién lineal. Preferimos exponer el método general a dar una férmula memoristica.
Cuando no es posible integrar pug en término de funciones elementales, es necesario escribir
la solucién de

Y +pt)y=q),  y(to) =0

usando integrales definidas. Resolvemos el siguiente ejemplo:

y +ty = sent,
y(1) = 5.
En ocasiones una ecuacion diferencial de segundo orden puede reducirse a una de primer
orden. Damos dos situaciones y un ejemplo en cada una de éstas:

a) F(t,y,y") =0. Cambio: u=1y'.
b) F(y,y',y"”) =0. Cambio v = y'. En este caso se tiene

i dudy
Cdt dy dt dy’

1.4. Algunos ejemplos de las ecuaciones diferenciales de primer
orden

Como ejemplos sencillos planteamos y resolvemos cuatro problemas sacados de la fisica y
de la geometria. Hacemos énfasis en el significado fisico de la derivada como tasa de variacién,
en el significado geométrico de la derivada como pendiente de la recta tangente, del signo de
la derivada y en la interpretacion de las soluciones obtenidas.

1. La ley de enfriamiento de Newton afirma que un objeto se enfria en razén pro-
porcional a la diferencia entre su temperatura y la temperatura ambiente. Hallamos
la temperatura T'(t) del objeto en el tiempo ¢ en términos de su temperatura Tj en el
tiempo 0, suponiendo que la temperatura ambiental, M, se mantiene constante.

2. En este ejemplo se va a encontrar el perfil del agua en un vaso que gira alrededor de su
eje con velocidad constante w. Fijamos una particula de la superficie y denotamos T la
fuerza de la tension superficial, F, la centrifuga y P el peso. Colocamos el vaso en el
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1.4. Algunos ejemplos de las ecuaciones diferenciales de primer orden

Figura 1.1.: Un vaso gira con velocidad angular constante.

sistema de referencia {i,j} como muestra la figura 1.1. Se tiene que P +F.+ T = 0.
Pero cada fuerza en el sistema {i, j} se descompone

P = —mygj, F. = mRuw?i, T = —T'senai+ T cos aj,

en donde T' = || T|| y « es el dngulo que forma la tangente a la curva con el eje horizontal.
Igualando términos y eliminando 7' se tiene que

Ruw?

=tana

Esto, aunque no lo parezca es una ecuacion diferencial. Se explica a los alumnos con
detalle que esta ultima igualdad equivale a

w? dy

ga:: I

.z .« . . s . 2
La solucién de esta ecuacién diferencial, facil de resolver, es y(x) = L5—9:{:2 + C, donde C
es una constante arbitraria.

No terminamos aqui el problema; sino que aprovechamos en interpretar la solucién (una
parabola); discutir el comportamiento de w, usar el andlisis dimensional para verificar
la expresion final y el significado fisico que tiene C.

. Una substancia radiactiva disminuye a un ritmo proporcional a la cantidad que de ella
queda (puesto que todos los atomos tienen la misma probabilidad de desintegrarse, la
desintegracién total es proporcional al nimero de dtomos remanentes). Si A(t) es la
cantidad de dicha materia en el tiempo ¢, hallamos A(t) en términos de la cantidad
Ay presente en el tiempo inicial y demostramos que existe 6§ (la vida media) con la
propiedad A(t+ 6) = A(t)/2 para todo t.

. Hallamos la curva y = y(x) con la siguiente propiedad: la distancia de cualquier punto
de la curva al eje X siguiendo la normal a la curva es constante. Véase la figura 1.2.
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1. Ecuaciones diferenciales de primer orden

y=R
R
Eje X
R C
EJeX (_ 70)
Yy=-

Figura 1.2.: Un problema geométrico.

R

Si ¢ es al dngulo que forma la recta tangente con el eje X, entonces y' = tanp =
AB/BC = \/R? —y?/y. Esto dltimo es una ecuacién diferencial cuya solucién es
R? = (z + C)? + y%. La obvia solucién geométrica y = +R no es obtenida.

5. Hallar la forma de un espejo que refleje paralelamente a una direccion dada todos los
rayos que salen de un punto fijo. Para plantear la ecuacion, fijamos en el origen este
punto fijo y suponemos que la direccién dada es la horizontal. Sea P = (x,y(x)) un
punto de la curva y trazamos la tangente por P que corta al eje X en ). Véase la figura
1.3.

Y

Figura 1.3.: El problema del espejo parabdlico.

Por propiedades de la reflexién se tiene que ZOPQ = ZPQO, luego OQ = OP y por

consiguiente
Y

/
Yy =tgdp=——r——.
T+ /2?2 +y?

Que es una ecuaciéon homogénea o también, racionalizando el denominador, posee un
factor integrante de la forma u = u(v), donde v = 22 + y>.

6. La ecuacién diferencial de un circuito en serie en donde hay una inductancia L, una
resistencia R y una fuerza electromotriz externa E(t) es

de
L— = E(t
L+ Ri=E(t)

en donde i(t) es la intensidad en el tiempo ¢. Resolvemos esta ecuacién diferencial
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1.5. Trayectorias ortogonales y oblicuas

cuando E(t) = Agcos(wt) y cuando

10 <t <t
E(t):{ 0 si0<t<ty;

Ey sitg < t.

1.5. Trayectorias ortogonales y oblicuas

Definimos una familia de curvas uniparamétrica en el plano y damos algunos ejemplos
geométricos: rectas, rectas pasando por un punto fijo, circunferencias, circunferencias centra-
das en el origen, etc. A continuaciéon damos un método para calcular la ecuacion diferencial
de primer orden que verifica esta familia: despejar el parametro y derivar.

Definimos lo que son las trayectorias perpendiculares de una familia de curvas, que
son de interés. Damos las férmulas que permiten hallar estas trayectorias. Distinguimos los
casos en coordenadas cartesianas y polares. Damos ejemplos de cada tipo.

El siguiente punto es encontrar las trayectorias de la familia de curvas que corta a la dada
bajo un angulo fijo. Resolvemos un ejemplo y representamos geométricamente los resultados.

Como referencias para todo el capitulo proponemos [37, 62, 75].
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2. Ecuaciones diferenciales lineales de orden n

OBJETIVOS:

Entender la estructura del conjunto de soluciones de una ecuacion diferencial
lineal de orden n. Saber resolver completamente estas ecuaciones cuando sean de
coeficientes constantes y de Euler-Cauchy.

2.1. La ecuacion lineal de orden n

Una ecuacién de orden n es lineal si se puede escribir de la forma
y™ +an 1Oy 4+ 4 a(t)y + ao(t)y = b(t). (2.1)

Cuando b(t) = 0 se dice que la ecuacién es homogénea.

El objetivo de esta seccion es describir cémo son las soluciones de una ecuacién diferencial
lineal. El primer resultado basico es el teorema de existencia y unicidad de los problemas de
valor inicial que enunciamos, pero que no demostramos porque creemos que la prueba nos
desviaria excesivamente de nuestros objetivos.

El siguiente resultado que si demostramos, es béasico para conocer la estructura del con-
junto de soluciones. Dado el siguiente operador

L(y) = y™ + an1 ()" + -+ a1 (t)y + ao(t)y,
se tiene:

e [ es lineal.
e El conjunto de soluciones de L(y) = 0 es un espacio vectorial de dimensién n.

e Siy, verifica L(y) = b(t), entonces la solucién general de L(y) = b(t) se obtiene sumando
la solucién general de L(y) =0 e yp.

Explicamos la utilidad de estos resultados: para resolver L(y) = 0 basta conocer n solu-
ciones independientes y para resolver L(y) = b(t) basta conocer n soluciones independientes
de la homogénea y una solucién particular de la no homogénea. De momento creemos maés
oportuno no proporcionar ejemplos porque todavia no disponemos de métodos de encontrar
soluciones de una ecuacién diferencial.

Del teorema de existencia y unicidad se establece el criterio del wronskiano para la inde-
pendencia de soluciones de una ecuacién diferencial lineal. Recordamos que solo disponiamos
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2. Ecuaciones diferenciales lineales de orden n

de una implicacién; pero cuando las funciones son soluciones de la ecuacion diferencial pode-
mos afirmar la otra implicacién.

Terminamos la seccién describiendo el método de reduccién de orden de una ecuacion
de segundo orden cuando se conoce una solucién de la ecuaciéon de la homogénea. Mas
precisamente: dada la ecuacién y” + ay’ + by = ¢, en donde a, b, ¢ son funciones de ¢, si se
conoce una solucién s(t) de la homogénea asociada, entonces el cambio y = wus permite reducir
el orden de la ecuacién diferencial dada.

2.2. La ecuacion lineal homogénea de coeficientes constantes

Uno de los pasos para encontrar la solucién general de la ecuacién lineal no homogénea
es encontrar n soluciones independientes de la ecuacién homogénea asociada. Esto es facil de
hacer si la ecuacién es de coeficientes constantes. Dada la ecuacién

Y+ ap_y™ Y+ @y +agy =0, (2.2)
en donde ag,...,a, € IR, definimos el polinomio caracteristico de la ecuacion como

p(A) = A"+ QA N T+ ag )+ ag.

Es facil comprobar que A es raiz de la ecuacién caracteristica si y s6lo si e’ es solucién de la

ecuacién diferencial. Desarrollamos los diferentes tipos de soluciones posibles:

a) El polinomio caracteristico tiene sélo raices reales simples.

El polinomio caracteristico tiene raices complejas simples.

)
b) El polinomio caracteristico tiene raices reales multiples.
c)

)

d

El polinomio caracteristico tiene raices complejas multiples.

Proporcionamos ejemplos en cada uno de los casos. Senalamos que si y(t) es solucién de (2.2),
entonces la parte real e imaginaria de y(t) son también soluciones de (2.2), hecho que nos
permite pasar de funciones exponenciales complejas a funciones trigonométricas.

Para motivar el caso b) resolvemos el siguiente problema para ¢ €]0, 1[:
y' =2+ 1=y =0, y(0)=a, y'(0) =0

Y a continuacion hacemos tender € a cero. Otras dos formas de motivar este caso son las
siguientes:

e La ecuacion

obviamente tiene como soluciones independientes las funciones 1,¢, ... t*.

e Si reducimos el orden en la ecuacién de coeficientes constantes 3" + ay’ + by = 0, en
donde )¢ es raiz doble del polinomio A% + a\ + b, obtenemos una solucién te*ot.
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2.3. Bisqueda de soluciones particulares de la ecuaciéon no homogénea

Como tltimo problema hacemos el siguiente. Calcular los valores de k£ € IR de modo que
el siguiente problema
y'+ky=0,  y(0)=y(r)=0
tenga solucién no trivial, encontrando ademaés estas soluciones. Ademas de practicar, el
objetivo es mencionar que si bien (bajo determinadas hipétesis) todo problema de valor inicial
tiene solucién unica, no es cierto que un problema de frontera tenga solucién tnica.

2.3. Buasqueda de soluciones particulares de la ecuacién no
homogénea

La seccién anterior “agotaba”la ecuacion diferencial lineal homogénea de coeficientes cons-
tantes. Lo que falta es encontrar una soluciéon particular de la ecuaciéon no homogénea.

Ensenamos el método de los coeficientes indeterminados valido para cuando b(t) es
una funciéon sencilla: polinomios, funciones exponenciales, trigonométricas o sumas de estas
funciones. Destacamos los casos especiales de cuando determinados valores son raices de la
ecuacion caracteristica, porque hay que tener mas cuidado a la hora de conjeturar la solucién
particular.

Cuando b(t) no esta en los casos antes expuestos no hay més remedio que acudir al método
de variacién de paridmetros' . Este es un método general, pero hay que evitar siempre
que sea posible la busqueda de soluciones particulares de esta forma, ya que es mucho maés
complicada que el método de los coeficientes indeterminados. La existencia de esta solucién
particular depende de la no anulacién de cierto wronskiano, lo que demuestra la importancia
de este concepto. Debido a que la presentacién que hacemos de este método creemos que es
original, se mostrara a continuacion.

El objetivo es encontrar una solucién de (2.1). Supongamos que hemos resuelto la ecuacién
homogénea asociada. Sea esta solucién

Ch
yh:CIy1+"'+Cnyn:(yl"'yn) =YC,
Cn

El método de variacién de pardmetros se basa en el siguiente resultado: Sea F(¢) un vector
columna de funciones que cumple

Y®F =0 para k=0,...,n—2, YO VF =p. (2.3)
Entonces la funcién y(t) = Y (¢)F(¢) cumple (2.1).

La demostracién es muy sencilla. Ademas, si se escribe (2.3) de forma matricial se obtiene

Y 0
Y’ 0
L. F = .
Y (=2) 0
Y (k=1) b
Lo que justifica la aparicién del wronskiano de las funciones y1, ..., Y.

"Hay que observar que el método de variacién de pardmetros sirve también para ecuaciones lineales de
coeficientes no constantes.
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2. Ecuaciones diferenciales lineales de orden n

2.4. Ecuaciéon de Euler-Cauchy

Este es un caso particular de las ecuaciones lineales de orden n de coeficientes variables.
Una ecuacién de Euler-Cauchy tiene la forma

tny(n) 4 an_ltn—ly(n—l) + o arty +agy = R(t),

Haciendo el cambio t = e* se convierte la ecuacién en una lineal de coeficientes constantes.
Comprobamos el caso n = 2 y hacemos un ejemplo concreto. Es interesante hacer notar que
una vez que hagamos el cambio no debe aparecer t, es decir, sélo tiene que aparecer una
variable independiente.

Creemos necesario demostrar con detalle

/ —z dy " —2z < d2y dy)

dz?2 dz

y =c Az’ Yy =
La demostracion de la férmula general,
y® =eD(D - 1) (D= (n—1))y,

donde D denota el operador derivada respecto a x requiere el uso de inducciéon. No nos parece
oportuno demostrarla.

Para la bibliografia de todo el tema conviene consultar el libro [37] que proporciona la
teorfa basica y numerosos ejemplos que aclaran la metodologia. Los textos [13, 62, 75] pueden
consultarse para estudiar més problemas resueltos.
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Contenido del Capitulo 2

1. La ecuacion lineal de orden n.

e Definicién. Ecuacion lineal homogénea asociada.
e Teorema de existencia y unicidad de soluciones.

e El conjunto de soluciones de la ecuacién diferencial homogénea de orden n es un
espacio vectorial de dimension n. Relacion de las soluciones de la ecuacion lineal
con la homogénea asociada.

2. Ecuacion lineal de orden n homogénea de coeficientes constantes.

e Definicién de polinomio caracteristico. Relacién de las raices del polinomio carac-
teristico con las soluciones de la ecuacién diferencial.

e Formacion de la base del conjunto de soluciones.
3. Busqueda de soluciones particulares de la ecuacién lineal no homogénea.
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o Método de variacién de pardmetros.
4. Ecuacién de Euler-Cauchy.

e Reduccion a una ecuacion lineal de coeficientes constantes.
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3. Aplicaciones de las ecuaciones diferenciales

OBJETIVOS:

Modelar en forma de ecuaciones de segundo orden problemas de circuitos eléctricos
RLC o problemas de resortes elasticos. Saber interpretar en términos fisicos la
solucién matemadtica correspondiente.

3.1. Vibraciones en sistemas mecanicos y circuitos eléctricos

En esta seccion modelamos el movimiento de una masa suspendida de un muelle. Empe-
zamos por el caso mas sencillo posible: cuando no hay rozamiento y las tnicas fuerzas que
actuan son la gravedad y la recuperadora del muelle. Deducimos que la ecuacion diferencial

que rige el proceso es

%y K

7:2y + —Yy = 07

dt m
donde m es la masa del muelle y K la constante de recuperacion del muelle. La resolvemos
y transformamos la solucién para expresarla como

y(t) = Acos(at — ),

siendo a = (K /m)'/2.
A continuacion estudiamos el sistema cuando se supone que hay fuerza de rozamiento. La
ecuacién que hay que resolver es

siendo —C%/' la fuerza de rozamiento. Dependiendo de la naturaleza de las raices del polino-
mio caracteristico de la ecuacion, las soluciones son de una manera u otra. Estudiamos las
soluciones, su gréfica y el significado fisico de los tres tipos diferentes de soluciones: Raices
reales, raiz doble real y raices complejas conjugadas.

Como ultimo caso estudiamos cuando el muelle se haya sometido a una fuerza externa, en
este caso la ecuacién lineal deja de ser homogénea:
d%y Cdy K
5 o f+ —y = R(),
dt mdt m
Estudiamos con detalle el caso R(t) = Acos(wt), donde A y w son ciertas constantes. La
ecuacién homogénea ya estd resuelta, por lo que hallamos una particular por el método de
los coeficientes indeterminados.
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3. Aplicaciones de las ecuaciones diferenciales

Observamos el comportamiento asintotico de la solucion, lo que nos da pie a definir el
término estacionario. Y estudiamos el fenémeno de la resonancia.

A continuacion estudiamos los circuitos eléctricos RLC. La ecuacién diferencial que go-

bierna un circuito RLC es
d?I RdI 1 1 dE

wTater TTar
siendo I(t) la intensidad que pasa por este circuito, R la resistencia, L la inductancia, C' la
capacitancia y E(t) la fuerza electromotriz. Recordamos que I = d@/ dt, donde Q@ es la carga
que recorre el circuito.

Esta ecuacién es exactamente la misma que la del movimiento oscilatorio del muelle con
resistencia y con una fuerza externa. Asi el estudio sobre sistemas mecanicos se adapta al
estudio de los sistemas eléctricos. De este modo ensenamos al alumno que un mismo modelo
matematico puede resolver problemas fisicos en apariencia totalmente distintos.

Todo este capitulo esta sacado de [37, 75].
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Contenido del Capitulo 3

1. Vibraciones en sistemas mecanicos y circuitos eléctricos.

e FEcuacién diferencial del muelle sin rozamiento. Solucién de la ecuacién diferencial.

e Fcuacién diferencial del muelle con rozamiento. Solucién de la ecuacion diferencial.
Diferentes casos.

e Ecuacién diferencial del muelle sometido a una fuerza externa. Solucion de la
ecuacién diferencial. Término estacionario y resonancia.

e Circuitos eléctricos RLC. Paralelismo entre el movimiento del muelle y los circuitos
RLC.
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3. Aplicaciones de las ecuaciones diferenciales
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4. Sistemas lineales de ecuaciones diferenciales

OBJETIVOS:

Modelar en forma de sistemas de ecuaciones diferenciales lineales el movimiento
de un sistema de resortes acoplados y la intensidad en redes eléctricas. Conocer
las propiedades bésicas de los sistemas de ecuaciones lineales. Saber resolver los
sistemas de ecuaciones diferenciales lineales de coeficientes constantes.

Los sistemas de ecuaciones diferenciales surgieron en la historia de las matemdticas con
la misma intencion que las ecuaciones diferenciales ordinarias: Modelar y analizar cuantita-
tivamente determinados sistemas fisicos, en particular los astronémicos. En el campo de la
astronomia los principios fisicos (las leyes del movimiento de Newton y la ley de gravitacion)
estaban claros y los problemas matematicos eran mucho mas profundos. El problema ma-
tematico fundamental al estudiar el movimiento de dos o més cuerpos, moviéndose cada uno
bajo la accién gravitatoria de los otros es el de resolver un sistema de ecuaciones diferenciales
ordinarias.

El primer éxito lo obtuvo Newton en los Principia al demostrar que a partir de sus leyes
de movimiento y de la ley de gravitacién universal se podian deducir las tres leyes planetarias
de Kepler (1571-1630). El problema de los tres cuerpos sometidos a una accién gravitatoria
comun fue estudiado intensamente por Euler, Laplace y Lagrange obteniendo sélo resultados
parciales. Poincaré, al estudiar la estabilidad del sistema solar a principios del siglo XX,
introdujo los métodos cualitativos (o topolégicos) para estudiar el comportamiento de las
soluciones, en particular, la existencia de soluciones periddicas.

Al no obtener métodos generales para resolver los sistemas de ecuaciones diferenciales, los
matematicos se volcaron con los sistemas de ecuaciones lineales de coeficientes constantes. La
primera vez que surgio este tipo de sistemas fue al estudiar sistemas de muelles acoplados, a
partir de la ley de Hooke. La nociéon de polinomio caracteristico aparece ya explicitamente
en el trabajo de Lagrange sobre sistemas de ecuaciones diferenciales publicado en 1774 y en
el trabajo de Laplace en 1775. Por otra parte, Laplace desarrollé un método alternativo para
hallar la solucién de tales sistemas. En el famoso ensayo Théorie analytique des probabilités,
publicado en 1812, Laplace present6 lo que ahora se conoce como la transformada de Laplace
para encontrar la solucion de ecuaciones diferenciales lineales de coeficientes constantes. Esta
transformada sirve también para encontrar la solucién de los sistemas lineales de ecuaciones
diferenciales con coeficientes constantes.

Cauchy dedujo el teorema de existencia y unicidad de las ecuaciones diferenciales en algin
momento entre los anos 1820 y 1830 y resumido en sus Ezercises d’analyse (1840). Poste-
riormente, Cauchy, al tratar de demostrar el mismo teorema para los sistemas de ecuaciones
diferenciales, introdujo la notacién vectorial que todavia se utiliza hoy en dia. Generalizacién
que, utilizando los conceptos matriciales introducidos por Cayley a mediados del siglo XIX,
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4. Sistemas lineales de ecuaciones diferenciales

ayudo6 a Jacobi a resolver completamente los sistema de ecuaciones diferenciales lineales de
coeficientes constantes donde la matriz del sistema es diagonalizable. Posteriormente Jordan
introdujo lo que hoy se conoce como la forma candnica de Jordan precisamente para resolver
los sistemas lineales de ecuaciones donde la matriz no es diagonalizable.

4.1. Introduccion

Un sistema de ecuaciones diferenciales es un conjunto de ecuaciones de la forma

vi = filtb,yi,.- . yn)

y;;, = fn(tayl)"'7yn)

donde las funciones f; son funciones de n+ 1 variables. Podemos simplificar la notacién (esto
es 1til tanto en el estudio teérico como en los métodos de resolucién aproximada):

Y(t) = (yla e 7yn)ta F(taY) = (fl(taY)a o afn(taY))t'
con lo que el sistema se puede escribir como
Y'(t) =F(t,Y).

Cuando F(t,Y) = A(t)Y + g(t), siendo A una matriz n x ny g : I — IR" (donde I es
un intervalo de IR), el sistema se llama lineal, y el caso méas frecuente ocurre cuando A no
depende de t, en este caso el sistema se llama de coeficientes constantes. Si g(t) = 0, el
sistema se llama homogéneo. Cuando se conoce el valor del vector Y evaluado en un valor
to real se tiene un problema de valor inicial.

A continuacién planteamos dos problemas concretos surgidos de la fisica.

e Ecuaciones del movimiento de dos masas sujetas a dos resortes acoplados.

e Ecuaciones de las intensidades en un circuito eléctrico con elementos en serie y en
paralelo con una fuerza electromotriz variable.

Ambos problemas conducen a sistemas de ecuaciones diferenciales lineales de coeficientes
constantes.

4.2. Propiedades de los sistemas de ecuaciones diferenciales
lineales

En primer lugar mencionamos la reduccién de una ecuacion lineal de orden n a un sis-
tema lineal de orden n. Esta reduccién es til en los métodos numéricos. Dada la ecuacién
diferencial de orden n

v +an 1 Oy + -+ an ()Y + ao(t)y + b(t) =0,
introduciendo las variables

ur =Y, Uz = y,, e Up—1 = y(TL—Q), Uy, = y(n—l)’
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4.3. Sistemas homogéneos de coeficientes constantes

obtenemos el sistema lineal

/

U1 0 1 0 0 (75} 0
U 0 0 0 0 (25 0
— “ e “ee _l’_
Up—1 0 0 0 1 Up—1
Uy, —ap(t) —ai(t) -+ —ap—2(t) —an—1(t) Uy, b(t)

Enunciamos el siguiente teorema sin demostrarlo, puesto que la demostracién requiere
herramientas matematicas demasiado complicadas, a nuestro juicio, para incorporarlas a una
carrera técnica. Si A;j(t) y gi(t) son funciones continuas en un cierto intervalo I de IR, ¢y € I,
Yy € IR", entonces existe una tnica solucién del sistema Y'(t) = A(t)Y + g(t) definida en I
tal que Y(tg) =Y.

El siguiente resultado, cuya demostracién es elemental si se supone demostrado el teorema
anterior, nos dice que para encontrar la solucién del sistema Y’ = A(t)Y + g(¢), basta
encontrar n (el orden de la matriz) soluciones independientes del sistema homogéneo y una
solucién particular de la no homogénea.

e El conjunto de soluciones de Y’ = A(¢)Y es un espacio vectorial de dimensién n.

e SiY, verifica Y’ = A(t)Y + g(t), entonces cualquier solucién de Y' = A(t)Y + g(t) se
puede escribir como suma de Y, més una solucién del sistema homogéneo asociado.

Una base de las soluciones del sistema Y’ = A(¢)Y se llama sistema fundamental de
soluciones. La matriz M (t) cuyas columnas forman una base de soluciones se llaman matriz
fundamental del sistema.

Ya que la solucién general de la homogénea es de la forma C1Y (t) + --- + C,, Y, (%),
siendo {Y1,...,Y,} un sistema fundamental de soluciones y C; € IR, la solucién general de
la homogénea también se puede escribir como

Y(t)=M(®#)C, CeR"

Demostramos el siguiente resultado importante. Sean Yi(t),...,Y,(t) soluciones del
sistema homogéneo Y’ = A(t)Y. Entonces son linealmente independientes si y sélo si existe
to € R tal que Yi(to),..., Yn(to) son vectores linealmente independientes en IR"™.

Obviamente, por este teorema, M (t) es una matriz fundamental del sistema Y’ = A(t)Y
equivale a que M'(t) = A(t)M(t) y que existe tg € IR tal que M (tp) es invertible.

4.3. Sistemas homogéneos de coeficientes constantes

Recordamos que el conjunto de las soluciones de un sistema lineal de orden n homogéneo
de ecuaciones diferenciales es un espacio vectorial de dimensién n. Por lo tanto, para resolver
sistemas de este tipo sélo tenemos que encontrar n soluciones linealmente independientes.
Dejamos como ejercicio comprobar estas dos propiedades muy sencillas pero muy importantes:

e Si v es un vector propio de A asociado al valor propio A € C, entonces la funcién
Y (t) = eMv verifica Y/ = AY.
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4. Sistemas lineales de ecuaciones diferenciales

e Si {vy,...,v,} es una base de vectores propios de A asociados a los valores propios
Al,. .., A\ (iguales o distintos), entonces eMtvy, ..., eMtv, forman un sistema funda-
mental de soluciones.

Hay que explicar con detalle el caso cuando aparecen raices complejas. Es trivial demostrar
que si A € C\ IR es un valor propio de una matriz real con vector propio v, entonces A es otro
valor propio con vector propio asociado ¥, por lo que exp(At)v, exp(\t)¥V son dos soluciones
independientes del sistema. Teniendo en cuenta sencillas propiedades de los niimeros comple-
jos es sencillo demostrar que la base anterior es equivalente a Re(e*v), Im(e’v). Hacemos
varios ejemplos concretos.

Si una matriz de orden n no es diagonalizable, entonces no podemos acudir al mecanis-
mo previo de busqueda de n soluciones independientes. Hay dos alternativas: hablar de la
exponencial de la matriz o usar la forma candnica de Jordan. No tratamos esta situacién.

4.4. Buasqueda de una solucion particular en los sistemas no
homogéneos

En vista de los resultados anteriores, para hallar la solucién general de un sistema lineal
no homogéneo de ecuaciones diferenciales de coeficientes constantes, s6lo basta encontrar una
solucién particular. Describiremos dos métodos, uno de aplicacion general pero complicado
de usar y otro que sélo se puede usar en ciertos casos concretos, pero mucho més sencillo que
el anterior.

Primero describimos el método de variacién de parametros. Sea el sistema Y’ =
AY +g(t), en donde ya hemos resuelto la ecuacién homogénea. Asi pues, podemos construir
M (t) una matriz fundamental de soluciones. Sabemos que la solucién general de la homogénea
es M(t)C donde C € IR". Conjeturamos como solucién de la no homogénea

Y, (1) = M(t)C(t),

en donde C(t) es un vector columna de funciones desconocidas. Tras forzar a que Y, verifique
la ecuacion no homogénea y aplicar propiedades de la matriz fundamental llegamos a que
M(t)C'(t) = g(t). Con lo cual es facil (en teorfa) hallar una solucién particular de la ecuacién:

Y, () = M) [ M (©g(e)de. (4.1)

to

Notamos que (4.1) es més costoso de resolver que M (t)C'(t) = g(t). Creemos conveniente
hacer un ejemplo donde el tamano de la ecuacién diferencial no supere a dos, ya que la
férmula, aunque en apariencia sencilla, en la practica requiere calculos muy laboriosos.

Cuando el término g(t) es de un tipo particular se suele aplicar la técnica de los coefi-
cientes indeterminados para encontrar una soluciéon particular. Explicamos este método
para el sistema de ecuaciones Y’ = AY + g(t) vélido para cuando g(t) es una funcién vecto-
rial sencilla: polinomios, funciones exponenciales, trigonométricas o sumas de estas funciones.
Destacamos cuando determinados valores son valores propios de la matriz A, porque hay que
tener mas cuidado a la hora de conjeturar la solucién particular.
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4.5. Sistemas de ecuaciones diferenciales lineales de orden superior

4.5. Sistemas de ecuaciones diferenciales lineales de orden
superior

Si R; son funciones lineales en las variables x; y en sus derivadas (por ejemplo R =
x" —y" + 22’ — 5y), entonces el conjunto de ecuaciones siguientes recibe el nombre de sistema
de ecuaciones diferenciales lineales de orden superior.

Ry = fi(t)

Ry = fi(t)

Para resolverlo se introducen variables extras para que sélo aparezca un orden de derivacién,
consiguiendo que este sistema se exprese como

AX' = BX + b(t),

donde A y B son matrices cuadradas constantes del mismo tamafio y b un vector del mismo
orden que A. Ensenamos a los alumnos un ejemplo concreto. Si la matriz A es invertible el
sistema se llama no degenerado, y este caso lo podemos reducir a los tipos ya estudiados:
X' = A"'BX+ A~ 'b(t). En caso de que A no tenga inversa el sistema se llama degenerado.
El estudio de tales sistemas se escapan al nivel desarrollado en el curso.

Creemos que los textos que mejor se ajustan a los objetivos de este capitulo son [13, 37, 75].
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Contenido del Capitulo 4

1. Introduccién.

e Definiciones. Notacién vectorial para los sistemas de ecuaciones diferenciales.
e Dos problemas surgidos de la fisica: sistemas de resortes acoplados y redes eléctri-
cas.
2. Propiedades de los sistemas de ecuaciones diferenciales.
e Reduccién de una ecuacién diferencial de orden n a un sistema de ecuaciones
diferenciales.

e Teorema de existencia y unicidad de soluciones. El conjunto de soluciones de un
sistema lineal de orden n es un espacio vectorial de orden n. Relacion entre el
conjunto de soluciones de la ecuacién homogénea y no homogénea.

e Matrices fundamentales. Propiedades. Solucién general en término de la matriz
fundamental.

3. Sistema homogéneos de coeficientes constantes.

e Relacién entre los valores y vectores propios de la matriz del sistema y la solucion
del sistema de ecuaciones diferenciales.

e La matriz del sistema es diagonalizable. Valores propios reales y complejos.
4. Sistema homogéneos de coeficientes constantes.

e Método de variacién de pardametros.

e Método de los coeficientes indeterminados.
5. Sistemas de ecuaciones diferenciales de orden superior.

e Reduccién a un sistema donde solo aparecen primeras derivadas.

e Sistemas degenerados y no degenerados.
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5. Calculo variacional

OBJETIVOS:

Saber plantear y resolver problemas en donde se usa la ecuaciéon de Euler del
calculo de variaciones.

En el Acta Eruditorum de junio de 1696, Jean Bernouilli propuso como un reto a otros
matematicos el problema de la braquistécrona. Newton, Leibniz, L’Hopital (1661-1704),
Jean Bernouilli y su hermano mayor Jacques (1654-1705) encontraron la solucién correcta. El
método de Jean era ver que la trayectoria de descenso més rapido es la misma que la trayectoria
de un rayo de luz en un medio con un indice de refraccién adecuadamente seleccionado. El
método de Jacques fue mucho més laborioso; pero también mas general y significé un paso al
calculo de variaciones.

En 1734 Euler generalizé el problema de la braquistécrona para minimizar cantidades
distintas al tiempo y tomando en cuenta un medio resistente. En 1736, Euler se propuso
encontrar una aproximaciéon mas general. Su método, que fue una simplificaciéon del de
Jacques Bernouilli fue aplicado a integrales de la forma J(y) = fab f(z,y,y") dz. Euler tuvo
éxito al demostrar que la funcién y(x) que maximiza o minimiza el valor de J debe cumplir
la hoy famosa ecuacién de Euler, que es atin la ecuacién diferencial basica del calculo de
variaciones. Euler mejoré sus métodos y obtuvo ecuaciones diferenciales analogas para un
buen nimero de problemas. Estos resultados los publicé en un libro de 1744, Methodus
mveniendi lineas curvas maximi minimive propietate gaudentes.

En 1755 Lagrange obtuvo un procedimiento general y puramente analitico publicado en
su Essai d’une nouvelle méthode pour déterminer les maxima et les minima des formules
intégrales indéfinies. Hoy en dia sus métodos son usados para deducir las férmulas bésicas
del céalculo de variaciones. El siguiente paso dado por Lagrange fue considerar integrales de
la forma J(z) = [ f(z,y,2,0z/0x,0z/0y) dz dy. Posteriormente Lagrange aplicé el calculo
de variaciones a la mecédnica obteniendo las ecuaciones de Lagrange del movimiento que son
equivalentes a la segunda ley de Newton. Més adelante, Hamilton desarroll6 estas ecuaciones
y ofrecié un nuevo enfoque de la mecanica newtoniana.

Las ecuaciones obtenidas por Euler y Lagrange dan condiciones necesarias sobre las fun-
ciones que maximizan o minimizan localmente (andlogas a la anulacién de la primera derivada
en el célculo de una variable). ;Qué ocurre para encontrar condiciones suficientes o efecti-
vamente demostrar que es un maximo o minimo? Los trabajos posteriores de Jacobi sobre
puntos conjugados y los de Weierstrass (1815-1897) proporcionaron respuestas parciales a
estas preguntas.
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5. Calculo variacional

5.1. Introduccidén

Es fécil captar la atencién del alumno si se explican algunos problemas tipicos.

En un plano vertical un punto A = (a,c) se une con un punto B = (b,d), tales que a < b
y ¢ > d, por una curva suave y = y(z) de modo que el tiempo que tarda una particula sin
rozamiento desde A hasta B sobre la curva y bajo la gravedad sea lo menor posible (véase
la figura 5.1). Se deduce que la velocidad v(x) que tiene la particula en el punto (x,y(x))
debe cumplir v(z) = 1/2¢g(c — y(x)), donde g es la aceleracién terrestre. Como v = ds/dt
en donde ¢ es el tiempo y s el espacio recorrido, y como ds = /1 + ¢/(z)? dz, entonces el
tiempo que tarda la particula en ir desde A hasta B es

b 1 + yl($)2

= ————dx.
a /29(c—y(x))

Por lo que de todas las funciones derivables y(x) definidas en [a, b] que cumplen y(a) = ¢
y y(b) = d, tenemos que encontrar la que minimice (5.1).

T(y) (5.1)

A

(z,y(z))

Figura 5.1.: El problema de la braquistécrona.

. Cudl es la curva que minimiza la distancia entre dos puntos dados A = (a,c) y B =
(b,d)? Obviamente la respuesta debe ser el segmento que conecta estos dos puntos; pero
el problema se puede plantear como sigue. Hallar la funcién derivable y = y(z) definida
en [a,b] que minimiza

b
L(y) = / V1+y(z)?de
y que ademés cumple y(a) = ¢, y(b) = d.

El siguiente problema es similar. Dos puntos A = (a,¢) y B = (b,d), donde a < by ¢,d > 0
se unen con una curva y = y(z) por encima del eje x de modo que el drea de la superficie
de revolucién formada cuando la curva se rota alrededor del eje x sea lo menor posible.
Es decir, hemos de hallar la funcién derivable y = y(z) definida en [a, b] que minimiza

b
Aly) = 2n / y(@)v/1+ (@) dx

y que ademés cumple y(a) = ¢, y(b) = d.
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5.2. La ecuacién de Euler

El planteamiento general es como sigue. Dada una funcién F = F(x,y,y’) de tres variables
la cual supondremos diferenciable tantas veces sea preciso, encontrar la funcién diferenciable
y = y(z) definida en [a, b] que maximice o minimice el valor

b
Mw:/memwax (5.2)

y que ademés cumpla y(a) = ¢, y(b) = d para valores de ¢, d dados.

5.2. La ecuacion de Euler

En esta seccién deducimos la ecuacién de Euler. Supongamos que y = y(z) maximiza o
minimiza (5.2) y sea n: [a,b] — IR con derivada continua tal que n(a) = n(b) = 0. Definimos

b
f@=/FMM®+m®Jm+W@N% (5.3)

Como € = 0 es un extremo de f se cumple f'(0) = 0. Derivando (5.3) respecto a e, haciendo
€ = 0 e integrando por partes se tiene

_/b oF _ doF\ ,
N a77 Oy  dx oy .

Como esto se cumple para toda funcién n € €1([a, b]) con n(a) = n(b) = 0 se concluye! que
oF  doF _
oy dxoy
Esta es la ecuacién diferencial basica del cdlculo variacional, que se puede escribir como
OF  0°F , 0°F  , O°F
o, ; Ty 7Ty nN2-
dy  Oxdy dydy a(y')

Es una ecuacién diferencial de segundo orden que en general no se puede resolver. En algunos
casos particulares si que se puede integrar.

a) F'= F(x,y). Este caso carece de interés ya que la ecuacién de Euler se reduce a 9F/dy = 0.

b) F = F(z,y'). La ecuacién de Euler se reduce a que OF /0y’ es una constante y de aqui se
puede hallar la solucién

¢) F = F(y,y'). Este caso es el mas importante y ocurre en la mayoria de los ejemplos. Se
comprueba facilmente (derivando) que

/
es una constante. Esto permite reducir el orden y resolver la ecuacién de Euler.

Planteamos las ecuaciones diferenciales que surgen de los tres ejemplos mencionados en
la seccién previa.

'Este paso fue aceptado intuitivamente o demostrado incorrectamente hasta que Sarrus (1798-1861) lo de-
mostrd en 1848. Nosotros no lo demostramos.
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5. Calculo variacional

5.3. Integrales con mas de una funcién argumento

Nuestro objetivo ahora es encontrar las funciones y1, . . ., y, suficientemente diferenciables
en [a, b] con valores y;(a), y;(b) conocidos para i = 1,...,n que maximicen o minimicen

b
I(y1, .., yn) :/ F(x, 91,y Uns Yy - - -5 Yh) d.
a

Para ello, sean 7; € C!([a,b]) cumpliendo 7;(a) = n;(b) = 0 y definimos

b
f(e1,...,en) =/ F(z,y14+e1m, ... Yn + e, Y1 + €170, - - -, Yy + Enmyy) da.
a

Siy1,...,Yn €s un extremo de I entonces Vf(0) = 0 y andlogamente a la seccién anterior
obtenemos
OF d OF .
- ——= =0, i=1,...,n.
Oy;  dx 9y,

Planteamos (sin resolver) los dos problemas siguientes:

a) De todas las curvas r(t) = (x(t), y(t), 2(t)) que unen dos puntos, jcuél es la que minimiza
la distancia? Sisuponemos que r(0) y r(1) son los extremos de la curva, hay que encontrar
funciones x = x(t), y = y(t), z = z(t) con valores dados en t = 0 y ¢ = 1 que minimizan
Jo V@ + Y (02 + 20 dt.

b) ¢(Cudl es la curva que minimiza la distancia en la esfera? Si suponemos que la esfera es de
radio uno y centrada en el origen, podemos decir que cualquier curva en la esfera es de la
forma r(t) = (sen ¢(t) cos A(t), sen ¢(t) sen A(t), cos ¢(t)) para t € [0, 1]. Por tanto hay que
encontrar funciones ¢ = ¢(t), A = A(t) con valores dados en t = 0 y ¢t = 1 que minimizan

Jo Il (®)] dt.

5.4. Problemas condicionados
Introducimos esta seccién comentando dos problemas:
a) De todas las curvas cerradas de longitud constante, ; cudl es la que encierra mas area?

Hemos de buscar dos funciones z = z(t) e y = y(t) de €([0,1]) de modo que x(0) = z(1)
e y(0) = y(1) son conocidos y maximicen

1
Alz,y) = /0 (1) (1) dt,

con la condicién de que
1
/ V()2 +y/(t)2dt
0

sea constante. Este es el famoso problema isoperimétrico.
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5.4. Problemas condicionados

Figura 5.2.: La cuerda que minimiza la energia potencial: la catenaria.

b) ¢(Cudl debe ser la forma de una cuerda de densidad constante p que pende de dos puntos
fijos y que minimice la energia potencial? Sea y = y(z) la forma de la cuerda para = € [a, b].
Conocemos y(a) e y(b). La energfa potencial de un elemento diferencial de masa es

dE = gy(z) dm = gy(z)pds = gpy(x)\/1 + ¢/ (x)? dz,

donde g es la aceleracién terrestre y ds es el diferencial de longitud de arco. Luego hemos

de minimizar )
E(y) =/ 9py(z)\/1+y'(z)? dz

con la condicién de que la longitud de la cuerda sea constante, es decir

b
/ Vv 1+ 9/ (z)?dz es constante.
a

Establecemos sin demostracién el siguiente resultado (véase [18, 22] para una demostra-
cién). Siy = y(x) es un extremo de

con la condicién

b
/ G(z,y,y') dx es constante
a

entonces existe A € IR tal que

d OF OF <8G d&G)

dedy oy “\dy dwoy

Notamos que si H = H(x,y,y’), la expresién
d " JOH _3H+,8H d OH
dzx 4 oy ) Ox 4 !

suele ser til.

Planteamos el el problema isoperimétrico en polares. FEn primer lugar se supone si
pérdida de generalidad que la curva tiene interior convexo. Esta convexidad permite afir-
mar que la curva se puede poner como p = p(#) para 6 € [0,2n]|. Ahora hay que maximizar
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5. Calculo variacional

Ap) = 27r p%(0)/2df con la condicién que fo V/p(0)? + p'(0)% df sea constante. También
planteamos el problema de la cuerda que minimiza la energla poten(nal (se obtiene la catena-

ria).
Si el problema hubiese sido encontrar yy,...,4, € C!([a,b]) tales que se conocen y;(a),
yj(b) para j = 1,...,n que maximizan o minimizan

b
I(ylw"ayn) :/ F(m,yl,...,yn,yi,...,y;)dx
a

con la condicién de que
/ Gi(T, Y1y Yns Yy -5 Y) A
a

sean constantes para ¢ = 1,...,m entonces existen Aq,...,\, € IR tales que

0
(9yJ (F—FZAG) dz <8y

Planteamos el problema isoperimétrico propuesto al principio de la secciéon. Si ademés defi-
nimos A\g = 1y Go = F, entonces (5.4) se puede escribir como

(Z)\G) dx((% ZAG)—O j=1,.

Esta ecuacién permite establecer el principio de reciprocidad. La solucién de los proble-
mas de hallar el extremo de f: Gsdz con las condiciones ff G; dx es constante para i # s,
coinciden. Este hecho, permite probar sin calculo ninguno el siguiente problema: de todas las
curvas cerradas con area constante, jcudl es la que tiene menor longitud?

)—0 j=1,. (5.4)

La bibliografia que hemos seguido ha sido [18, 22, 45].
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Contenido del Capitulo 5

1. Introduccién.

e Tres ejemplos: la braquistécrona, la curva que minimiza la distancia y la superficie
de revolucién de area minima.

2. La ecuacién de Euler.

e Deduccién y casos particulares.
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4. Problemas condicionados.
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e Resolucién de los problemas.
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Introduccion

La asignatura de andlisis vectorial se ubica en el segundo cuatrimestre del primer curso
de la carrera de Ingenieros de Telecomunicacién y su carga lectiva es de 4’5 créditos.

Una de las consecuencias de la situacién de la asignatura es que previamente el alumno
ha cursado la asignatura de cédlculo diferencial. El estudiante, por tanto, tiene soltura con
razonamientos abstractos y conoce el cdlculo diferencial e integral de funciones de varias
variables lo que permite introducir rapidamente los conceptos mas importantes del analisis
vectorial.

Pensamos que el andlisis vectorial debe ser una asignatura que prepare a los alumnos a
cursos mas avanzados. Por esta razon, un porcentaje elevado de los contenidos consiste en las
aplicaciones a la fisica y mas concretamente a la teoria de los campos electromagnéticos. Evi-
tamos dar demostraciones no constructivas de los teoremas y preferimos argumentar éstos con
aproximaciones heuristicas de tipo geométrico o fisico. Eso si, enunciamos los teoremas con
precision y estableciendo de manera explicita las razones por las cuales las argumentaciones
proporcionadas no son demostraciones rigurosas.

Creemos que uno de los objetivos de la asignatura debe ser la comprensién de los con-
ceptos. Esto, en nuestra opinién, es ayudado si antes se explican de forma intuitiva las ideas
geométricas o fisicas subyacentes, asi como las aplicaciones de estos conceptos. Pero también
creemos que el alumno debe adquirir un grado de destreza y mecanizacién para resolver pro-
blemas que se pueden tildar de rutinarios. Asimismo el alumno debe prepararse para poder
resolver algunos problemas tedricos sencillos; pero siempre cuya resolucién sea constructiva.

Hemos distribuido la asignatura en nueve grandes bloques tematicos:
Capitulo 1 CURVAS PARAMETRIZADAS.
Capitulo 2 INTEGRALES DE LINEA.
Capitulo 3 SUPERFICIES PARAMETRIZADAS.
Capitulo 4 INTEGRALES DE SUPERFICIE.
Capitulo 5 CAMPOS CONSERVATIVOS Y SOLENOIDALES.
Capitulo 6 COORDENADAS CURVLILINEAS ORTOGONALES.
Capitulo 7 LOS CAMPOS GRAVITATORIOS Y ELECTROSTATICOS.

Capitulo 8 EL CAMPO MAGNETICO.

Comentamos brevemente el contenido de cada uno de los capitulos.
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Introduccién al programa de andlisis vectorial

El objetivo del CAPITULO 1 es el estudio de las curvas parametrizadas y sus propiedades
més elementales: tangencias y longitud. No mencionamos los conceptos de curvatura y torsién
ni las formulas de Frenet-Serret debido a que presentan pocas aplicaciones a la teoria de
campos electromagnéticos.

Las integrales curvilineas de campos escalares y vectoriales aparecen de forma continua
en la fisica. El propésito del CAPITULO 2 es saber calcular este tipo de integrales. Debido al
planteamiento de la asignatura creemos oportuno no demostrar el teorema de Green.

El propésito del CAPITULO 3 es saber parametrizar superficies y calcular el plano tangente
a éstas.

Al igual que ocurre con las integrales de linea, las integrales de superficie son importantes
en la fisica. El objetivo del CAPITULO 4 es que los alumnos sepan calcular integrales de
superficie y que conozcan los teoremas de Stokes y de la divergencia. Hacemos énfasis en la
interpretacion fisica de las integrales de superficie y de las ideas de rotacional y divergencia.
Creemos oportuno mostrar argumentos heuristicos para motivar los teoremas de Stokes y de
la divergencia.

Muchos campos importantes en fisica son conservativos (que permite hablar de la fun-
cién potencial) o solenoidales (por ejemplo el magnético). Se estudian estos campos en el
CAPITULO 5.

Hay muchos campos importante en la fisica con simetrias. El estudio de estos cam-
pos se hace de manera mas comoda usando coordenadas distintas a las cartesianas. En
el CAPITULO 6 proporcionamos féormulas para el gradiente, divergencia y rotacional en los
sistemas de coordenadas curvilineas ortogonales.

En los CAPITULOS 7 y 8 se estudian dos campos importantes en la fisica: el eléctrico y
el magnético. Con respecto al eléctrico, creado por cargas escalares, estudiamos el gradiente
y el laplaciano. Del campo magnético, creado por intensidades vectoriales, se esudian su
rotacional y divergencia. Se concluye enunciando las cuatro leyes de Maxwell y demostrando
algunas consecuencias sencillas.

Los libros bésicos que recomendamos son [12, 17, 50]. También son recomendables [61, 63]
que proporcionan una visién muy intuitiva de la asignatura. Para un desarrollo mas avanzado
y tedrico se puede consultar [18]. Por tdltimo, [42], es muy avanzado y en nuestra opinién sélo
es recomendable a alumnos muy aventajados.
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Introduccién al programa de andlisis vectorial
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1. Curvas parametrizadas.

OBJETIVOS:

Saber parametrizar los ejemplos mas importantes de curvas. Saber calcular vecto-
res tangentes y normales. Aplicar la teoria de curvas parametrizadas para plantear
y resolver problemas geométricos y fisicos.

Uno de los objetivos de la introduccién por parte de Descartes y de Fermat (1601-1665)
de la geometria analitica fue la de establecer un paralelismo entre el dlgebra y la geometria.
A partir de este momento se empez6 a aplicar el calculo diferencial e integral a problemas
geométricos. Algunos de los conceptos posteriormente tratados por el cdlculo fueron intro-
ducidos por Huygens (1629-1695), quien us6 s6lo métodos geométricos. Los conceptos de
evoluta, involuta y radio de curvatura se le deben a él.

Newton introduce el centro de curvatura como el punto limite de las intersecciones de una
normal con una normal adyacente. Afirma que el circulo con centro de curvatura y radio
de curvatura es el circulo de contacto més cercano a la curva. Newton incluye la férmula
del radio de curvatura. Estos resultados duplican a los de Huygens, pero Newton deseaba
mostrar que los métodos analiticos eran igual de validos.

Clairaut inicio la teoria de curvas en el espacio. Pensé una curva como la interseccion de
dos superficies cuyas ecuaciones eran de tres variables. La expresién de la longitud de arco
de una curva espacial se debe a Clairaut.

El siguiente paso importante fue dado por Euler motivado por problemas de la mecénica.
Obtuvo las férmulas actuales de las componentes radial y tangencial de la aceleracién en
polares:

aT:f—TQZ, agzré—l-%é.

Euler representé las curvas espaciales como = = z(s), y = y(s), z = z(s), donde s es la
longitud de arco. Escribe ademés dx = 2/(s) ds, dy = ¢/(s) ds, dz = 2/(s) ds, donde la prima
denota derivacion respecto a s y ds lo consideraba constante. Euler definié la curvatura como
d¢/ ds, donde d¢ es el dngulo de dos tangentes de dos puntos de la curva que estén separados
ds. Mas adelante da férmulas analiticas de la curvatura y del plano osculador. La torsién,
que representa la rapidez en que una curva se aleja del plano osculador, fue introducida por
Lancret (1774-1807).

Cauchy mejoro la formulacién de los conceptos en su famoso Lecons sur les applications
du calcul infinitesimal a la geometrie (1826). Descarté los infinitésimos constantes y senald
que cuando se escribe

ds? = dz? + dy? + dz?

() = () )+ ()

se debe entender
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1. Curvas parametrizadas.

La teorfa clasica culmina cuando Serret (1819-1885) y Frénet (1816-1900) publican en 1851
y en 1852 respectivamente y de forma independiente las famosa férmulas de Frenet-Serret.

1.1. Ejemplos

Motivados por el estudio de la trayectoria de un mévil en IR? 6 IR3, definimos una curva
como una aplicacién continua r : [tg, 1] — IR™ (véase la figura 1.1). El significado fisico es que
r(tp) es la posicion de la particula mévil en el tiempo ty. La variable ¢t se llama parametro.
Argumentamos que las curvas tienen un sélo pardmetro, pues son “objetos unidimensionales”.
Explicamos de forma fisica e intuitiva la condicién de continuidad: si limy_., r(t) # lim_., r(¢),
el movil en el tiempo 7 pasa repentinamente de la posicién limy_, r(¢) a lim;_,, r(¢).

Ademds, como en muchas ocasiones se hablard de tangentes a las curvas o velocidades
y estos conceptos se tratan con derivadas, exigiremos que r sea diferenciable salvo en una
cantidad finita de puntos (fisicamente un mévil puede sufrir un nimero finito de desviaciones
bruscas de direccién, por ejemplo, una bola de billar que rebota en las paredes de la mesa).
También observamos que las curvas poseen una una orientacién: no es lo mismo ir desde r(a)
hasta r(b) que efectuar el camino al revés.

Figura 1.1.: Una curva diferenciable a trozos.
Hacemos los siguientes ejemplos:
a) La circunferencias centradas en p = (h, k) y de radio R se puede parametrizar mediante

r(t) = (h+ Rcost,k + Rsent) para t € [0,27] (véase la figura 1.2). Es importante el
intervalo de variacién de ?.

r(t)

Figura 1.2.: Parametrizacién de una circunferencia y de una elipse.
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1.1. Ejemplos

Ademds comenzamos a tratar el problema de las reparametrizaciones con este otro ejemplo:
describir la curva r(t) = (cos2t,sen2t) para t € [0,7]. Es claro que el objeto geométrico
es el mismo; sin embargo el significado fisico es distinto.

Parametrizamos la elipse de semiejes a y b. Por comodidad, vamos a suponer que la elipse
esta centrada en el origen y que los ejes de la elipse son paralelos a los ejes de coordenadas
(véase la figura 1.2). Aplicando una homotecia adecuada al ejemplo anterior obtenemos
que una parametrizacion es r(t) = (acost,bsent) para t € [0,2n]. Observamos que t no
es el dngulo que forma r(t) con el eje x salvo para t € {0,7/2,7,37w/2,2m}.

Parametrizamos el segmento orientado entre los puntos a y b. Se ve la figura 1.3 que
cualquier punto del segmento se puede escribir como a + (b — a) para 0 < t < 1. Por
tanto r(t) = a+t(b —a) con t € [0, 1] es una parametrizacién del segmento ab.

a

a+t(b—a)
b

Figura 1.3.: Parametrizacién de un segmento.

Parametrizamos las hélices como sigue. r(t) = (Rcost, Rsent,bt) para t € [0,2k~], donde
R,b > 0y k € IN. Discutimos el significado geométrico de los valores R,b v k.

Como ejemplo un poco més complicado parametrizamos la interseccién de la esfera 22 +
y?+2%2 = R? con el plano y+ 2z = R. Un procedimiento tipico para parametrizar curvas tri-
dimensionales es el siguiente: proyectar la curva sobre un plano coordenado y parametrizar
la proyeccién. Al hacer esto obtenemos la parametrizacién de dos coordenadas. Por tdltimo
se halla la parametrizacién de la coordenada que falta. Aplicamos este procedimiento en
un ejemplo.

La grafica de una funcién continua de una variable f : [a,b] — IR es una curva. Se puede
parametrizar como r(x) = (z, f(x)) para x € [a, b].

(z, f(2))

Figura 1.4.: Parametrizacién de y = y(x).
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1. Curvas parametrizadas.

g) Si la curva estd en polares como p = p(f) para 6 € [y, 0], una parametrizacién es
r(6) = p(0)(cosf,senf) para Oy < 6 < 6.

1.2. Vectores tangentes

Primero motivamos la definicién de vector tangente a una curva r : [a,b] — IR"™ usando
“secantes que se aproximan a la recta tangente”. En la figura 1.5 se observa cémo se pretende
calcular la recta tangente a la curva en el punto p = r(tp) para cierto tg € [a, b].

Figura 1.5.: La tangente a una curva.

Sea otro punto q = r(t) para t € [a,b]. La recta que pasa por p y g tiene vector director
q — p. Desgraciadamente no podemos decir que “a medida que q se acerca a p, la secante se
convierte en tangente, y por tanto un vector director de la recta tangente es limgq_., q — p”
pues este limite es 0.

Un modo de obviar esta dificultad es pensar en términos de velocidades. Calculemos la
velocidad de un mévil en p. Como “velocidad = distancia / tiempo” y el pardmetro ¢ mide el
tiempo, entonces lo que tarda el mévil de ir de p a q es t — tg. Por tanto podemos considerar
el siguiente limite:

lim 9P _ i TO =)
t—to t — to t—to t— to

Esto proporciona la definicién de vector tangente en el punto r(fp). Si la curva es r(t) =
(x(t),y(t), 2(t)), entonces r'(t) = (2/(t),y'(t),2'(t)). El vector tangente unitario en el
punto r(tp) se define como T(tg) = r'(to)/||r'(to)]|| siempre que r'(ty) # O.

Hacemos un ejemplo concreto de calcular el vector tangente a una curva en un punto.
Ademds resolvemos el siguiente problema: El movimiento de una particula en la circunferencia
22 +y? = R? se puede describir por medio de r(t) = R(cos6(t),sen 6(t)), donde supondremos
que 6 es una funcién derivable (obsérvese que si 6(t) = wt se describe un movimiento circular
uniforme). Calcilese el vector tangente y compruébese que es perpendicular al vector de
posicién.

1.3. Curvas regulares

Hacemos el siguiente problema para motivar el concepto de curva regular: Una rueda
circular de radio R rueda sin deslizarse sobre el eje z. La figura descrita por un punto de la
circunferencia de la rueda se llama cicloide. Obténgase una parametrizacién r(t) de la curva
y calctilense los valores ¢ tales que r'(t) = 0. Interprétese este resultado.
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1.4. Longitud de arco

Este ejercicio muestra que no basta exigir que r : [a,b] — IR" sea diferenciable para que la
curva no presente picos. Este comportamiento también se muestra en la curva r(t) = (¢2,3)
en t = 0. Decimos que una curva parametrizada r : I — IR" es regular a trozos si el
conjunto de los valores de ¢ tales que r no es derivable en ¢t 6 r'(t) # 0 es finito. Probamos,
como simple ejercicio, que la grafica de una funcién diferenciable es siempre una curva regular.

Es ttil derivar expresiones que contengan al producto escalar’ y vectorial. Las reglas
necesarias vienen dadas a continuacién (la demostracién es completamente rutinaria). Sean
r,s : I — IR" dos curvas parametrizadas y diferenciables, f : I — IR diferenciable y a,b
constantes reales.

a) (ar +bs)' = ar’ + bs'.

b) (fr) = fr+ fr'.

¢c) (r-s)=r'-s+r-s.

d) (rxs) =r'xs+rxs.

Como ||r||? = r-r, se deduce que (||r\|2), = 2r’-r. Proponemos el siguiente ejercicio. Pruébese

que si una curva estd en una esfera de centro p entonces la recta tangente en un punto q de
la curva es perpendicular al vector q — p.

Como el vector normal unitario T tiene norma constante, entonces T’ es perpendicular a
T, lo que permite definir el vector normal unitario como N(¢) = T'(¢)/||'T'(¢)|| para una
curva regular y siempre que T'(¢) # 0.

1.4. Longitud de arco

En esta seccién deducimos una expresién para la longitud de una curva r : [a,b] — IR".
En la figura 1.6 se ha dibujado una curva plana y un trozo infinitesimal de curva de longitud
dl. Sean dz y dy los incrementos infinitesimales de z e y.

y

dl dy
dx

Figura 1.6.: Deduccién informal de la longitud de una curva.

Suponemos que el arco infinitesimal es recto y como dz/dt =2’ y dy/dt = ¢/, entonces

dl = v/ dz? 4 dy? = /(' dt)2 + (y/ dt)2 = /(22 + y2)2 dt.

'Representaremos por u - v el producto escalar canénico de IR? o de IR®.
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1. Curvas parametrizadas.

Integrando respecto a t entre a y b obtenemos que la longitud total de la curva es

L= /b Vo' (02 + 3/ ()2 dt.

Explicamos que esta forma de proceder no es rigurosa. Sin embargo, creemos que la siguiente
manera, aunque rigurosa, es demasiado dificil para un alumno de primer curso.

Sea a =ty < t; < -++ < tp—1 < t, = b una particién del intervalo [a,b]. Entonces la
longitud de la quebrada que une los puntos r(tg), r(t1),...,r(ts,) es L(r, P) = > 1" ||r(t;) —
r(t;—1)||, donde P denota la particién elegida del intervalo [a,b]. Sea ||P|| la mayor longitud
de los subintervalos. Si existe L € IR tal que para cada ¢ > 0 existe 6 > 0 tal que si ||P|| < §
entonces |L — L(r, P)| < e, se dice que L es la longitud de la curva. Ademads se dice que
la curva es rectificable. Para ser riguroso del todo hay que probar que este valor de L
es Unico; pero esto es facil. La demostracion del siguiente resultado es complicada y no la
hacemos (requiere conocer la nocién de continuidad uniforme y el teorema de Heine y se puede
encontrar un esquema de la demostracién en [21]). Sea r : [a,b] — IR™ una curva tal que r’
es continua, entonces la longitud de r es ff llx’(¢)]| dt.

Hacemos un ejemplo concreto y demostramos que la longitud de la grafica de la funcion
f:la,b) = Res f;\/l—i—f’(a:)de.

Una reparametrizacién de una curva regular r : [a,b] — IR" es otra curva r o~ :
[c,d] — IR", en donde ~ : [¢,d] — [a,b] es una biyeccién que cumple ' > 0. Explicamos
de forma intuitiva lo que es una reparametrizacién (“recorrer la misma curva de distinta
manera” ). Decimos que los conceptos geométricos que definamos han de ser invariantes por
reparametrizaciones, no asi los conceptos fisicos. Por ejemplo, es facil comprobar que los
vectores tangentes unitarios de r y ro+ coinciden, sin embargo ||r’|| # ||(rov)’||, ya que como
veremos ||r’|| es la velocidad de r y ||(roy)’|| es la velocidad de ro~. Es interesante demostrar
la invarianza respecto a parametrizaciones de la férmula de la longitud de una curva.

Aunque el concepto de curvas parametrizadas por el arco es importante en geometria
diferencial, debido a que no se usara en el resto de la asignatura, creemos que no es necesario
explica este concepo.

1.5. Movimiento de una particula

Con el siguiente problema motivamos la idea de velocidad de una curva.

Considérese una particula con movimiento circular uniforme r(t) = R(coswt, senwt) para
t > 0, siendo w > 0 una constante llamada velocidad angular. Compruébese que ||r'|| = Rw.
Hallese el tiempo T' que tarda la particula en recorrer la circunferencia. Calcilese L/T, donde
L es la longitud de la circunferencia. Recuérdese que “velocidad = espacio / tiempo”. ;Se
observa alguna relacién con ||r/||?

Dada una curva diferenciable r : [a,b] — IR3, la funcién s(t) = f; ||t (7)]| d7 mide la
distancia que recorre la particula para ir desde r(a) hasta r(¢). Si convenimos que la velocidad
v(t) es la derivada del espacio recorrido respecto al tiempo, entonces

=5 =3 ([ wenar) = won
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1.5. Movimiento de una particula

Todo esto motiva a definir la velocidad de una curvar : [a,b] — R"™ como r/(t). La velocidad
escalar es v(t) = ||r'(t)||. La aceleracién es r”(t).

La siguiente férmula (que se demuestra derivando r’ = vT) muestra que el vector acele-
racion se puede expresar en términos de T y de N:

() = [T () [o(ON() + o' () T(?).

Esta descomposicién de r”’ es importante en fisica. La componente en la direccién N se llama
componente normal y es la causante de la fuerza centrifuga. La componente en la direccién
T se llama componente tangencial.

Hacemos el siguiente problema. Considérese una particula con movimiento circular uni-
forme dado por r(t) = R(coswt,senwt), donde w > 0 es la velocidad angular. Pruébese

2

" — RN = N.
r w R

Observamos que la fuerza centrifuga de un cuerpo de masa m tiene médulo mv?/R y es
perpendicular al movimiento. Comentamos fisicamente el resultado.

Explicamos los dos siguientes ejemplos con detalle.

a) Determinamos la velocidad de un satélite artificial que se mueve en una érbita circular.
Sea la trayectoria del satélite

r(t) = R(cos(t),senb(t)), (1.1)

en donde hemos situado la Tierra en el origen. Supongamos que se verifican las dos
siguientes leyes fisicas: Si F es la fuerza que acttia sobre el satélite,

r(t
LN
[e(@)]
donde m es la masa del satélite, M la de la Tierra y G es la constante de gravitacién

universal. Vemos que |F|| = GMm/R? y explicamos el signo negativo en la segunda ley
de (1.2). De (1.2) tenemos

(1.2)

"o r
r = —GMHI‘H?). (1.3)

Probamos a partir de (1.1) que r”" = R§"T + R(#')>N. De (1.3) se tiene

GM
RQIIT + R(QI)QN = ?N
Igualando las componentes,
GM
9// = 07 R(QI)Q — ﬁ

De la primera ecuacién obtenemos 0(t) = wt + p; es decir, el satélite tiene un movimiento
circular uniforme con velocidad angular w. Esta es una versién simplificada de la segunda
ley de Kepler (1571-1630). De la segunda se deduce R3w? = GM, esta relacién es un caso
particular de la tercera ley de Kepler.
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1. Curvas parametrizadas.

b) Estudiamos el movimiento de una carga ¢ de masa m bajo un campo magnético constante
B, con la condiciéon que la velocidad inicial de la particula es perpendicular al campo
magnético. Situamos los ejes de coordenadas de modo que B = (0,0, B). El movimento
de la particula es r(t) = (z(t),y(t), 2(t)). Podemos suponer que r(0) = (0,0,0) y como la
velocidad inicial es perpendicular a B, entonces z'(0) = 0.

Postulamos la segunda ley de Newton: F(r(t)) = mr”(¢) y la ley de Lorentz: F(r(t)) =
mq(r’ x B). Se prueba facilmente a partir de las hipdtesis que r - B = 0, luego la curva
estd contenida en el plano z = 0. Ademads se prueba también de forma sencilla que r’ tiene
modulo constante.

Como 1’ es plana y tiene médulo constante, entonces r’ recorre una circunferencia. Sea v
el radio de esta circunferencia. Luego existe una funcién w(t) tal que

r'(t) = v(cosw(t),senw(t),0).

Por tanto
r’(t) = v (t)(—senw(t), cosw(t),0).

De r”" = ¢q(r' x B) se deduce que w'(t) = —qB/m. Ahora es trivial obtener r(t).

Como referencias para todo el capitulo proponemos [12, 17, 50]
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Contenido del Capitulo 1

1. Parametrizacion de curvas.

e Definicién.

e Ejemplos: circunferencias, elipses, segmentos, hélices, graficas de funciones, curvas
en polares.

2. Vectores tangentes.
e Motivacion y ejemplos.
3. Curvas regulares.

e Motivacién de la condicién r’ # 0. Definicién.
e Reglas basicas de la derivacion de funciones vectoriales.

e Definicion de vector normal.
4. Longitud de arco.

e Motivacion.
e Definicion y ejemplos.

e Reparametrizaciones.
5. Movimiento de una particula.

e Velocidad escalar y vectorial. Aceleracion.
e Descomposicion de la aceleracién en términos de los vectores tangente y normal.

e Dos ejemplos: érbitas circulares y trayectoria de una carga en un campo magnético
constante.
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2. Integrales de linea

OBJETIVOS:

Saber calcular integrales curvilineas de campos escalares y vectoriales. Conocer
el teorema de Green.

2.1. Integrales curvilineas de campos escalares

Motivamos la definicién de integral de linea de un campo escalar con lo siguiente. Calcula-
mos la carga total ¢ de un cable parametrizado por medio de r : [a,b] — IR" con densidad de
carga p. Se tiene dg = pds; pero como ds = ||r'|| dt, entonces dg = p||r’|| dt. Tras integrar ya
tenemos la carga total. Esto, por supuesto no es riguroso, pero motiva la siguiente definicién.

Dada C una curva diferenciable r : [a,b] — IR" y f : r([a,b]) — IR una funcién continua,
se define la integral curvilinea de f sobre la curva como

b
[ras= [ re@lsoa

Se debe probar que esta definicién es independiende de la parametrizacién; pero esto es
sencillo. Cuando la curva es diferenciable a trozos, entonces se usa la definicion anterior
para cada subintervalo en donde la curva sea diferenciable y por dltimo se suman todas las
integrales. Hacemos un ejemplo concreto.

Comentamos las propiedades basicas: linealidad, aditividad respecto al camino y si C' es
la curva parametrizada mediante r : [a,b] — IR" y si C* es la curva cuya parametrizacién es
s:[0,b—a] — IR™ dada por s(t) = r(b —t), entonces [ fds = [,. fds (decimos que C* es
la curva C' recorrida en sentido opuesto) y explicamos la idea intuitiva de esto tltimo: si f es
la densidad de carga, la carga del cable es independiente de como se recorre éste.

A los alumnos se les da una hoja en donde se dan férmulas de las siguienteres aplicaciones
a la mecdnica (son férmulas bien conocidas que se pueden encontrar en, por ejemplo, [50]):
la masa (o carga) de un cable, el centro de gravedad de un cable y el momento de inercia.

2.2. Integral curvilinea de un campo vectorial

Motivamos la definicién de integral de linea de un campo vectorial con lo siguiente. Es-
tamos interesados en calcular el trabajo hecho por una particula si ésta se mueve a lo lar-
go de una curva bajo la influencia de un campo de fuerzas F (que en general puede va-
riar segin la posicién). Parametrizamos la curva mediante r = r(t) para t € [a,b]. Si
r(t + dt) — r(t) = dr = r’ dt es un elemento diferencial de la curva, entonces el diferencial
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2. Integrales de linea

de trabajo realizado por la particula es dW = F - dr = F - ' dt. Ahora basta integrar para
obtener el trabajo total W. Igual que antes esto no es riguroso; pero motiva la siguiente
definicion.

Dada C una curva diferenciable r : [a,b] — IR" y F : r(]a, b]) — IR" una funcién continua,
se define la integral curvilinea de F sobre la curva como

/CF‘ dr = /:F(r(t)) 1 (t) dt.

Cuando la curva C es cerrada (esto es, r(a) = r(b)) se suele usar el simbolo §,. Igual que
antes se debe probar la independencia respecto a reparametrizaciones. Cuando la curva es
diferenciable a trozos se procede como en la seccién previa. Las propiedades son las mismas
salvo que si C* es la curva C' recorrida en sentido opuesto, entonces fC F.-dr=- f c» F o dr
(no es lo mismo bajar una cuesta que subirla).

Si F = (P,Q, R), entonces es trivial ver que

b
/C F.dr= / Pe(t))2 (£) + Q((t)y(£) + R(x(£)2'(£)] dt,

lo que motiva la siguiente notacién cldsica: |, cPdr+Qdy + Rdz.

Hacemos algunos ejemplos concretos y alguno un poco mas teérico como el siguiente. Si
C' es una curva regular, entonces [, F - dr= [ F-T ds.

2.3. El teorema de Green

Primero definimos (sin ningin rigor) una curva de Jordan y cuando una curva de Jordan
estd recorrida en sentido positivo. A continuacién enunciamos el teorema de Green. Si
las funciones P = P(x,y) y @ = Q(z,y) son continuas y tienen derivadas parciales continuas
en una regién R encerrada por una curva de Jordan C' recorrida en sentido positivo, entonces

}1§Cde+Qdy://R (‘Zg—?D dz dy.

No probamos el teorema. Hacemos un ejemplo concreto. Ademads, observamos que aplicando
el teorema de Green al campo F(z,y) = (By, ax) siendo «, 3 constantes reales, obtenemos
varias féormulas para el drea de una regién. El clasico ejemplo que realizamos es calcular por
medio de algunas de estas expresiones el drea que encierra la elipse #2/a? + y%/b? = 1.

Las referencias para este capitulo han sido [12, 17, 18, 50]. En especial el segundo y el
cuarto.
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Contenido del Capitulo 2

1. Integral curvilinea de campos escalares.

e Motivacion y definicién.

e Ejemplos.
2. Integral curvilinea de campos vectoriales.

e Motivacion y definicién.

e Ejemplos.
3. El teorema de Green.

e Enunciado y ejemplos.
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3. Superficies parametrizadas

OBJETIVOS:

Saber parametrizar las superficies mas importantes. Saber calcular vectores tan-
gentes y normales a superficies.

La teoria de superficies comenzé cuando se introdujo la geometria analitica en el espacio
y se observé que una relacién del tipo F'(x,y, z) = 0 equivale a una superficie en el espacio.

El primer problema interesante fue el estudio de las geodésicas en una superficie. En
1697 Jean Bernouilli propuso el problema de encontrar las geodésicas. Su hermano Jacques
y posteriormente el propio Jean obtuvieron la respuesta sobre algunos tipos de superficies.
Ma3és adelante, en 1728, Euler us6 el calculo variacional para proporcionar las ecuaciones
diferenciales que satisfacen las geodésicas.

En 1760, en su Recherches sur la courbure des surfaces, Euler representé una superficie
como z = z(z,y). Comparando las curvaturas de las secciones normales de una superficie,
Euler estableci6 lo que hoy se llama el teorema de Euler (véase [21]). Los mismo resultados
fueron obtenidos en 1776 por Meusnier (1754-1793) de forma més elegante, en donde ademaés
probé el llamado teorema de Meusnier. En 1771 Euler introdujo la representaciéon paramétrica
de una superficie, esto es, x = x(u,v), y = y(u,v), z = z(u,v).

Gran parte de los problemas de la geometria diferencial del siglo XVIII estuvo motivada
por el problema del trazado de mapas. Puesto que no es posible trazar un mapa plano de
la Tierra que conserve las propiedades geométricas (esto fue probado por Euler en 1775'), la
atencion se dirigié hacia los mapas que conservan sélo los dngulos (como el mapa de Mercator)
ya que este tipo de mapas son ttiles en navegacién, pues marcan el rumbo correcto?.

A partir de 1816 Gauss, trabajé en geodesia y cartografia. Su participacién en medidas
reales estimuld su interés en geometria diferencial y lo condujo a su ensayo definitivo de 1827,
Disquisitiones circa superficies curvas®. Gauss uso la representacién paramétrica introducida
por Euler para tratar la longitud y dngulos de curvas sumergidas en superficies.

Gauss se dedica luego al estudio de la curvatura de una superficie. Su definiciéon de
curvatura es una generalizacién de la definicién de Euler de curvatura de una curva espacial.
En cada punto p de una superficie hay un vector normal unitario N(p) que esta en la esfera
unitaria. Si consideramos sobre la superficie cualquier regién R pequeinia que rodea a p,
entonces existe una regién correspondiente N(R) sobre la esfera unitaria que rodea a N(p).
La curvatura de la superficie en p, denotada por K(p), estd definida como el limite del
cociente entre el area de N(R) y el drea de R. Después de un numero increible de célculos

'En [8] se da una prueba sencilla.
2Véase [7] para una introduccién de la cartograffa usando métodos del anélisis vectorial.
3Véase [66, Tomo II] para una explicacién mds profunda del trabajo de Gauss.
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3. Superficies parametrizadas

proporciona una férmula para K (p), relacionando este valor con el teorema de Euler de curvas.
Ahora Gauss observa que K(p) sélo depende de las propiedades métricas de la superficie y
no céomo estd sumergida en el espacio. Gauss llamé a este resultado Theorema Egregium.
Codazzi (1824-1875) y Mainardi (1800-1879) proporcionaron ecuaciones suplementarias a las
obtenidas por Gauss.

Otra cuestiéon que Gauss estudié fue el problema de las geodésicas. Demostré un famoso
teorema sobre un tridngulo formado por geodésicas: Si «, 3,y son los tres angulos de un
tridngulo T' cuyos lados son geodésicas, entonces [ fT KdS =a+ 4+ v — m. Este resultado,
que generaliza a la férmula del area de un tridngulo esférico, fue usado por Gauss para estudiar
la curvatura del espacio tras medir los dngulos de un tridngulo formado por tres montanas.

El trabajo de Gauss estimulé la creacién por Riemann (1826-1866) de la que hoy se
conoce como geometria riemanniana. En ésta se considera una variedad n-dimensional sin
hacer referencia al espacio ambiente. Su trabajo fue continuado por Ricci (1853-1925) y por
Levi-Civita (1873-1941) con la creacién del célculo tensorial.

3.1. Definicién y ejemplos de superficies parametrizadas

Hablando intuitivamente, una superficie se obtiene deformando un trozo plano de modo
que en cada punto de la figura resultante se pueda construir un plano tangente. Damos la
siguiente definicién (no muy precisa). Una parametrizacién de una superficie es una
aplicacién diferenciable x : D — IR3, donde D C IR?. El subconjunto de IR® formado por
x(D) se llama superficie. La definicién precisa se puede encontrar en [21].

Como x depende de dos variables, podemos escribir x = x(u,v), donde (u,v) € D C R?
y como x = x(u,v) € IR3, podemos escribir x = x(u,v) = (z(u,v), y(u,v), z(u,v)). Para fijar
un punto x(u,v) de la superficie hace falta determinar los valores de dos pardmetros.

Vemos algunos ejemplos importantes de superficies parametrizadas.

a) Un punto del cilindro de la figura 3.1 (izquierda) de radio R y altura H queda determinado
si se conoce su altura z y el dngulo 6. Se tiene que x(z,6) = (Rcosf, Rsen#,z) para
z €[0,H], 6 € [0,2n].

y

Figura 3.1.: Un cilindro y un cono.
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3.2. El plano tangente

b)

Un punto (z,y,z) del cono de la figura 3.1 (centro) de radio R y altura H queda de-
terminado por 6 y p, siendo 6 el dngulo que forma el vector (z,y,0) con el eje X y p
la distancia del punto (z,y,z) al eje Z. Evidentemente, z = pcosf, y = psen#d; pero,
como los tridngulos de la derecha de la figura 3.1 (derecha) son semejantes, se tiene que
p=Rz/H. Luego x(2,0) = (£zcosf, £zsenb, z) para z € [0, H], 6 € [0, 27].

Consideremos un punto p en la esfera de radio R centrada en el origen. Sean ¢ el dngulo
que forma el eje Z con el vector de posicién de p y A el angulo que forma el eje X con el
vector de posicién de q, siendo q la proyeccién de sobre el plano XY (véase la figura 3.2,
izquierda). Evidentemente ¢ € [0,7] y A € [0,27]. Se tiene que

x(p,A) = (Rsen ¢ cos A\, Rsen ¢psen A\, R cos ¢).

Figura 3.2.: Una esfera y un toro de revolucién.

La gréfica de la funcién f : A — IR, donde A C IR? se puede parametrizar ficilmente
mediante x(z,y) = (z,y, f(z,y)) para (z,y) € A.

Consideremos una circunferencia de radio b situada en el plano y = 0, cuyo centro dista
a del origen. Se rota esta circunferencia alrededor del eje z, obteniéndose un toro de
revolucién. Observemos que a tiene que ser mayor que b (véase la figura 3.2, derecha).
Sean u, v los dngulos dibujados en la figura y sea x(u,v) un punto del toro. Se tiene
facilmente que x(u,v) = ((a + bcosv) cosu, (a + bcosv) senu, bsenv) para u,v € [0, 27].

Al igual que ocurre con las curvas, las superficies se pueden parametrizar de varios modos.
Vemos un ejemplo, la parte superior de la esfera z? 4+ y? + 22> = R? también se puede

parametrizar con ¥(z,y) = (z,y, /B — 22 — ), para (z,y) cumpliendo a2+ < 1.

Ya que una superficie admite parametrizaciones diferentes; se ha de tener cuidado de que

los conceptos y definiciones que se hagan no dependan de la parametrizacion elegida. Dada
una superficie S parametrizada por medio de x : D — S, una reparametrizacion es una
aplicacién xo f : D’ — S, en donde f : D’ — D es una biyeccién diferenciable tal que el
determinante del jacobiano es estrictamente positivo en todo punto de D’ C IR2.

3.2. El plano tangente

La figura 3.3 motiva la siguiente definicién. Un vector v es tangente a una superficie S

en un punto p € S si existe una curva r :] — e,e[— S tal que r(0) = p y r'(0) = v.
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3. Superficies parametrizadas

Figura 3.3.: Vector tangente en un punto a una superficie.

Vemos c¢émo calcular de manera cémoda el plano* tangente a una superficie S con una
parametrizacion x : D — S. Si v es un vector tangente a la superficie S en p, entonces existe
s :] —e,e[— D tal que (xo0s)(0) =py (xo0s)(0) =v. Sis(t) = (u(t),v(t)) se obtiene
facilmente

X (p) +0/(0) 2 ).

Hemos probado que si v es un vector tangente, entonces es una combinacién lineal de

g—’;(p) y g—’;(p). Demostramps también el reciproco. Luego el conjunto de vectores tangentes
es el espacio generado por %(p), %(p). Si estos dos vectores son independientes entonces
el conjunto de vectores tangentes forman un plano. En tal situacién un vector normal a la
superficie es %(p) X %(p). Este vector normalizado se denotard N (hacemos ver que hay

dos elecciones de IN). Es habitual definir los coeficientes

v =1u/(0)

ox ox o, 0x ox 0x o
~ Ou Ou’ ~ Ou Ov’ v O’
Como |Ju x v||? = ||[u|]?||v]|* = (u - v)? para u,v € IR?, se tiene que
ox 0Ox
— X —||=VEG - F?,
ou  Ov

una expresion que en ocasiones resulta util (en especial si los vectores 9x/0u,dx/0v son
perpendiculares). Hacemos un ejemplo concreto de calcular el plano tangente y un vector
normal de una superficie.

Explicamos con el ejemplo del cono qué ocurre cuando los vectores dx/du,dx/0v son
dependientes (o dicho de otro modo, EG — F? = 0). Las superficies que cumplen EG — F? # 0
se llaman regulares.

Continuamos la seccién explicando el significado geométrico de los vectores 0x/0u, 0x/0v:
son los vectores tangentes a las curvas coordenadas. Lo detallamos con los ejemplos del
cilindro y de la esfera.

Usar una parametrizacién no es la inica manera de describir superficies. Por ejemplo, una
esfera de radio R se puede escribir como el conjunto de puntos (z,y,2) de IR® que cumplen
22 + 9% + 22 = R% La ecuacién f(r,y,z) = 0 de una superficie se suele llamar implicita
Demostramos que cuando S viene dada por {(z,y,2) € D : f(x,y,z) = 0}, en donde D es un
abierto de IR?, f : D — IR es una funcién diferenciable y V f (p) # 0 para un punto p € S,

4Ms4s adelante probamos que (bajo cierta hipétesis que detallaremos) es efectivamente un plano.
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3.2. El plano tangente

entonces un vector normal a S en p es Vf(p). La demostracién es facil: sir:]—e, e[l — S es
una curva contenida en S que cumple r(0) = p, entonces for = 0. Derivando esta expresién
se logra Vf(p) - r'(0) = 0, lo que prueba el resultado. Usamos este resultado para calcular
de forma comoda el vector tangente a un cilindro o una esfera interpretando el resultado
geométricamente.
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Contenido del Capitulo 3

1. Definicién y ejemplos de superficies parametrizadas.

e Definicién.

e Ejemplos: cilindros, conos, esferas, graficas de funciones escalares de dos variables,
toros de revolucion.

2. El plano tangente.

e Motivacion y definicién.

Ejemplos.

Superficies regulares.

El vector gradiente.
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4. Integrales de superficie

OBJETIVOS:

Saber calcular integrales de superficie de campos escalares y vectoriales. Conocer
los teoremas de la divergencia y de Stokes.

La idea de sumar infinitos diferenciales condujo al concepto de integral de superficie de
campos escalares. A partir del estudio de la cantidad de fluido que atraviesa una membrana
porosa, se empezaron a tratar en el siglo XVIII las integrales de campos vectoriales. Los
primeros ejemplos importantes fueron dados por Gauss al estudiar tridngulos geodésicos y
por Green (1793-1841) quien, estudiando problemas de electromagnetismo, establecié que
(bajo ciertas hipdtesis en las que no entraremos) dados f, g campos escalares, se cumple

// fVdier//f ds = ///gVQfdv—I—//

en donde V' es un sélido tridimensional y S su frontera.

Hamilton introdujo un operador diferencial importante. El simbolo V (que llamé nabla,

pues se asemeja a un antiguo instrumento musical hebreo) se define como

0 0 0

V=i—+ +k—

or oy T¥a
donde i, j, k son las unidades no reales bésicas de los cuaterniones. Cuando se aplica a una
funcién escalar f se obtiene

of .of  Of

VIi=igs g, Tres

(el equivalente a nuestro gradiente) y si v = v1i + v9j + v3k, entonces
(9?11 81]2 61]3 81)3 81)2 . 81)1 81)3 . 81]2 61]1
Vo=—|— — - == — - == — 4+ — ]k (4.1
v <8x+6y+0z+8y 22 ) T\ "oz ) T\ T oy (4.1)
El siguiente paso fue dado por Maxwell (1831-1879). Aislé la parte real y la no real de
los cuaterniones y enfatizé estos conceptos. Denoté SVv y VVu la parte real y la no real de
(4.1) y las llamé convergencia y rotacional, nombres sacados de la mecénica de fluidos.

Clifford (1845-1879) llamé mds tarde a —SVwv la divergencia de v. La ruptura definitiva
con los cuaterniones fue hecha por Gibbs (1839-1903) y Heaviside (1850-1925).

Muchos teoremas del anélisis vectorial pueden expresarse en forma vectorial, por ejemplo
el teorema de la divergencia (establecido de forma independiente por Gauss y Ostrogradski
(1801-1862)), que en notacién clésica se expresa

/// <8P 8Q+88]j> dv://S(Pcosoz—&-Qcosﬂ—i-Rcos*y)dS7

153



4. Integrales de superficie

donde P, (@, R son funciones de z,y,z vy «, 3,7 son los cosenos directores de la normal a la
superficie S que limita al s6lido V', puede escribirse de forma méas compacta usando notacién
vectorial. Del mismo modo, el teorema de Stokes (establecido por Kelvin (1824-1907) en
una carta a Stokes (1819-1903) y propuesto por éste en un examen para el premio Smith
en Cambridge) se establece de forma cémoda usando notacién vectorial. Posteriormente se
definieron el gradiente, divergencia y rotacional de forma independiente al sistema coordenado,

VS = i [f aNas

donde S es la frontera de un elemento de volumen Av y N es la normal unitaria al elemento
de superficie de S.

asi tenemos, por ejemplo

4.1. Integrales de superficie de campos escalares

Primero vemos una férmula para calcular el area de una superficie S parametrizada por
x:D — S, donde D C IR%. Para ello aproximamos la superficie mediante pequefios paralelo-
gramos tangentes a la superficie como indica la figura 4.1. Si un vértice es a = x(ug, vp), los
otros tres vértices son b = x(ug + Au,vg), ¢ = x(ug,vo + Av) y d = x(ug + Au, vg + Av). El
area de cada paralelogramo pequeno es

x(ugp + Au, vg) — x(ug, vo) " x(ug, vo + Av) — x(ug, vo)
Au Av

I(b—a) x (c—a)l =

‘ AuAv,

Figura 4.1.: Un trozo “pequeno” de superficie.
Si sumamos todas las dreas y hacemos tender Au, Av — 0, obtenemos que el area total es

ax dudw.

Por supuesto que este razonamiento no es riguroso. Si se desea ver un argumento preciso, se
puede consultar [21]. En los libros poco formales se suele decir con poco rigor que

ds = H dudw,

siendo dS un elemento infinitesimal de superficie.
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4.2. Integrales de superficies de campos vectoriales.

Pese a todo, el anterior razonamiento motiva definir el area de una superficie parametri-
zada x : D — S, donde D C IR?, como

/1,

Recordamos que el integrando se puede expresar como v EG — F2. Esta definicién hace uso
explicito de la parametrizacién de la superficie. Probamos que esta definicion es independiente
de la parametrizacién elegida.

aj X

0
9 X 50 dudw.

Ponemos como ejemplo calcular el area de una esfera y de un cilindro. También hacemos
el siguiente ejercicio: Demuéstrese que el area de la grafica de una funcién f : D — IR, donde
D c IR? y f es una funcién diferenciable viene dada por [Ip /14 IV f]? dzdy.

Ahora estamos preparados para definir la integral de un campo escalar sobre una superficie.
Para fijar ideas, supongamos que deseamos estudiar la catga de una ldmina. Sea f(p) la
densidad en el punto p. Para calcular la carga de la ldmina aproximamos la superficie mediante
pequenos paralelogramos P,..., P, y sean p; € P; parai = 1,...,n. La carga aproximada
en cada paralelogramo P; es f(p;) -Area(R). El valor aproximado de la carga de la ldmina es

Z f(pi) - Area(P;).

i=1

Al hacer tender el area de todos los paralelogramos a 0 en sus dos dimensiones, obtenemos
un escalar que lo representaremos por ||, g JdS. Sin embargo esta definicién no es rigurosa,
ya que ni se establece la forma de hacer tender a 0 el area de los paralelogramos, ni se dice si
este limite existe o no, y sobre todo, no se establecen condiciones sobre f para que este limite
exista. Sin embargo, lo anterior motiva la siguiente definicién. Sean S = x(D) una superficie
parametrizada y f : S — IR continua. Se llama integral de superficie de f en S a

//Sfdsz//Dﬂx(u,v»H% >

De nuevo, esta definicion usa la parametrizacién de la superficie S. Probamos que esta defini-
ciéon no depende de la parametrizacion escogida para S. Calculamos dos ejemplos concretos.

dudw.

Las propiedades son analogas a las integrales dobles: linealidad, monotonia y aditividad
respecto al recinto. No hacemos ninguna demostracion; pues son absolutamente rutinarias.

A los alumnos les proporcionamos una hoja en donde se muestran las siguientes aplica-
ciones: célculo de masas, célculo de promedios, centro de gravedad y momento de inercia
respecto a un eje.

4.2. Integrales de superficies de campos vectoriales.

Para definir la integral de superficie de un campo vectorial es necesario considerar su-
perficies orientadas. Para comprender este concepto, observamos que en cada punto de la
superficie hay dos vectores normales unitarios dependiendo del sentido. Una superficie S es
orientable cuando existe un campo vectorial continuo N : S — IR3 de vectores normales
unitarios. Como ejemplos, construimos un campo de vectores normales y unitarios a la esfera
unitaria y al cilindro de ecuacién z? + y? = R2.
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4. Integrales de superficie

Decimos que no todas las superficies son orientables. Un ejemplo es la famosa cinta de
Moébius. Explicamos de forma intuitiva la razén de que la cinta de Mobius no sea orientable.

En lo que sigue sélo manejamos superficies orientables, que desde luego son las més comunes’.

Para motivar la integral de flujo, imaginamos un fluido de modo que el punto p se mue-
ve con una velocidad vectorial v(p) y calculamos la cantidad de fluido que pasa por una
membrana porosa por unidad de tiempo por medio del siguiente argumento nada riguroso.

Consideremos un “pequeno paralelogramo” en la superficie de vértices a,b,c y d. Si
x : T — S es una parametrizacién de la superficie, podemos escribir a = x(ug,v9), b =
x(ug+Au,vg) y ¢ = x(up, vo+Awv) para un cierto (ug, vg) € T'. Si el paralelogramo es pequeno,
podemos suponer que v es constante en este paralelogramo; y por tanto, los puntos que ocupan
las posiciones a, b, ¢ y d tras una unidad de tiempo, ocupan las posiciones a+v,b+v,c+v
v d 4+ v. El volumen del fluido A® que sale por el paralelogramo por unidad de tiempo es el
volumen del paralelepipedo de aristas b —a, c —ay v. Luego A® =v - [(b—a) x (c — a)].
Si el producto mixto anterior fuese negativo, el fluido entra, en vez de salir. Ahora

AD — v x(up + Au, vg) — x(ug, vo) " x(ug, vo + Av) — x(ug, vo) Aulo.
Au Av

Si descomponemos la superficie en muchos paralelogramos, sumamos la cantidad de fluido
que pasa por ellos y hacemos tender cada paralelogramo a un punto, obtenemos

// <8X (%)dudv

Si elegimos como vector unitario normal
ox 0x
[ >< [ s
ou Ov

/ / ‘N H dudv = / -NdS.

Esta dltima integral motiva la siguiente definiciéon. Sea S una superficie orientable en donde
hemos fijado un campo de vectores normales unitarios N : S — IR? continuo y sea F : S — IR?
otro campo de vectores continuo. La integral de superficie del campo F sobre la superficie

S (o flujo de F sobre S) es
//FdS://F‘NdS.
S S

Observamos que es necesario fijar una orientacion en la superficie. Si la superficie fuese
cerrada se toma como vector normal unitario el exterior. Las propiedades de la integral de
flujo son exactamente las mismas que las de las integrales de superficie de campos escalares.

du Ov

entonces

Hacemos un ejemplo concreto y el siguiente ejercicio. Calcilese [ fSFdS, si S es la
esfera centrada en el origen de radio R y el campo F = f(r)r, donde r(z,y,2) = (x,y, 2)
yr =|r| = V22 + 3%+ 22. La razén de incluir este ejercicio es mostrar cémo se pueden
calcular algunas integrales sin parametrizar la superficie.

'Se puede demostrar que una superficie dada por {(z,y,2z) € R?®: f(z,vy,2) = ¢}, donde c es un valor regular
para una funcién f diferenciable, es orientable; véase [21].

156



4.3. El teorema de Gauss-Ostrogradsky

4.3. EIl teorema de Gauss-Ostrogradsky

La cantidad de fluido que entra o sale de una superficie cerrada puede calcularse de modo
diferente a la comentada previamente, aunque advertimos que el siguiente razonamiento no
es riguroso.

Para calcular el flujo del campo F = (P, @, R) sobre la superficie cerrada S que encierra a
la region V', aproximamos la regiéon V mediante una unién de pequenos cubos Si,..., S, de
lados paralelos a los planos coordenados y de arista 2h. Tenemos en cuenta que [/, gFdS =
S s, F dS ya que las caras comunes de dos cubos tienen vectores normales opuestos?.

Ahora calcularemos de forma aproximada [ s, FdS. Sean p; = (x;,y;, 2i) el centro del
cubo S; y A;, B; las tapas del cubo superior e inferior respectivamente. Aproximamos R por
su polinomio de Taylor de orden 1 centrado en p;:

OR OR OR
R(u,v,z +h) ~ R(p;) + (u — xi)%(pi) + (v — yi)@(pi) + ha(pi),

y se obtiene

// FdS ~ 4h%R(p;) + 4h38—R(pz~).
A 8,2

3

Andlogamente se puede aproximar el flujo sobre la cara inferior:

// FdS ~ —4h*R(p;) + 4h38—R(pi).
B; aZ

7

Luego el flujo correspondiente a las tapas superior e inferior es 8h3%(p2-). De igual forma se
aproxima el flujo para el resto de las caras restantes y obtenemos que el flujo total ® sobre el

cubo se aproxima a:
oP 0Q OR
@~ 8h° ( ——(pi) + 5 (Pi) + =—(Ps) | -
8h (ax(p)Jr ay(p)+ az(p)>

Observamos que 8h? es el volumen del cubo. El término entre paréntesis motiva la siguiente

definicién. Sea F = (P, @, R) un campo de vectores con derivadas parciales continuas definido
en un abierto U de IR?. Se llama la divergencia de F al campo escalar

. oP 0Q OR
leF_ax+8y+8z'

Volviendo a la consideracién previa, hemos obtenido que

// FdS = Z// FdS ~ ZVolumen(Si) div F(p;),
o =17 7% i=1

Si las aristas de los cubos tienden a 0, el sumatorio anterior tiende a una integral triple, y se
obtiene el teorema de la divergencia o de Gauss-Ostrogradsky. Lo enunciamos con rigor:
Sean S una superficie cerrada orientable que encierra una regién V y F : V — IR? un campo
vectorial continuo con derivadas parciales continuas en V', entonces

//FdS:/// divFdzdydz.
S \%4

2Fisicamente esta afirmacién debe resultar evidente: si una cara pertenece a dos cubos, €l fluido que sale por
un cubo, entra en el otro a través de la cara comun.
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4. Integrales de superficie

Desde luego que la consideracion previa al teorema no puede considerarse una prueba rigurosa.
Para consultar una demostracién se pueden ver, por ejemplo, los libros [18, 42, 50].

Si S es una superficie cerrada que se contrae hasta el punto p, se tiene

1
lim ——— FdS =divF(p).
Sop Volumen(Vy) / /S VE(p)

donde Vg es la regiéon encerrada por S. Observamos que esta igualdad proporciona una
expresién para divF independiente del sistema coordenado elegido. Ademds podemos dar
una interpretacién fisica de la divergencia de F: Pensemos en un fluido cuya velocidad sea F'.
Si V' es una regién pequena que encierra a un punto p, entonces la razén de fluido que sale
de V respecto al volumen de V es la divergencia de F en el punto p. Por eso si div F(p) > 0,
el fluido sale y se dice que p es una fuente. En caso contrario, el fluido entra y p es un
sumidero.

Calculamos el volumen del elipsoide de semiejes a, b y ¢ usando el teorema de la diver-
gencia. Ademds hacemos un problema de la necesidad de “cerrar” la superficie de manera
adecuada con “tapas” para aplicar el teorema de la divergencia.

También enunciamos el teorema extendido de la divergencia. Sean €2y y 25 dos regiones
de R® con superficies frontera 0€2; y 0§29 respectivamente tales que 1 C s y sea F un
campo vectorial con derivadas continuas en {3 \ Q2. Entonces

/// didexdydz:// FdS—// Fds.
2\ 0 00

La idea intuitiva de la demostracién (no hacemos mas que esto) es “conectar con un tubo”
Q1 y Qq, aplicar el teorema de la divergencia a la region que resulta y “cerrar el tubo”.
Dibujamos en la pizarra la figura 4.2.

Figura 4.2.: La forma (bidimensional) extendida del teorema de la divergencia.

4.4. El teorema de Stokes

Para motivar la definicién del rotacional y el teorema de Stokes, explicamos el siguiente
argumento poco riguroso.

Calculamos el trabajo necesario para desplazar una particula moviéndose en una circun-
ferencia de radio € ~ 0 centrada en p y en el plano horizontal bajo el campo de fuerzas
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4.4. El teorema de Stokes

F = (P,Q,R). Una parametrizacién de esta circunferencia es r(f) = p + e(cos#,sen6,0),
donde 0 € [0, 2], luego

27 2T
W:fCFdr:/o F(r(@))~r(9)d9:5/0 [~ P(x(8)) sen + Q(x(6)) cos 0] do.

Tra usar aproximaciones de Taylor de primer orden de P y @) centradas en p se obtiene

W= a(0) (520 - Sow)).

en donde a(C) denota el drea del circulo. Ha salido la tercera componente del rotacional.

Si el nivel de la clase lo permite, podemos explicar lo siguiente. Para generalizar lo anterior
a una curva arbitraria que rodea a un punto p, consideremos la siguiente curva que rodea al

punto p = (%o, Yo, 20):
I‘(t) =p+ S(t) = (xO + .I'(t),y(] + y(t)v zo0 + Z(t))7 te [av b]7
donde s(t) es una curva “pequenia” y cerrada. Como

F(r(t))-r'(t) = P(p+s)2’+Q(p+s)y +R(p+s)?
oP OP

o~ <P(p) + x%(p) + yafy(p) + Zaz(p)> x4

+ (@) +a 520+ 50 + 250 ) o +

+ (70 + 25 0) 45 ) + 25 ) #

y ademds ff ' dt = fab o' dt = f; y' dt = f; yy dt = ff 2 dt = fab 2z’ dt = 0, puesto que la
curva s es cerrada, obtenemos

b
wo— /F(r(t))-r’(t)dt

OP b OP b
&x(p)/a YT dt+82(p)/a zo' dt +

0Q b 0Q b
+ax(p)/a vy i + 5 (p)/a 2 dt+

OR b oP b
+&C(P)/a Tz dt+8z(p)/a yz dt.

Ahora probamos a partir del teorema de Green que Sy = — f; yr' dt = fab zy’ dt, donde Sy
es el area encerrada por la proyeccién de la curva sobre el plano XY. Luego, si denotamos S,
Sy el drea encerrada por la proyeccién sobre los planos X Z, Y Z, respectivamente, obtenemos

W e Sey (5200 - 50 w)) + 50 (GL 00 - i) ) i (G 0= 520 ) - (42)

12
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4. Integrales de superficie

Esto motiva la siguiente definicién. Sea F = (P, @, R) un campo vectorial con derivadas
parciales continuas definido en un abierto U de IR. Se llama el rotacional de F al campo

e (7090 0P 0B 90 0P
\9y 9z 0z 9x’0ox Oy)’

Hay una forma sencilla de acordarse de esta definicién mediante el siguiente determinante

vectorial

simbdlico:
X y z
rot(P,Q,R) = |0/0x 0/0y 0/0z|.
P Q R

Volviendo a lo previo, si denotamos S = (Sy., Szz, Szy), entonces (4.2) se escribe

7{ Fdr ~S - -rotF.
C

Si suponemos ahora que la curva C' es plana, entonces hay una relacién sencilla entre el
area S encerrada por la curva C'y el area encerrada por sus proyecciones:

Sy. = S cos ¢, Sy. = S cos ¢y, Syy = Scos ¢,

donde ¢, es el angulo que forman el vector normal a la curva C' y el eje X; y de forma andloga
se definen ¢, ¢,. Por tanto

S = (Syz, Sez, Say) = S(cos ¢y, cos ¢y, cos d).

Pero (cos ¢z, cos ¢y, cos ¢.) es un vector normal unitario a la curva C, que denotaremos en lo
sucesivo por N. Luego

j{ Fdr ~ SN -rotF. (4.3)
C

Recordamos que hemos supuesto que la curva C es pequena y plana. Otra vez advertimos
que el siguiente razonamiento no es nada riguroso.

Sea .S una superficie cuya curva frontera es C. Dividimos S en muchas superficies pequenas
S1,...,5, vy elegimos un punto p; en cada trozo S;. Sea C; la curva frontera de S;. Se tiene

Fdr = ?é Fdr, (4.4
fre=%1, >

ya que los lados comunes a dos trozos estan recorridos en sentidos opuestos, y por tanto
en el término derecho de (4.4), las tnicas circulaciones que no se cancelan son las que sélo
pertenecen a un trozo, es decir, las de la frontera de la superficie S. Véase la figura 4.3.

Si cada trozo es suficientemente pequeno, lo podemos suponer plano, y de (4.3) y (4.4)
obtenemos

jiFdr = Z Area(Si) rot F(p;) - N(pi),

=1

y haciendo tender cada S; a p; obtenemos

fFdr—//rotF-NdS—//rothS. (4.5)
C S S
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4.4. El teorema de Stokes

N

Figura 4.3.: Las circulaciones de los lados comunes se cancelan.

Hemos obtenido el teorema de Stokes. Por supuesto, la “deduccion” que presentamos no
es rigurosa.

Hay que tener cuidado, ya que en las dos integrales de (4.5) aparece una orientacion.
Precisamos un poco més este concepto con la siguiente definicién. Sea x : D — S una
parametrizacién de una superficie S, donde D C IR? cuya frontera 0D es una curva de
Jordan. Entonces C = x(9D) es la curva frontera de la superficie S. Decimos que la curva
C estd recorrida positivamente respecto a la parametrizacion x si la curva plana 9D esté
orientada positivamente. Para recordar esta definicién, usamos la “regla de la mano derecha”.

Enunciamos, sin demostracion, el teorema de Stokes (para consultar una demostracion,
se pueden ver, por ejemplo, [18, 42, 50]). Sean S una superficie orientable con curva frontera
C y F:S — IR? con derivadas parciales continuas. Entonces

/ /S 1ot F dS = 7{) Fdr, (4.6)

donde la curva C' se recorre positivamente respecto a la parametrizacion usada para calcular
el vector normal unitario en (4.6).

El teorema de Stokes permite dar una interpretacién fisica del rotacional. Sean p un
punto de IR? en donde esta definido F, S una superficie orientable en IR® que contiene a p y
0S8 su curva frontera recorrida de modo positivo. Entonces

1
rot F ‘N=Ilim —— Fdr
(p) S—p drea(S) }és ’
en donde N es el vector al cual tienden los vectores normales unitarios de S. En realidad,
los vectores normales unitarios de S no tiene por qué tender a un vector; este problema se
soslaya suponiendo que todas las superficies S son paralelas entre ellas.

Hacemos un ejemplo concreto. Observamos que si S1 y S5 son dos superficies con la misma
curva frontera de modo que F tiene derivadas parciales continuas en la regién comprendida
entre ambas superficies, por el teorema de Stokes, se tiene ffsl rot FdS = ff52 rot F dS, lo
que puede ayudar a facilitar calculos. Aplicamos este comentario para calcular de forma
céomoda otro problema concreto. El teorema de Stokes puede aplicarse también a superficies
con curva frontera diferenciable a trozos, como mostramos con otro ejemplo.

Por tltimo demostramos que si f es un campo escalar de clase €2, entonces rot(Vf) = 0
y que si F es un campo vectorial de clase G2, entonces div(rot F) = 0.
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5. Campos conservativos y solenoidales

OBJETIVOS:

Saber comprobar si un campo es conservativo o solenoidal. En caso afrimativo,
saber calcular el potencial respectivo. Entender la utilidad de conocer el potencial
de un campo conservativo.

En 1739, Clairaut en un trabajo sobre la forma de la Tierra, se encontré lo que hoy se
conoce habitualmente como ecuaciones en diferencias totales que tiene la forma

Pdx+Qdy+ Rdz =0, (5.1)
donde P, @, R son funciones de z,y, z. Si existe una funcién v = u(z,y, z) tal que
du=Pdz+ Qdy + Rdz,

entonces senala Clairaut que (5.1) puede resolverse y que

oP _9Q 9P OR  0Q OR

by ox’ 9z oz’ 0z Oy’

Por otra parte, uno de los principales problemas del siglo XVIII fue la determinacién de
la atraccién gravitatoria que una masa ejerce sobre otra. Uno de los casos mas importantes
fue el estudio de la influencia de la Tierra sobre una particula exterior o interior a ella. El
enfoque geométrico usado por Newton y MacLaurin sélo es apropiado para cuerpos atractores
especiales y para posiciones muy peculiares de las particulas atraidas.

Este enfoque dio paso pronto a los métodos analiticos que fueron usados por Clairaut en
1743. Senalemos algunos hechos. La fuerza ejercida por la Tierra sobre una masa situada en
(z,y, z) es la suma de todos los diferenciales de fuerzas ejercidas por todas los diferenciales de
masas de la Tierra. Por la ley de gravitacién de Newton, las componentes de un diferencial
de fuerza son

z—§ y—n z—=G
s—pdfdnd¢, -G pd§dnd¢, —G—3

-G
r 73 r

pd§dndc,

donde G es la constante de la ley de Newton, dé dnd( es el diferencial de volumen en la Tierra
localizado en el punto (£,7,¢) y 7= +/(z —&)2 + (y — n)2 + (z — ¢)2. La componente z de la
fuerza que la Tierra ejerce sobre un cuerpo de masa unidad situado en el punto (z,y, z) es

felans) = =G [[| T pacanac
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5. Campos conservativos y solenoidales

donde T es la Tierra. Las componentes y, z de esta fuerza son andlogas. Si se define

Vi) = [[[ Laganac,

y se deriva respecto a x, y, z (incluidas en r),

v fe ov o f

or G oy G 9z G
Esto perimte trabajar a partir de ahora con una funciéon V en vez de las tres componentes f,,
fys f-. Laidea de que una fuerza pueda derivar de una funcién potencial fue usada por Daniel
Bernouilli (1700-1782) en 1738 en su libro Hydrodynamica, en el cual empezé a estudiar las
propiedades de presion, velocidad y densidad de los fluidos.

Por otra parte, Euler al estudiar las componentes u,v,w de la velocidad de un fluido
incompresible, dedujo que

Ou Ov  Ow 0

Ox + oy + 0z
En nuestra notacion, div(u,v,w) = 0. El triunfo mas espectacular de la ciencia en el siglo
XIX fue la derivacién en 1865 por Maxwell de las leyes del electromagnetismo. Una de estas
leyes, en notacién moderna, establece que divB = 0, en donde B es el campo magnético.
Esta ley expresa el hecho experimental de que no hay monopolos magnéticos. Otra de las
ecuaciones de Maxwell es divE = p/egg, donde E es el campo eléctrico, €y es una constante
fisica y p es la densidad de carga. Por lo que en zonas libres de cargas se cumple div E = 0.

5.1. Campos conservativos

Recordamos que el trabajo realizado por una particula que se mueve sobre una curva C
en un campo de fuerzas F es fC F dr. Un concepto importante en fisica es que el trabajo sélo
depende de los puntos inicial y final de la curva. Decimos que un campo vectorial F : D — IR",
donde D es un abierto de IR", es conservativo cuando fCl Fdr = fCQ F dr para cualquier
par de curvas C1, Cy contenidas en D con los mismos puntos inicial y final.

Explicamos que si se desea demostrar que un campo vectorial F no es conservativo basta
encontrar dos trayectorias con los mismos extremos y ver que la circulacion de F a través de
ambas trayectorias es diferente. Pero si queremos demostrar que un campo es conservativo
hay que demostrar que para cualquier par de caminos con extremos iguales, la circulacién
coincide.

Comprobar si un campo F es conservativo es, a partir de la definicién, una tarea compli-
cada. Afortunadamente hay un modo mas sencillo que describimos a continuacién; pero sélo
se puede aplicar a campos que estan definidos sobre conjuntos que cumplen la siguiente defi-
nicién. Un conjunto D C R" es simplemente conexo si es conexo y cualquier curva cerrada
se puede contraer de forma continua a un punto sin salirse del conjunto D. Esta definicién
no es rigurosa, aunque intuitiva. Simplemente apelaremos a la intuicién para decidir si un
conjunto es simplemente conexo o no'. Vemos algunos ejemplos: IR?, IR?, un plano sin un
punto, el espacio sin una recta y el espacio sin un punto.

1Si se est4 interesado en una definicién rigurosa de este concepto, asi como sus implicaciones se puede consultar
los libros més avanzados [28, 66].
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5.1. Campos conservativos

El siguiente teorema es 1til para saber si un campo vectorial es conservativo o no. Sea
F : D — IR? un campo vectorial de clase ! donde D C IR? es un abierto simplemente conexo.
Las siguientes afirmaciones son equivalentes:

a) Para toda curva cerrada C' contenida en D, se tiene fc Fdr =0.

(¢

)

b) El campo F es conservativo.
) Existe un campo escalar U : D — R tal que VU = —F.
)

d) El rotacional del campo F es nulo.

Las implicaciones ¢) = d) = a) = b) son féciles y las hacemos. Observemos que, aunque el
enunciado se pueda entender en el Capitulo 3, preferimos enunciarlo en este momento, pues
la implicacién d) = a) es trivial usando el teorema de Stokes. Dependiendo de varios factores
(tiempo, nivel o nimero de alumnos, ...) demostramos b) = ¢). Esta demostracién se puede
encontrar en, por ejemplo, [17, 18, 50].

Para campos F : D — IR?, donde D ¢ IR? y F = (P,Q), basta definir G(z,y,2) =
(P(z,y),Q(x,y),0) y aplicar el teorema anterior.

La hipdtesis de que el abierto sea simplemente conexo es fundamental. Sea el campo
F(z,y,2) = (—y/(x? +y?),z/(x? + 4?),0), definido en IR? \ {Eje Z}. El rotacional de F es
0 y la circulacién de F a través de la circunferencia 22 4+ y? = 1, z = 0 recorrida en sentido
positivo es distinta de 0.

Sin embargo, si el abierto donde esté definido F no es simplemente conexo, atin hay algunas
implicaciones que son ciertas. Todo esto se enuncia con precisién en el siguiente resultado.
Sea F : D — IR" un campo vectorial de clase C! y D C IR™ es un abierto. Las siguientes
afirmaciones son equivalentes:

a) Para toda curva cerrada C' contenida en D, se tiene fc Fdr =0.
b) El campo F es conservativo.
c¢) Existe un campo escalar U : D — IR tal que VU = —F.

Las pruebas de a) = b) = ¢) son iguales que en el teorema previo. Para demostrar ¢) = a),
observamos previamente que F(r(t)) - r'(t) = =VU(x(t)) - r'(t) = —=(U or)'(2).

Observamos que la prueba de ¢) = a) permite demostrar que si U : D — IR es un campo
escalar de clase C! donde D C IR™ es un abierto y si C' es una curva contenida en D, entonces
Jo VU dr =U(q) — U(p); donde p es el punto inicial de C'y q es el final.

Si F es conservativo, existe un campo escalar U tal que —VU = F. Desde el punto de vista
de la fisica, este campo U es importante, ya que estd relacionado con la energia potencial.
Esto motiva la siguiente definiciéon: Un potencial del campo conservativo F es un campo
escalar U tal que —VU = F. Hacemos un ejemplo concreto de comprobar si un campo es
conservativo, en donde ademds calculamos el potencial. Si se ha visto la implicacién b) =
¢) en el teorema de las cuatro equivalencias de los campos conservativos, se puede calcular el
potencial de dos formas distintas?.

2Pocas veces el alumno se pregunta si el potencial de un campo conservativo es “nico” en el siguiente sentido:
si U; y Uz son dos potenciales del mismo campo F entonces U; — Uz es constante. Si el dominio de F
es conexo, entonces s es cierto ya que V(Ui — Uz) = 0. En general, sélo se puede decir que Uy — Uz es
constante en cada componente conexa del dominio de definicién de F'.
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5. Campos conservativos y solenoidales

Si una particula de masa m se mueve en una trayectoria r sujeta a una fuerza F, la
segunda ley de Newton es For = mr”. Si F es conservativo, existe un campo escalar U
tal que —VU = F. Bajo estas condiciones, la funcion escalar

Ll (02 + U (1))

B(t) = 5

es constante. Esta funcién se llama energia; el primer sumando es la energia cinética y
el segundo la energia potencial. Comprobamos este principio (de conservacién de la
energia).

5.2. Campos solenoidales

Un campo es solenoidal si su divergencia es nula. Este tipo de campos es importante como
se ha visto en la introduccién histérica: el campo de velocidades de un fluido incompresible
y el campo magnético son ejemplos de campos solenoidales.

El siguiente teorema caracteriza los campos solenoidales. Sea F : IR?® — IR? un campo
vectorial con derivadas parciales continuas. Las siguientes afirmaciones equivalen:

a) Existe un campo diferenciable G : IR? — IR? tal que rot G = F (el campo G se llama
potencial vector de F).

b) El flujo de F a través de cualquier superficie cerrada es nulo.

c) El campo F es solenoidal, es decir, divF = 0.

Las demostraciones de a) = b) = c¢) usan el teorema de la divergencia y la propiedad
divorot = 0. Para la demostracién de ¢) = a) hay dos alternativas para hallar G:

G,y 2) = ({Oz Fy(z,y,t)dt — [J Fx(x,t,0)dt, — [J Fy(x,y,t)dt,0) ,
Jo tF(ta, ty,tz) x (z,y,2) dt.

La primera tiene la ventaja de que surge de manera natural al tratar de resolver rot(G) =
(Fy, Fy, F,) con algunas imposiciones y en realidad para los ejemplos concretos no necesita
memorizacion ninguna. La segunda férmula es més general en el sentido de que sdlo se
requiere que el dominio de F sea estrellado respecto al origen®.

La demostracién de ¢) = a) prueba la existencia, pero jcudl es la solucién general de
rot G = F supuesto divF = 0?7 Si Gy es otro campo tal que rot G; = F, como rot(G — G1) =
0, entonces existe un campo escalar ¢ tal que G — Gy = —V¢. Luego G; = G + V¢. Otra
forma de encarar la cuestién es (siempre que el alumno haya visto la asignatura de ecuaciones
diferenciales ordinarias) que la solucién general de rot G = F es la solucién general de la
homogénea (rot G, = 0) més una solucién particular de rot G = F.

Una hipdtesis esencial del teorema anterior es que el campo F debe estar definido en todo
IR?. En el siguiente ejercicio se ve la razén de incluir esta hipétesis.

Sea el campo F = r/||r||3, donde r = (,y, z). Obsérvese que este campo no estd definido
en el origen. Pruébense las siguientes afirmaciones.

3Se dice que © C IR™ es estrellado respecto a p €  si para cualquier q € Q se cumple que el segmento
pPq esta incluido en .
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5.2. Campos solenoidales

a) La divergencia de F es cero.
b) El flujo de F a través de la esfera de centro el origen y radio 1 es 4, distinto de 0.

c¢) Es imposible que exista un campo vectorial G tal que rot G = F. Ayuda: Sean S la esfera
de centro el origen y radio 1; Hy el hemisferio norte y Hg el sur. Entonces [/, JFdS =
I Hy Fds + [ He FdS. Supédngase que existe tal campo G y apliquese el teorema de
Stokes para obtener una contradiccion.

Las referencias que proponemos para este capitulo son [12, 17, 50]. Unos libros més

informales profundizando més en el aspecto fisico que en el rigor matemético son [61, 63].
Algo més avanzado es [18].
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6. Coordenadas curvilineas ortogonales

OBJETIVOS

Saber calcular el gradiente, divergencia, rotacional y laplaciano en coordenadas
polares, cilindricas y esféricas.

El primer uso de coordenadas distintas a las cartesianas parece ser que fue hecho por
Newton en el libro The method of fluzions and infinite series escrito sobre 1671; pero publicado
en 1736. En este libro, Newton describe las coordenadas polares y las bipolares, en las cuales
un punto se situa de acuerdo con las distancias a dos puntos fijos. El descubrimiento de las
coordenadas polares se suele atribuir a Jacobo Bernouilli quien publicé un articulo en el Acta
FEruditorum en 1691. Lagrange, en 1773, expreso la atraccion ejercida por una esfera mediante
una integral triple y efectud el cambio a coordenadas esféricas, en donde usé explicitamente
que dzdydz = r?sen ¢ d¢ dAdr, donde 7 es la distancia del punto de la esfera al origen, ¢ la
colatitud y A la longitud.

Usando el principio de minima accién y el cédlculo de variaciones, Lagrange obtuvo sus
famosas ecuaciones del movimiento. Después introdujo lo que hoy se llaman coordenadas
generalizadas. Esto es, en lugar de las coordenadas cartesianas, se puede usar cualquier
conjunto de coordenadas para fijar la posicién de la particula.

La utilidad de las coordenadas curvilineas fue sefialada por Lamé (1795-1870) quien en
1833 indic6 que la ecuacién del calor s6lo habia sido resuelta para cubos con caras paralelas
a los planos coordenados. La idea de Lamé fue introducir nuevos sistemas coordenados y
transformar la ecuacion en este nuevo sistema coordenado, como fue hecho por Euler y Laplace
al transformar la ecuacién del potencial de cartesianas a esféricas. En 1834 Lamé considerd
las propiedades de tres familias de superficies mutuamente ortogonales y dio un método para
expresar una ecuacién en derivadas parciales en cualquier sistema ortogonal de coordenadas.

6.1. Repaso de las coordenadas polares, cilindricas y esféricas

Motivamos este tema con la ley de Coulomb: la fuerza que ejerce un cuerpo puntual de
carga () situado en el origen sobre otra carga ¢ situada en (z,y, z) es

F(.Z‘7y72) :_KQq (l’,y,Z)-

\/(x2 +y2 + 22)3

Observamos que esta expresion es relativamente complicada para un problema que posee
mucha simetria. De hecho los puntos situados en una esfera con centro el origen tienen
comportamiento similar, por lo que el estudio de este problema debe ser mas sencillo en
coordenadas esféricas.
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6. Coordenadas curvilineas ortogonales

En muchos problemas es conveniente usar coordenadas no cartesianas, como por ejemplo,
polares, esféricas o cilindricas. Para comprender mejor este capitulo, repasamos brevemente
estas coordenadas.

Coordenadas polares. Se definen mediante x = z(r,0) = rcosf, y = y(r,0) = rsenf para
r € [0,+o0[y 0 € [0,27]. El vector de posicién es r = r(r,0) = (rcosd,rsend). Expli-
camos geométricamente el significado de dr/00 y Or/0r. Observamos que los vectores
{0r/0r,0r/06} forman una base ortogonal orientada positivamente de IR? (véase la
figura 6.1, izquierda).

or/06
or/0or

or/0z or /00
L

™ Jr/Or

Figura 6.1.: Coordenadas polares y cilindricas.

Coordenadas cilindricas. Se definen mediante z = x(r,0,2) = rcos, y = y(r,0,z) = rsenb,
z = z(r,0,z) = z para r € [0,+00[,0 € [0,27[,z €] — 00, +o0o[. El vector de posicién
esr =r(r,0,z) = (rcosf,rsenf, z). Explicamos el significado geométrico de dr/dr,
Or/00 y Or/0z. Estos tres vectores forman una base ortogonal orientada positivamente
de IR? (véase la figura 6.1, derecha).

Coordenadas esféricas. Se definen por medio de
x(r, A\, @) =rsengcos\, y(r,\,¢) =rsengsen), z(r,\,¢)=rcosq,
para r € [0,+o0[, ¢ € [0,7] y A € [0,27[. El vector de posicién es
r(r,\,¢) = r(sen ¢ cos A, sen ¢sen \, cos ¢).
Igual que antes, explicamos el significado geométrico de dr/dr, Or/0¢ y Or/OX y vemos

que estos tres vectores forman una base ortogonal orientada positivamente.

6.2. Definicién de las coordenadas curvilineas ortogonales
Un cambio de coordenadas es especificar tres funciones diferenciables
x = z(u,v,w), y = y(u,v,w), z = z(u,v,w)
que admiten inversa; es decir, existen

u=u(z,vy,z2), v=uv(z,Yy,2), w=w(x,y,z),
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6.3. Los operadores diferenciales en coordenadas curvilineas ortogonales

donde ademas supondremos que 9(z,vy, 2)/0(u, v, w) # 0. El vector de posicién se denotard
r(u,v,w) = (z(u,v,w),y(u, v, w), z(u, v, w)).

Las coordenadas u,v,w forman un sistema ortogonal de coordenadas curvilineas
si la base {0r/0u,0r/0v,0r/0w} es ortogonal orientada positivamente. Los factores de
escala son

= |5 &

“ |l ou]” Y lowl|” Yl owl||”
Denotamos

- 1 Or N 1 Or N 1 Or

u:h—u%, V:H%’ W:E%.

Como ejercicios, calculamos los factores de escala en coordenadas polares, cilindricas y
esféricas. Expresamos algunos campos escalares y vectoriales concretos en funcién de las
coordenadas cilindricas y esféricas.

6.3. Los operadores diferenciales en coordenadas curvilineas
ortogonales

En lo sucesivo supondremos que todos los campos que aparecen son diferenciables tantas
veces cOmo sea preciso.

6.3.1. El gradiente

Sea f un campo escalar. El gradiente de f en coordenadas cartesianas es el vector
of of of
Vi=1|==—,=—,= .
/ <8x’ Ay’ 0z

Hallemos V f en la base {u,v,w}. Si Vf = f,u+ f,v+ f,W, tenemos que encontrar f,, fy, fu-
Por ser la base {u, v, w} ortonormal,

1 or

n=Vﬂﬁ=6U¢M)=

1[8]’81‘ af dy 8f62] 1 af
B

T (9200 Oydu ' 0z 0u|  hyou’
Andlogamente se obtienen f, y f,,. Por lo que

10f . 10f. 10f._
huﬁuu—i_hy 8vv+hw ow

Una expresién para el gradiente usando sumatorios es

1 0f
Vf= 2172871““

Vf=

donde se ha substituido U por U;; Vv por Uz y W por uz. Observamos que esta férmula tiene
sentido también en IR?.

Como ejercicios calculamos el gradiente de un campo escalar que depende sélo de 7 en IR?
y en IR?. Ademds, probamos como ejercicio que

u v w
Vu=—, Vo =—, Vw =
u h’U

=W
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6. Coordenadas curvilineas ortogonales

Como consecuencia (que serd util) se tiene

rot — =0, rot =0. (6.2)

u w
hy o

6.3.2. La divergencia

Expresamos la divergencia de F = F,u+ F,V + F,,w en el nuevo sistema de coordenadas.
Como divF = div(F,u) + div(F,Vv) + div(F,w), sélo calcularemos div(F,u), pues el resto es
analogo. Se tiene que

div(F,u) =div[F,(Vx w)] = VE, - (VX W) 4+ F, div(V x W).
Aplicando (6.1) y debido a que la base {1, v, w} es ortonormal y orientada positivamente, se
obtiene que
~ 1 OF,
Ahora, por (6.1), (6.2) y usando que div(F x G) = G-F —F - G para cualquier par de campos
vectoriales F y G de clase G2

vV W
div(vxw) = di hyhy)— X —
iv(v x w) iv <( )h'u X hw>
v W (VW
= V(hvhw) <hv X hw> + hvhw div <hv X hw>
B 1 9(hyhy)
 hyhyhw  Ou
Luego
o 18F,  F. 8(hohy) 1 (Fuhohu)
div(F,u) = — = .
W) = e Y b du huhuhe ou

El resto de las componentes se calculan de forma similar. Por tanto

1 (O(hhwFy)  O(hwhuFy)  0(huhyFl)
le(F) B huhvhw < ou + v + ow ’

Una expresién para la divergencia usando sumatorios es

. 1 0 (HF;
leF—EZaUZ ( hl >7

donde H = hihohs. Observemos que esta expresion tiene sentido en IR?; siendo en este caso
H = hihs.

Pocas veces el alumno se cuestiona que en la deduccién de (6.3) se usa que el campo F es
tridimensional (al utilizar el producto vectorial). Sin embargo se ha afirmado que la férmula
es valida también en IR%. ;Por qué? Se considera el campo F(z,) = (Fy(x,y), Fy(x,y)) y se
define F*(z,y, 2) = (Fi(z,y), Fy(x,y),0). Ahora basta aplicar (6.3) para F*.

Como un ejemplo, calculamos la divergencia del campo F = r/||r||* en el plano y en el
espacio usando coordenadas polares y esféricas respectivamente. Este campo es importan-
te en las aplicaciones, pues, salvo una constante multiplicativa, es el campo gravitatorio o
electrostatico.
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6.3. Los operadores diferenciales en coordenadas curvilineas ortogonales

6.3.3. El rotacional

Se calculara el rotacional de F = F,u+ F,v+ F,w. Como rot F = rot(F,u) +rot(F,v)+
rot(F,,w), sélo hace falta calcular rot(F,u) pues el resto es andlogo. Aplicando que rot(fF) =
frotF + Vf x F para un campo escalar f y un campo vectorial F, ambos de clase €2, se
tiene

rot(F,u) = rot(Fuhuhg)
u u
= F,hyrot ™ + V(Fyhy) X h—u
1 0(Fuhy) . 1 0(Fuhy) . 1 8(Fuhy) ] 4@
— o4 | vy STV uwg - T ulu) —
+[hu ou u+hv ov V+hw ow w Xhu
1 8(Fuhu)A+ 1 0(Fyuhy) -
T Thehe v huhe 0w
B 1 O(Fuhy), . O(Fuhy),
= huhth[ B0 hoV — 9 hyW| .

Una expresién simbélica para rot F es

huhv hw 8U 8’0 8711)

huFy hoFy hyFy

Como ejercicio, calculamos el rotacional de un campo de fuerzas central, es decir, F =
fr)r.
6.3.4. EIl Laplaciano

Si f es un campo escalar, el laplaciano de f se define mediante

0*f 0°f O%f
0x2 + Oy + 022"

Vif =
Puesto que V? = div oV, se tiene que
1 0 (HOf
20, _ L il

Como ejercicio, hallamos el laplaciano en coordenadas polares, esféricas y cilindricas y las
funciones f : IR? — IR tales que V2f = 0 y que sélo dependen de 7. Hacemos lo mismo para
funciones de tres variables.

Puesto, que en nuestra opinién, la memorizacién excesiva no ayuda a comprender la
materia, en los examenes se proporcionan a los alumnos las expresiones (6.1), (6.3) y (6.4).
Si el nivel de la clase lo permitiera, se incluyen las demostraciones de las formulas.
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7. El campo gravitatorio y electrostatico

OBJETIVOS

Saber plantear la integral del potencial creada por distribuciones continuas y calcu-
larla en algunos casos concretos. Conocer la ley de Gauss y conocer las ecuaciones
béasicas que cumple el potencial.

En este capitulo se presentan varias aplicaciones del analisis vectorial a la teoria de campos
gravitatorios y electrostdticos. Para una mayor informacién se pueden consultar muchos
libros, por ejemplo, [9, 15, 27, 38, 42, 57].

7.1. EIl potencial gravitatorio y electrostatico

Segin la ley de gravitacion universal de Newton, dos cuerpos se atraen con una
fuerza proporcional al producto de las masas e inversamente proporcional al cuadrado de la
distancia que separa a ambas. Usando vectores, podemos enunciar que la fuerza que ejerce
una masa M situada en pg sobre otra masa m situada en p es

P —Po

F =—-GMm .
() > =P

Comentamos brevemente el signo negativo y el valor |F(p)|| en la igualdad anterior. La
expresion de esta fuerza en coordenadas esféricas centradas en pg es mucho mas sencilla:

—GMm .
F=—+—T.
r
El campo gravitatorio E que crea una particula de masa M es la fuerza que ejerce sobre

otra particula de masa 1, es decir, mE = F.

La ley de Coulomb postula que la fuerza que ejerce una carga () situada en pg sobre
otra carga ¢ situada en p es
Q¢ P—Po

F = .
(P) = Jreo o = pol?

Esta ley es similar a la de Newton; sin embargo hay algunas diferencias:

e Hay cargas de distinto signo y éstas se atraen si son de signos distintos y se repelen si
son del mismo signo, mientras que sélo hay “masas del mismo signo” ya que las masas
sOlo se atraen. De aqui que en la ley de Coulomb no aparece el signo negativo que se
puso en la de Newton.
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7. El campo gravitatorio y electrostatico

e En el caso de la ley de Coulomb la constante G se substituye por —1/(4mep). Esta cons-
tante es mayor que G, por eso la fuerza electrostatica es mas fuerte que la gravitatoria.

e Si las cargas no estuviesen en el vacio, la constante gy (llamada permitividad eléctrica
en el vacio) debe modificarse; por eso esta constante no es universal (a diferencia de
la de gravitacién).

La expresién para el campo electrostéatico que crea una carga se define como el campo
gravitatorio; es decir la fuerza sobre otra carga de magnitud uno.

El campo gravitatorio que crea una particula de masa M situada en pg es conservativo en

R3\ {po}, ya que rot E = 0 y el dominio de definicién de E es simplemente conexo. Luego

existe una funcién potencial V tal que VV = —E. Usando coordenadas esféricas!,

ov_. 10V~ 1 Vs T

Tras igualar componentes se obtiene V.= —GM/r 4+ C. Si se impone la condicién de que V'
se anule en el infinito, se tiene
GM
V=-————.
r

Se ha obtenido que V tiene simetria radial, lo que es fisicamente intuitivo pues E también la
tiene. La razén para calcular este potencial es practica: E tiene tres componentes, mientras
que V sélo una; asi pues, es mas sencillo hallar V' que E. Hay que tener en cuenta que una
vez hallado V, por derivacién, obtenemos E.

En el mundo real normalmente no hay dos masas puntuales aisladas. Para estudiar siste-

mas con varias masas es necesario postular que las masas My, ..., M, situadas en los puntos
X1,...,Xp, crean una fuerza que es igual a la suma de las fuerzas que originan por separado.
Luego el potencial en un punto p distinto de x1,...,x, es

—-GM;
Vip) = —_— (7.1)
; P — x|
Este mismo principio también es véalido en electrostatica.

La situacién anterior es bastante irreal, ya que en la naturaleza no existen masas o cargas
puntuales. Lo que hay son distribuciones continuas. Para trabajar con tales distribuciones se
postula que la distribucién continua de masas ocupando una regién ) crea en un punto p el

potencial dado por
—Gp(x)
Vi) = [ P, (7.2)
alp—x||

donde x € Q y p(x) es la densidad en x. La integral puede ser de linea, superficie o de
volumen dependiendo de €.

Al pasar de una distribucién discreta (7.1) a una distribucién continua (7.2), el sumatorio
se reemplaza por una integral y cada masa M; se convierte en el diferencial de masa p(x) dx.
Observamos que si p € 2, la integral (7.2) presenta problemas de convergencia.

Resolvemos los siguientes problemas:

'Desde luego, si se estudia el campo electrostatico, basta cambiar G por —1/(4meo).
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7.1. El potencial gravitatorio y electrostatico

2)

Pruébese que el potencial gravitatorio creado por una esfera hueca homogénea de radio R
sobre un punto p que no esta en la superficie esférica es

V(p) = —~GM/R si|lp—c| <R,
—GM/|lp—c|| si|p—cl| >R,
donde c es el centro de la esfera y M es la masa total de la esfera hueca. Este resultado

dice que la fuerza de atracciéon que crea una esfera hueca sobre puntos exteriores es como si
la masa estuviese concentrada en el centro de la esfera; conclusién deducida por Newton.

Con respecto al potencial del ejercicio anterior:

b.1) Hallese VV. Concliyase que los puntos interiores a la esfera no sufren atraccién ni
repulsion.

b.2) Pruébese que V2V = 0 en cualquier punto que no estd sobre la superficie de la esfera.

Debido a que la forma de la Tierra se puede aproximar por una esfera; es importante calcu-

lar el potencial originado por una esfera maciza de radio R sobre un punto p. Suponemos
la Tierra homogénea con densidad p y centrada en el origen. Pruébese que

GM

_ ) el
V= RN
—Gp2n | R® — =3 ) s llpl| < R.

st R < |[|pl],

Respecto al potencial del ejercicio previo, pruébese que

d.1) el potencial V' es continuo en la superficie esférica.

d.2) la fuerza de atraccién, —VV, viene dada por

GM
-t siR<|pl,
Ipl?
—VV(p) =
GM|p|~ .
—R!‘r si|pll < R.
d.3) El laplaciano de V' cumple
0 i R< ,
V2V(p) — S? ||p||
AnGp(p) si[lp| < R.

En general, la integral que proporciona el potencial no se puede hallar de forma exacta.

Pero en todos los casos anteriores, el laplaciano del potencial en puntos libres de masas es nulo
independientemente de la distribucién de masas que crea el campo. Més adelante veremos
que no es casualidad. Esta es una de las razones de la importancia del laplaciano.

El estudio de las propiedades del potencial en puntos ocupados por cargas presenta bas-

tantes dificultades pues el integrando de (7.2) se hace infinito en los puntos donde hay cargas.
No entramos en muchos detalles (véase [42] para un estudio més profundo).
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7. El campo gravitatorio y electrostatico

Supongamos en lo que sigue que V(p, ¢, r) es el potencial en el punto (p, ¢, r) creado por
una distribucién continua de cargas con densidad p continua a trozos y acotada en el cerrado
y acotado €2 con interior no vacio. Entonces se tiene

1 p(x7 y7 Z)
Vo) = oo [ o m e b e (19)

Enunciamos y demostramos que si € es un cerrado y acotado de IR? con interior no vacio
y si p: 2 — R es una funcién continua a trozos, entonces la integral (7.3) converge para
todo (p, q,7) € IR®. Para la demostracién hay que distinguir si (p,q,7) € Q o si (p,q,7) € Q.
El primer caso es trivial. Para el segundo, se puede suponer que {2 es una esfera de centro
(p,q,r) y basta pasar la integral a coordenadas esféricas centradas en (p, q,r).

Enunciamos el siguiente teorema: Sea V' el potencial de una distribucién continua de
cargas ocupando el cerrado y acotado ). Si p es diferenciable en el interior de €2 y su
gradiente estd acotado en (), entonces en cualquier punto p que no pertenece a la frontera de
Q) se cumple

v (p) = -2

No presentamos la demostracién en clase, que se puede encontrar en [42] (basta suponer que
p cumple la condicién de Holder en el interior de Q).

7.2. La ley de Gauss

La ley de Gauss proporciona el valor de [], ¢EdS, donde S es una superficie cerrada y
E es el campo electrostatico o gravitatorio. Para fijar ideas, la enunciamos usando campos
electrostaticos.

Comenzamos estudiando lo mas sencillo: cuando el campo estd creado por una particula
de carga Q situada en el origen, es decir E = Q/(4meor?)r. Denotamos K = Q/4meq y
observamos que se cumple divE = 0.

Hay que tener cuidado en la siguiente igualdad:

//EdS:/// divEdxdydz =0,
S Q

donde {2 es el recinto encerrado por .S pues el teorema de la divergencia no es cierto si el campo
E no es diferenciable en el interior de S. Sin embargo podemos decir que si 0 ¢ interior(S),
entonces [[,EdS = 0.

Si el origen estuviese en el interior de S, lo encerramos dentro de una esfera B de radio §
suficientemente pequenio tal que B C Q) (véase la figura 7.1).

Por el teorema extendido de la divergencia, si 0B es la frontera de B,

//EdS—// EdS:/// divFdrdydz = 0.
S OB O\B

Pero ahora es trivial calcular [], o5 EdS. Este valor es Q /€0. Se acaba de probar

0  si0 ¢ interior(.5),
[[Bas={a
S

— si 0 € interior(S).
€0
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7.2. La ley de Gauss

Figura 7.1.: El equivalente plano en la deduccién de la ley de Gauss

Este resultado se puede extender al caso de varias cargas como sigue: [, JEdS=0Q /€0, donde
Q es la carga total encerrada por S. El paso de una distribucion discreta a una continua no
es riguroso (en [50] se ve una forma de demostrar este resultado con rigor).

La ley de Gauss permite enunciar la siguiente ley fundamental de la electrostatica. Sea (2
una regién de IR? libre de cargas. Tomamos R C €2 arbitrario y sea S la superficie frontera
de R. Entonces, por la ley de Gauss y por el teorema de la divergencia,

O://EdS:/// div Edzxdydz.
S R

Como esto es cierto para cualquier R C 2, entonces divE = 0 en . Como E = —VV,
entonces div(VV) = 0 en §; es decir, V cumple la ecuacién de Laplace en 2, que es,
V2V = 0.
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8. El campo magnético

OBJETIVOS

Saber calcular el campo magnético en algunos casos simples. Saber usar la ley de
Lorentz. Deducir consecuencias tedricas a partir de las leyes de Biot-Savart y de
las ecuaciones de Maxwell.

8.1. Fluidos

Comenzamos con una breve introduccién a la mecanica de fluidos, ya que sera ttil para
estudiar el flujo de cargas o la ecuacién de continuidad. Hay muchos libros que tratan este
tema: se pueden consultar [27] (poco riguroso, pero intuitivo y vélido si no se pretende
profundizar), [35] (para un tratamiento mas riguroso) o [49] (riguroso, pero abstracto y dificil
de seguir).

Para comprender mejor la definicion de movimiento de un fluido que inicialmente ocupa
la regién Q C IR? en el intervalo temporal [0, ¢ ], explicamos de forma intuitiva lo siguiente.
Una particula del fluido que inicialmente estd en la posicion x, tras ¢t unidades de tiempo, se
desplaza a otro punto denotado por ®(x,t). Asi pues, existe una funcién ® : Q x [0,¢;] — IR>.
Observamos que ® depende de 4 variables; tres espaciales, las de ) y una temporal, la de
[0,2f]. Ademads se debe cumplir que ®(x,0) = x para todo punto x € .

Al fijar xo € Q, lacurvar : [0,17] — IR® dada por r(t) = ®(xo,t) es la trayectoria descrita
por la particula que inicialmente estd en xg, por tanto r'(¢) es la velocidad del fluido en la
posicion ®(xo,t) y en el tiempo t. Parece intuitivo que deba existir v : Q x [0,¢] — R? tal

que

0P
a(x, t) = v(®(x,1),t). (8.1)

Denotemos por D® la matriz diferencial de ® sin la ultima columna. Ahora estamos en
condiciones de dar la siguiente definicién.

Un fluido es una funcién ® : Q x [0,t¢] — IR3, donde € es un abierto de IR® que cumple
a) Para todo x € Q se cumple ®(x,0) = x.
b) @ es diferenciable en (x,?) y la matriz D® () es invertible para todo (x,t) € 2x]0,y[.

¢) Existe un campo de velocidades v : 2x]0,¢;[— IR? tal que se cumple (8.1) para todo
(x,t) € Qx €]0,ty[.

Es posible escribir la condicién ¢) de forma més compacta: si definimos D:Qx[0,t5] —
Q2 x [0,t7] dada por ®(x,t) = (P(x,t),t); entonces la condicién c¢) equivale a que exista v tal
que 0P /9t = v o .

181



8. El campo magnético

Tlustramos la definicién anterior con el ejemplo siguiente. La funcién ® : IR® x R — IR?
dada por
O(x,y,2,t) = (xcost —ysent,rsent + ycost, z). (8.2)

es un fluido. Lo representamos geométricamente y hallamos el campo de velocidades obtenien-
do v(z,y,2,t) = (—y,z,0). Es importante notar la diferencia entre v y 0®/0t: observamos
que v(x,t) es la velocidad en el punto x y en el instante ¢, pero %—?(x, t) es la velocidad en
el instante ¢ de una particula que inicialmente estd en el punto x. Esta diferencia se muestra

claramente en este ejemplo en donde v # 09 /0t.

8.2. La derivada material

Estudiamos ahora la densidad del fluido. La densidad varia segin la posicion y el tiempo.
Asi, existe un campo escalar f que depende de las variables espaciales x y del tiempo ¢, es
decir, f: Q2 x[0,tf] — IR. En vez de la densidad; por supuesto, podemos considerar cualquier
campo escalar que depende tanto de la posicién como del tiempo.

Fijado x € Q, sea g(t) = f(®(x,1t),t), que estudia el comportamiento de f segin se mueve
la particula que inicialmente ocupa la posicién x. Es ficil probar que

9(1) = V@0 1),1)- 0 (6. 1) + 0 (@, 1), ).

Debido a la condicién c) de la definicién de fluido, se tiene que

Jt) = (w - g{)

Esto motiva la siguiente definicién. Sea una funcién f : Q x [0,tf] — IR diferenciable. La
derivada material de f respecto al campo de velocidades v es
Df of

(®(x,0),t)

La derivada material de f es la variacién temporal de f desde el “punto de vista” de una
particula que se mueve en el fluido. Notamos que generalmente es diferente de 9f/0t que
expresa la variacion temporal de f desde el “punto de vista” de un punto fijo. Hacemos los
dos siguientes problemas considerando el fluido (8.2):

a) Sea el campo f(z,y,z,t) = x. Calcilese Df/dt y df/0t. Expliquese de forma intuitiva
la razén de que Df/dt > 0 siy sélo siy < 0.

b) Considérese un campo escalar f que depende sélo de la distancia al eje Z. Pruébese que
Df/dt =0 y expliquese geométricamente este resultado.

8.3. El teorema del transporte

Estudiamos ahora cémo se mueve una regiéon R de IR® . Denotamos R(t) = {®(x,t) : x €
R}. El volumen de R(t) es fffR(t) dx y la masa en R(t) es fffR(t) p(x,t) dx, siendo p(x,t) la
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8.3. El teorema del transporte

densidad en la posicién x y en el tiempo t. Para estimar la variacion de la masa o el volumen,

estudiaremos q
— f(x,1)dx,
dt / / /R(t) (x.1)

para una funcién f: Q x [0,t¢] — IR diferenciable. No podemos permutar la derivada con la
integral, ya que el dominio de integraciéon depende de t. Para evitar esta dependencia, usamos
el teorema del cambio de variables:

//R(t)f(x’t)dxz///Rf@(xvt))J(x,t)dx,

donde J(-,t) es el determinante del jacobiano de ®, es decir, J(x,t) = det(D®(y)). Ahora
se tiene

I s /I 2 (F®(x, 1), 1) (1) dx (8.3)

_ ///R (%((I)(x,t),t)J(x,t)+f(<1>(x,t),t)aai(x,t)) dx.

Hemos de desarrollar ahora 87

a = a det(DCI)(xﬂf))
Para ello usaremos la condicién c) de la definicién de fluido: como v o ® = 9® /¢, aplicando
la regla de la cadena y permutando el orden de derivacién obtenemos

_ 9
V(e APpn = 7 (APpen) -

Usando matrices por bloques,

0P
ov D® —(x,t 0 0P
<DV(<I>(x,t),t) E(Cb(xa t)7t)> ( (g ) ot (1X )> = a <D(I)(x,t) E(Xa t)) s

donde denotaremos a partir de ahora Dv la matriz dv sin la ultima columna. Luego

0
DV PPt = ;P P(xp)- (8.4)
Serd util el siguiente lema: Sean M (t) una matriz variable y N una matriz constante, ambas

cuadradas, de orden 3 y cumpliendo M’ = N M, entonces (det M) = (TrN)(det M).

Hacemos la siguiente demostraciéon'. Sean u, v, w las filas de M, como det M = u-(v xw),
entonces (det M) =u'- (v xw)+v' - (w xu)+w - (u x v). Simplificamos sélo el primer
sumando, pues el resto es andlogo. Si las entradas de IV son denotadas por n; ;, puesto que
M’ = NM, se tiene u’ = ni1u + niov + nigw. Luego

v (v xw) = (nju+nigv +nisw) - (v X w) = nqp det M.

!Este lema admite una prueba para matrices de orden arbitrario y “més corta’: Si M cumple M’ = NM,
entonces existe una matriz A constante tal que M = Ae™* entonces det M = (det A)(dete™!) =
(det A)eT™™® = (det A)e!™N. Ahora es trivial probar el lema.
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8. El campo magnético

Anslogamente se obtiene que v/ - (w x u) = nggdet M y que w’ - (u X v) = ngzdet M. Por
tanto se cumple (det M)" = nq;1 det M + ngg det M + ngg det M = (TrN)(det M).

Debido a este lema, a la ecuacién (8.4) y al hecho de que J(x,t) = det(D®y ),

0J
E(Xv t) = Tr(DV(‘I)(x,t),t))J(Xa t)7

y como por definicién de traza se tiene Tr(Dv (g(x1),)) = div v(®(x,1),t), entonces

oJ .
E(X’t) = leV((I)(X,t>,t) : J(Xat)‘

Hemos probado el siguiente resultado (llamado Teorema o ecuacién del transporte y
generalmente atribuido a Reynolds (1842-1912).

Para f: Q x [0,t7] — IR diferenciable se cumple

/// de—///( +fd1vv>de—///( —l—fdlvv)dx, (8.5)

en donde se han omitido donde estan evaluadas las funciones por comodidad.

8.4. La ecuacion de continuidad

El teorema del transporte tiene varias consecuencias importantes.

Tomando f = 1 en (8.5) y si denotamos por V (¢) el volumen de R(t), entonces V'(t) =
[J[r J divvdx. Siel fluido ni se expande ni se contrae, se tiene que V'(t) = 0 para todo R,
es decir, J divv = 0, como J # 0, entonces divv = 0.

En ausencia de fuentes o sumideros, la masa del fluido ha de conservarse (la ley de
conservacién de la masa). Si p(x,t) es la densidad y m(¢) es la masa de R(t), entonces
m’(t) = 0 para todo R; y un argumento similar al usado anteriormente muestra

Dp
U + pdivv =0, (8.6)

que es la ecuacién de continuidad? ya descubierta por Euler en el siglo XVIII?,

Dejamos como ejercicio probar que la ecuacion de continuidad se puede escribir como

ap
Emw( v) = 0. (8.7)

Cuando en un material se desplazan cargas eléctricas se crea una corriente eléctrica. Sean
p = p(x,t) la densidad de carga y v = v(x,t) la velocidad de las cargas. Por convenio
se adopta como sentido de corriente el del movimiento de las cargas positivas. Si ni p ni
v dependen del tiempo se dice que la corriente es estacionaria. Se define la densidad
de corriente como J = pv. Como experimentalmente se ha observado que la carga debe

2Si en la regién donde circula el fluido hay un aporte extra (una fuente) o un lugar donde se pierde fluido
(un sumidero) hay que modificar la ecuacién (8.6).
3En [63] se puede encontrar una deduccién informal de la ecuacién de continuidad, asi como sus aplicaciones.
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8.5. La ley de Lorentz y la ley de Biot y Savart

conservarse, se postula que la carga total en un sistema aislado permanece constante. Este
principio, gracias a (8.7), se escribe mediante la siguiente ecuacién:

0
8—';) +divd =0.
Se deja como ejercicio probar que si S es una superficie cerrada, entonces || ¢JdS =—-dQ/dt,

donde @ es la carga total encerrada dentro de S. Se llama intensidad eléctrica que pasa
por una superficie S al escalar I = [[,J dS.

8.5. La ley de Lorentz y la ley de Biot y Savart

A continuacién se estudian la interaccidén entre cargas eléctricas en movimiento. Estas
relaciones son mas complicadas que en el caso del campo eléctrico; ya que este campo es
creado por cargas, que se miden con escalares; y el campo magnético es creado por corrientes
eléctricas, que son medidas por vectores. Por supuesto que no se pretende profundizar en esta
rama de la fisica, para mas informacién se pueden consultar, entre otros, [4, 15, 27, 38, 57].
Aclararamos que toda la teoria desarrollada en esta seccion trata sélo de campos magnéticos
en el vacio y que no cambian con el tiempo.

Cuando una carga estd en movimiento, aparece una nueva fuerza (llamada magnética)
que acttia sobre otras cargas en movimiento (particulas de prueba). Debido a una serie de
experimentos se concluyé que la fuerza magnética, denotada en lo sucesivo por F,,, depende
de la carga ¢ y de la velocidad v de la particula de prueba y cumple

F,,=qvxB (8.8)

para cierto vector B = B(x,t) que se llama campo magnético y la ecuacién (8.8) se llama
la ley de Lorentz. En lo sucesivo se supondra que 0B/t =

Para enunciar la ley de Biot y Savart es necesario saber integrar un campo vectorial. Sea
F: Q — IR3, donde Q es un cerrado y acotado de IR? y las componentes de F = (P, Q, R)
son integrables en (). Se define

I o= (fffpeox [ff oo f[f meax).

Es sencillo probar que v - [[[,F(x)dx = [[[,v - F(x)dx para cualquier vector v € R?
constante. Se puede probar facﬂmente
// IF(x)]| dx. (8.9)

][ oo

La demostracion es facil y la hacemos: sea v = [[[, F(x)dx. Entonces

WiE=v- [[[ Poax= [[[ v Fogax < [[[ IviPeax=ivi [ [P0l ax.

La ley de Biot y Savart postula que el campo magnético que crea una corriente con
densidad de carga J que circula en  C IR? sobre un punto p viene dado por

= i J 300 e o (8:10)
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8. El campo magnético

donde g es una constante que se llama permeabilidad magnética del vacio. Supondremos
Q es un cerrado y acotado, que las componentes de J tienen gradiente continuo y que J se
anula fuera de €2 y de la superficie frontera de €.

En primer lugar debemos ver si esta integral converge, puesto que si p € €, entonces el
denominador en (8.10) se hace infinito y puede causar problemas. La demostracién se deja
como ejercicio (de hecho, se aplica (8.9) y se procede igual que cuando se probé que la integral
(7.3) converge).

8.6. Propiedades del campo magnético

Una ley basica del electromagnetismo es que la divergencia del campo magnético es nula
en todo punto. Hacemos la siguiente demostracién: Sean (p,q,r) las coordenadas del punto
py (Ji1,J2,J3) las componentes de J. Entonces

r"t(///gﬂx—pu ) (éw///a Hx—p“ 07“///9”"‘?” )

donde el rotacional se toma respecto a las variables (p, ¢,r) y las componentes marcadas con
asterisco se calculan de forma similar. Ahora supondremos que las derivadas e integrales
pueden intercambiarse (véase [42] para una demostracién) y se tiene que

o (o) = (R [ S e
_ ///Q”X_pyg((y—q)Jg(x)—(z—r)Jg(x),*,*) dx
_ //AMJ(x)x(p—x)dx

47
= —B(p).
10 (p)

Como B es el rotacional de un campo vectorial diferenciable, entonces divB = 0.

Ademas hemos obtenido que si definimos

M;i///ﬂ‘s(_xi)udx, (8.11)

entonces rot A = B. Este campo A se llama potencial vector. Sin embargo, a diferencia
del potencial eléctrico, este potencial no juega un papel importante, debido sobre todo a dos
razones: es dificil de calcular y no tiene una interpretacién fisica sencilla.

Como div B = 0, entonces |, ¢BdS =0, si § es cualquier superficie cerrada. Esta tltima
integral se llama flujo magnético sobre S y se denota por ®p. Fisicamente, decir que el flujo
magnético sobre cualquier superficie cerrada es nulo, se interpreta diciendo que no existen
monopolos magnéticos. Ocurre lo contrario en el caso del campo eléctrico E, este campo
cumple divE = —p/eq, y si existen cargas eléctricas (positivas y negativas, dependiendo del
signo de p). La no existencia de monopolos magnéticos ha sido comprobada en la préctica.

Otra ley basica del electromagnetismo de corrientes estacionarias es rot B = ugJ en los
puntos que no son de la frontera de ). Hacemos la siguiente demostracién: Se tiene

rot B = rot(rot A) = V(div A) — V?A. (8.12)
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Sean (Aj, Ag, A3) las componentes de A y (Jp,J2,J3) las de J. Por la definicién de A, se
tiene que A; es el potencial causado por la distribucién continua de cargas que ocupa €2 con
densidad de carga poegJi. Luego A1 cumple la ecuacién de Poisson fuera de la frontera de
Q, es decir V2A; = —poJ;. Lo mismo es valido para el resto de las componentes. Luego

VA = —pod. (8.13)

Ahora comprobamos que la divergencia de A es nula: si suponemos que las integrales y
derivadas pueden intercambiarse (véase de nuevo [42]), se cumple que

0A 0A 8A
divA(p) = p1+ 2 4 23

- [ap///g Hx—pud o s o [ e
_ /// J(x)(z —p +J2’(X)_p—‘3q + J5(x )(z—r)d

= e () o (8.14)

Ahora consideramos dos casos: cuando p estd en el interior de 2 y cuando p ¢ Q. Si p ¢ Q,
considerando p fijo y x € Q variable, como x # p y usando que div(fF) = Vf-F + fdivF
para cualquier par de campos escalar f y vectorial F, ambos diferenciables, se tiene

. <‘J(x) ):J(X)( X —p )_i_div.](x)’ 5.15)

—pll [x —p|? |x —pl

y como se trata de un campo estacionario, por la ecuacion de continuidad de la carga, la
divergencia de J es nula. Y ahora por el teorema de la divergencia, (8.14) y (8.15) se cumple

divA(p // ds,
slx—pl pH

donde S es la superficie frontera de 2. Pero como J se anula en la superficie frontera de €2,
entonces la divergencia de A se anula fuera de €.

Ahora supondremos que p estd en el interior de ). Podemos encontrar una esfera centrada
en p y de radio € contenida en (). Sea F. esta esfera y S la superficie de esta esfera. Por el
teorema de la divergencia en la regién 2\ E., se tiene

JI 200 (=gis) o
‘///Q\ESJ(X) () o+ J 309 (33 )
// - pud“///s (yx—p,,3) dx (8.16)

Es facil probar que si J una cota del campo J, entonces

\//Ewi'f"iuﬁ\ﬁ”“ W/ (H; 153)‘1"
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8. El campo magnético

Luego, haciendo tender € a 0 en (8.16), obtenemos que

JI[ 200 (pg) x=o

Por tanto la divergencia de A es nula. De (8.12) y de (8.13), obtenemos rot B = poJ en los
puntos que no son frontera de €2. Con lo que la prueba estd terminada.

Proponemos los siguientes ejercicios (bajo las hipdtesis del teorema anterior):

a) Si C es una curva que no pasa por la frontera de €2 e [ es la intensidad que pasa por una
superficie que no corta a la frontera de ) y cuya frontera es C', entonces fC Bdr = pol.

b) Si C es una curva cerrada que encierra a una superficie S, entonces fc Adr = &p.

8.7. Las ecuaciones de Maxwell

Estudiamos de manera muy breve e incompleta las famosas ecuaciones de Maxwell que
gobiernan los campos electromagnéticos. Antes de Maxwell se creia que las fuerzas eléctrica
y magnética eran diferentes. Una de las contribuciones de Maxwell fue la unificaciéon en una
sola teoria de estas dos fuerzas. Hasta ahora se han encontrado 4 ecuaciones que cumplen el
campo eléctrico E y el campo magnético B: si p es la densidad de carga y J es la densidad
de corriente,

dvE=", rotE=0, divB=0, rotB = uoJ.
€0

Recordamos que estas ecuaciones son validas sélo si los campos son estacionarios y en el vacio.

.. Qué ocurre si los campos cambian con el tiempo? A principios del siglo XIX, experimentos
hechos por Faraday y Henry mostraron que si el campo magnético cambia con el tiempo
entonces aparece una corriente eléctrica. Por lo que la ecuacién rot E = 0 debe modificarse.
La ley de Faraday establecida de forma empirica, establece que rot E = —9B/0t.

Por otra parte, Maxwell observé que la ecuacién de continuidad es incompatible con la
ecuacion rot B = poJ; ya que si aplicamos la divergencia a esta tltima ecuacion, obtenemos
que la divergencia de J es nula, lo que es incongruente con la ecuacién de continuidad.

La contribucién de Maxwell fue modificar la ecuacién rot B = poJ dejando intacta la
ecuacién de continuidad. Maxwell supuso rot B = poJ + C, donde C es un campo vectorial
que de momento no sabemos nada sobre él. Se puede probar ficilmente que div C = pgdp/0t.
Ahora, por divE = p/g( trivialmente se tiene div(C — pogg0E/0t) = 0. Maxwell postulé
C= uoﬁgaE/at.

Las cuatro ecuaciones siguientes, conocidas como las ecuaciones de Maxwell. gobiernan
toda la teorfa electromagnética.

. 0B . OE
dlszﬁ7 rot E = ———, divB =0, rot B = pod 4+ poco—.

€0 ot ot
Se debe decir que estas cuatro ecuaciones no son teoremas matematicos; sino que son leyes
empiricas motivadas por la experimentacion y que hasta ahora no han contradicho a ningin

experimento realizado.
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8.7. Las ecuaciones de Maxwell

Ademds hay que decir que las ecuaciones de Maxwell se deben modificar ante la presencia
de materia. Esto es debido, de una forma muy rudimentaria, a que el campo magnético y el
eléctrico modifica las propiedades de los cuerpos. Es necesario introducir dos campos més en
las ecuaciones de Maxwell. La relacién de estos dos campos con E y con B (que dependen
de cada material) junto con las ecuaciones de Maxwell y la ley de Lorentz, F = ¢(E +v x B)
que nos da la fuerza, son las ecuaciones bésicas de la teorfa electromagnética®.

Proponemos los dos siguientes ejercicios :

a) Demuéstrese que las cuatro ecuaciones de Maxwell implican las siguientes expresiones,
supuestos los campos diferenciables tantas veces como sean precisos.

1) Sea S una superficie cerrada que encierra una carga Q

£ [[ras. o [[Bas

2) Sea S una superficie cuya frontera es la curva C orientada positivamente

8CI>B 0
fg dr rat 7{; dr = pol + poco t//s ds,

donde I es la intensidad que atraviesa S y ®p es el flujo magnético que atraviesa S.

b) En este ejercicio se verd que los campos E y B se trasladan como una onda con velocidad
la de la luz. Pruébese que de las cuatro ecuaciones de Maxwell se deduce que
O0’E oJ 2

1 0°B
W‘FMO*‘F*VP, V2B2M0€072 — pgrotJ.

2
E—
v Ho=o ot e ot

Ayuda: tsese la igualdad V2W = V(div W) — rot(rot W) siendo W un campo vectorial
suficientemente diferenciable.

En el vacio y en ausencia de cargas en movimiento (J = 0) estas dos ecuaciones se reducen a

0°B
VQB = #OSOW‘ (817)

O*E

V2E = 110805 »
Ho€o 12

Las ecuaciones (8.17) son las mismas y corresponde a lo que se llama la ecuacién de ondas.
Esta ecuacién es e e e L 5
A (8.18)
ox?2  Oy? 922 2 Ot?
donde u(z,y, z,t) es el desplazamiento respecto a la posicién de equilibrio de una onda que
se mueve con velocidad ¢ en el punto (x,y,z) y en el tiempo ¢t. Maxwell dedujo que los
campos E y B se comportan como ondas que se mueven con velocidad 1/,/ggfg. Este valor
empiricamente hallado es muy parecido al valor de la velocidad de la luz en el vacio, unos
3-10% m/s. Maxwell propuso que la luz es de naturaleza electromagnética. Pronto estas
conclusiones tedricas condujeron al descubrimiento de las ondas de radio por Hertz en 1886.

“En los conductores ademés se tiene la ley (experimental) de Ohm.
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Introduccion

Como ya hemos comentado, esta asignatura esta dirigida a estudiantes de segundo curso.
El objetivo principal es la presentacién de unas herramientas mateméticas de cierto nivel
encaminadas a satisfacer las necesidades matemaéticas que el alumno encontrara a lo largo
de la carrera. Puesto que hay una presién considerable debido al tiempo docente disponi-
ble pensamos que es preferible sacrificar las demostraciones no constructivas en aras de la
obtencion de la mayor informacion 1til en el tiempo disponible; aunque siempre enunciando
con total precisién y rigor las hipotesis necesarias para la validez del teorema. Los detalles
excesivamente formales, demasiado abstractos y que puedan obscurecer las intuiciones del
alumno se evitan siempre que sea posible.

Hemos distribuido el programa de esta asignatura en seis capitulos:

Capitulo 1 FUNCIONES DE VARIABLE COMPLEJA.

Capitulo 2 RESOLUCION DE ECUACIONES EN DERIVADAS PARCIALES MEDIANTE LA TRANS-
FORMADA DE FOURIER.

Capitulo 3 RESOLUCION DE ECUACIONES EN DERIVADAS PARCIALES MEDIANTE LA TRANS-
FORMADA DE LAPLACE.

Capitulo 4 SOLUCIONES DE ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN MEDIANTE
SERIES DE POTENCIAS.

Capitulo 5 RESOLUCION DE ECUACIONES EN DERIVADAS PARCIALES MEDIANTE SERIES DE
FOURIER.

Capl'tulo 6 PROBLEMAS DE STURM-LIOUVILLE Y DESARROLLOS EN SERIE DE AUTOFUNCIO-
NES.

Comentamos a continuacién, muy brevemente, el desarrollo del programa.

El CAPITULO 1 estd dedicado al estudio de las funciones de variable compleja. Hemos
optado por un enfoque que permite llegar lo mas rapidamente posible al Teorema de los Re-
siduos, resultado fundamental para calcular integrales impropias relacionadas con las trans-
formadas directa e inversa de Fourier y de Laplace, que son herramientas fundamentales en
otras asignaturas de la carrera.

El CAPITULO 2 estudia las transformadas de Fourier, de seno de Fourier y la de coseno de
Fourier, asi como sus propiedades mas importantes. Bésicamente en este tema nos ocuparemos
en transformar ecuaciones en derivadas parciales en ecuaciones diferenciales ordinarias con el
fin de resolver aquéllas.
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Introduccién al programa de matematicas

En el CAPITULO 3 estudiamos la transformada de Laplace y sus propiedades. Esta trans-
formada tiene la utilidad de transformar ecuaciones en derivadas parciales en ecuaciones dife-
renciales ordinarias y sistemas de ecuaciones diferenciales en sistemas de ecuaciones lineales.
La transformada de Laplace presenta algunas ventajas en relacion con las de Fourier, asi sera
aplicable a una clase mas amplia de funciones. Una diferencia clara entre las transformadas
de Fourier y la de Laplace es que esta tltima transformada actia sobre una variable compleja
y este hecho repercute en que la correspondiente férmula de inversién se expresa en términos
de cierta integral compleja, en donde se necesitard aplicar las herramientas de la variable
compleja que proporciona el Capitulo 1.

En el CAPITULO 4 se resuelven ecuaciones diferenciales de segundo orden mediante series
de potencias. Este estudio permite introducir las funciones de Bessel.

El CAPITULO 5 estudia las series de Fourier y sus propiedades. También contiene la
descripcién del método de separacion de variables, utilizando las series de Fourier, que es
indispensable para el estudio de las ecuaciones de ondas, del calor y la ecuacién de Laplace.

El CAPITULO 6 comienza con el método de autofunciones, para a continuacién desarrollar
un método de resolucién para resolver ecuaciones en derivadas parciales no homogéneas.
Un estudio profundo de este método conduce a definir lo que se entiende por un problema
de Sturm-Liouville. Al intentar resolver los problemas de Sturm-Liouville surge de manera
natural una sucesién de funciones ortonormales entre si, que constituye una generalizacién
de las series de Fourier. Se estudian las propiedades de estos sistemas de autofunciones y se
aplica este estudio a resolver mas ecuaciones en derivadas parciales.

La referencia principal del programa de la asignatura es [40]. Aunque en lo sucesivo men-
cionaremos otras referencias, [40] desarrolla los contenidos de la asignatura convenientemente.
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1. Funciones de variable compleja

OBJETIVOS:

Estudiar las propiedades de las funciones de una variable compleja, dirigidas al
teorema de los residuos y su aplicacion al calculo de integrales impropias.

Desde el punto de vista técnico, la creacién del siglo XIX mds importante fue la teoria
de funciones de una variable compleja. Esta nueva rama de las mateméaticas dominé el siglo
XIX casi tanto como las expresiones directas del calculo habian dominado el siglo XVIIIL.

Los ntumeros complejos surgieron cuando Cardano (1501-1576), al intentar resolver la
ecuacion de orden 3, observo que era necesario introducir ntimeros cuyos cuadrados fuesen
negativos. A los niimeros que estan formados por sumas de aquéllos y reales se les llamé
imaginarios (en contraposicién a reales). En su ensayo sobre hidromecénica Ensayo sobre
una nueva teoria de la resistencia de los fluidos (1752), D’Alembert considera el movimiento
de un cuerpo a través de un fluido homogéneo, ideal, carente de peso y en este estudio busca
encontrar dos funciones p y ¢ que satisfacen las ecuaciones de Cauchy-Riemann:

Pz = Qy, 4z = —Dy,

es decir p y g son la parte real e imaginaria de una funcién compleja. Euler mostré cémo
usar funciones complejas para evaluar integrales reales. En la famosa Théorie analytique des
probabilités (1812) Laplace pasa de integrales reales a complejas tal como lo hizo Euler. La
obra de Euler, D’Alembert y Laplace constituy6 un progreso, sin embargo ellos dependian de
la separacién de la parte real e imaginaria de f(x + iy) para llevar a cabo su trabajo. La
funcién compleja no era aun la entidad baésica.

El siguiente paso fundamental lo dio Gauss al describir geométricamente un nimero com-
plejo (aunque hubo unos antecedentes debidos a Argand y a Wessel) y al introducir el término
complejo frente a imaginario. En una carta a Bessel en 1811 pregunta jqué se deberia inter-
pretar por [ f(z)dz cuando uno de los limites es complejo? Mas adelante escribe:

Si los limites son 0 y a—+bi, se deberia ir con un paso continuo desde 0 hasta a-+bi,
pero este paso tiene lugar en una curva y es por tanto posible ir sobre muchas
trayectorias. Afirmo ahora que [ f(z)dz tiene un valor tnico atin tomada sobre
varias trayectorias siempre que f(z) tome un tnico valor y no se haga infinita en
el espacio comprendido entre las dos curvas.

Poisson discutié en un ensayo publicado en 1820 el uso de las integrales de funciones
complejas tomadas sobre trayectorias en el plano complejo. Como ejemplo proporciona

[
_1.’,13"
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1. Funciones de variable compleja

Aqui pone z = ¢'?, donde 6 va desde (2n + 1) a 0 y obtiene el valor de —(2n + 1)7i. Més
adelante nota que el valor de la integral no tiene que ser el mismo cuando es tomada sobre
una trayectoria imaginaria o real. Menciona el ejemplo

* cos(ax
/ b—(ira:) ae,
—0o0
donde a y b son constantes positivas. Hace x = t+1ik, con k > 0, y obtiene valores diferentes
segun k.

A pesar de que Gauss y Poisson hicieron avances significativos, la teoria de funciones com-
plejas se considera fundada por Cauchy quien desarrollé la teoria hasta dejarla basicamente
tal como la conocemos hoy dia. En un principio desarrolla la derivacién compleja para a
continuacién demostrar en 1822 de manera rigurosa lo afirmado por Gauss. En 1825 Cauchy
es més claro ain acerca de una idea ya aparecida en 1814 como una nota a pie de pagina:
Considera [ f(z)dz cuando la curva rodea a un punto donde f no es holomorfa y define el
residuo de la funcién para a continuacién, enunciar y demostrar lo que hoy conocemos por el
teorema de los residuos. Cauchy desarrolla todos estos puntos para evaluar integrales reales.
Ma4s tarde, en 1831, enuncia que toda funcién holomorfa en un punto admite desarrollo de
Taylor alrededor de este punto. En la prueba del teorema, primero demuestra la denominada
féormula integral de Cauchy. Como consecuencia de esta férmula también dice que una funciéon
holomorfa es infinitamente diferenciable.

1.1. Introduccién y preliminares

Esta seccion introduce algunos conceptos que deben ser previos a la teoria de las funciones
de variable compleja. Comenzamos definiendo el valor adherente de una sucesion real y
basdndonos en este concepto definimos el limite superior y el inferior. Subrayamos la
doble importancia de estos limites:

e Existencia (si consideramos la recta real ampliada).

e Si ambos limites coinciden, entonces el usual existe y su valor es el mismo.

Suponemos que el alumno estd familiarizado con las propiedades bésicas de los niimeros
complejos, pese a ello las recordamos: representacién geométrica (cartesiana y polar), identi-
ficacién con IR?, parte real e imaginaria, conjugacién y médulo.

El médulo dota a C de una topologia que es exactamente la misma que la estudiada
en la asignatura de cdlculo infinitesimal. En particular, hablamos de la convergencia en el
plano complejo. Hacemos especial hincapié en la convergencia de series numéricas, que ahora
ampliamos al campo complejo. Demostramos que

. o0 ’
e siy 2, converge entonces lim, .o z, = 0.

e si ) 2 zn converge absolutamente, entonces Y7 z, converge.

Definimos la convergencia puntual y uniforme de una sucesién de funciones y enunciamos
el criterio de mayoracién de Weierstrass y los dos siguientes resultados: Si (f,)22; : [a,b] — IR
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son continuas y convergen uniformemente en [a, b], entonces lim,,_,, f,, es continua en [a, b]
b, ; b
y [ iy oo fr(2)) do = lmy oo ([ fn(z) dz).

La mayor parte de este capitulo estd bien tratada en [3], debiendo senalarse que, al ser
éste un texto de variable real, se debe de tener cuidado en los enunciados de los teoremas,
pero éstos se pueden adaptar perfectamente al caso complejo. Otro libro interesante es [65],
que tiene dos capitulos dedicados a las funciones de variable compleja, pese a ser otro texto
de variable real.

1.2. Funciones holomorfas

Estamos interesados en definir el concepto de funcién holomorfa, que corresponde a la idea
analoga de funcion diferenciable. Recuérdese que como podemos dividir niimeros complejos,
el cociente diferencial de una funcién de valores complejos tiene sentido, lo que no ocurre con
las funciones de varias variables. Como el concepto que intentamos definir es de indole local,
definimos los discos, abiertos y cerrados en el plano complejo.

Hacemos la siguiente definicion. Una funcién f es holomorfa en un punto zg si existe

o £ = f(z0)

z2—20 zZ— 20

Este limite, cuando existe, lo denotamos f/(zp).

A continuacién enunciamos las propiedades inmediatas de las funciones holomorfas:

Si f es holomorfa en zg, entonces f es continua en 2.

Si f, g son holomorfas en zg y A,u € C, entonces \f + pug es holomorfa en zy y
(Af +19) (20) = Af'(20) + pg'(20)-

Si f, g son holomorfas en zy, entonces fg es holomorfa en 2o y (fg) (20) = f/(20)g(20) +

f(z0)9'(20)-

Si f, g son holomorfas en zp y g(z0) # 0, entonces f/g es holomorfa en zy y

I\ L F(20)9(20) — f(20)d (20)
(5) = |

9(20)?

Si f es holomorfa en zy y g es holomorfa en f(zp), entonces g o f es holomorfa en zy y

(g0 f)(20) = g'(f(20))f(20).

Decimos que las demostraciones de estas propiedades se pueden encontrar en cualquier
texto de calculo de una variable real.

Sin embargo es conveniente recalcar que las funciones holomorfas no son las mismas que
las funciones diferenciables en IR%. Presentamos el siguiente ejemplo facil de desarrollar: la
conjugacién compleja. Si identificamos = + iy con (z,y), este ejemplo proporciona

f:€C—-C,  f(2)=%

f:R24)]R'27 f(xay) = (li, 7y)
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1. Funciones de variable compleja

Es claro que la funcién considerada de IR? a IR? es diferenciable; pero es facil probar que no es
holomorfa. Este es un buen momento para introducir las ecuaciones de Cauchy-Riemann:
Sean f :  — C, donde 2 es un abierto de Cy z = x + iy € (2. Entonces las dos siguientes
afirmaciones equivalen:

a) f es holomorfa en z.
b) El campo vectorial (Ref,Imf) es diferenciable en (z,y) y
O(Ref) _ O(Imf) ORef) _ _9(Imf)

Ox oy oy Ox
En este caso se tiene 8(R f) 8(1 f)
! . € 3 m

So6lo demostramos la implicaciéon a) = b). Dos consecuencias triviales son: la parte real e
imaginaria de una funcién holomorfa son armonicas y que si f toma valores reales y €2 es
conexo, entonces f es constante.

De momento sélo disponemos como ejemplos de funciones holomorfas los polinomios y las
funciones racionales. ;De donde provienen mas ejemplos? La respuesta es de las series de
potencias.

En un primer lugar enunciamos (sin demostrar) la férmula de Cauchy-Hadamard, que
demuestra que las series de potencias convergen en discos abiertos y permite calcular el radio
de éstos. Lo que ocurre sobre la frontera del disco de convergencia es una cuestiéon mucho mas
delicada. No entramos a considerar esta relacién, sino que nos limitamos a dar los ejemplos

o0 o oo
n 2" 2"
PIELIED DE-STD Bi-=-2
n=0 n=0 n=0

A continuacién senalamos (pero no demostramos) las relaciones fundamentales entre las fun-
ciones holomorfas y las series de potencias:

e Una serie de potencias es una funcién holomorfa en su disco de convergencia y se puede
derivar término a término. Como consecuencia una serie de potencias es una funcién
infinitamente derivable en el disco de convergencia.

e Una funcién holomorfa en un punto admite un desarrollo en serie de potencias alrededor
de este punto. Como consecuencia, las funciones holomorfas son infinitamente derivables
en un punto.

e El desarrollo en serie de potencias es tinico y coincide con el desarrollo en serie de Taylor.

Creemos conveniente explicar los dos ejemplos siguientes en los cuales la variable compleja
puede ayudar a comprender mejor el comportamiento de las funciones reales:

La serie de Taylor de e” es tan satisfactoria como se quiera; converge para todo IR y
se puede derivar término a término. Pero la serie de Taylor de f(z) = 1/(1 + 2?) es més
dificil de entender, funcién infinitamente derivable y acotada. La serie de Taylor de f es
1—224+2* —264+.... Si|2z| > 1 la serie de Taylor no converge. ;Por qué? La respuesta nos
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1.3. La exponencial y el logaritmo complejo

viene encima si consideramos la funcién compleja f(z) = 1/(1 + 22). Su serie de Taylor es la
misma (cambiando z por z), su radio de convergencia es 1. No es accidental que este disco
no contenga los puntos i, —i, en los cuales f no estd definida. Si la serie de Taylor tuviera
radio de convergencia mayor que 1, la funciéon que define, seria continua en todo este disco,
en particular en i y en —i, lo cual es imposible.

El uso de los nimeros complejos también arroja alguna luz sobre el extrano comporta-
miento de la funcion real

Para que f sea continua en 0 definimos f(0) = 0. Aunque no hemos definido atin la exponen-
cial compleja, es de esperar que se cumpla si y es real y distinto de 0, entonces

F(iy) = exp <—(;)2> ~ exp <y12) |

El hecho interesante de esta expresion es que se hace infinitamente grande cuando y se hace
pequeno. Asi, f no serd ni siquiera continua en 0, cuando se defina la exponencial para
nimeros complejos, luego no debe sorprender que la serie de Taylor de f sélo converja en 0.

También creemos conveniente, para destacar que las propiedades de la variable real no
tienen por qué cumplirse en la variable compleja, enunciar (sin demostrar) el teorema de Liou-
ville: Las uinicas funciones holomorfas acotadas en todo el plano complejo son las constantes.

Este apartado acaba enunciando el siguiente teorema: Si (f,,)5 ; son funciones holomorfas
definidas en un abierto €2 de C y para todo conjunto cerrado y acotado A C €2 la sucesién
(fn)o2, converge uniformemente en A, entonces la funcién limite f es holomorfa en Q y
(f1)22, converge a f'.

No demostramos este resultado (es consecuencia del teorema de Morera). Tres libros ttiles
para completar la bibliografia son [14, 19, 39].

1.3. La exponencial y el logaritmo complejo

Definimos las funciones exponenciales, trigonométricas y logaritmo complejos pues necesi-
taremos integrar funciones sobre curvas en C que no tienen por qué yacer en IR; pero interesa
que coincidan con las funciones reales respectivas cuando se evaliian en IR.

Definimos la funciéon exponencial como

2z
exp(z) = E —.

n!
n=0

Se pueden comprobar facilmente las siguientes propiedades (se pueden poner como ejercicios):

a) exp(z) estd definida para todo z € C.

=3

c) exp(z)exp(w) = exp(z + w) para todos z,w € C.

)

) exp es derivable en todo C y exp’(z) = exp(z).
)

) -1

o,

exp(z)~" = exp(—z) para todo z € C.
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1. Funciones de variable compleja

e) exp(a+ib) = e*(cosb+i senb) para todos a,b € IR (de aqui se deduce | exp(z)| = eRe)).
f) exp(z) =1 siy sblo si z = 2kmni, para k entero.

A continuacién definimos las funciones trigonométricas complejas. Para hacer més
intuitiva la definicién y facil su manejo (se pueden definir como series de potencias, pero
esto complica la demostracién de sus propiedades), observamos que si en la penultima de las
propiedades de la exponencial, hallamos exp(ib), exp(—ib), para b real tenemos

2i
Estas dos formulas se pueden extender al plano complejo y definimos para z € C,

iz —iz iz _ ,—iz
cos z = i; senb="_° (1.1)
2 2i

Se enuncia que cos y sen son holomorfas en C (la demostracién es trivial por (1.1)) y se
hallan sus series de potencias. Vemos que las funciones trigonométricas no estan acotadas en
C (a diferencia de lo que pasa en IR). Este hecho se puede deducir del teorema de Liouville
o directamente desarrollando las expresiones sen(ix),cos(iz) para z € IR. Es preferible, a
nuestro juicio, esto ultimo pues el alumno ve mas claramente el hecho utilizando herramientas
sencillas sin recurrir a teoremas poderosos.

Motivados por las definiciones en IR de las funciones trigonométricas hiperbdlicas, se
definen las funciones trigonométricas hiperbdlicas complejas.

La siguiente funcién que definimos es el logaritmo complejo. Su definicién es un poco
artificial y hemos de introducir previamente la definicién de la funcién argumento complejo.
Para hacerla més natural introducimos el siguiente razonamiento no riguroso: Si w = log(z)
entonces e = z. Si tomamos médulos, eR(®) = |z|, es decir, Re(w) = log |2|. Por otra parte,
como z = eRe(w)ilm(w) conseguimos €' Im(w) — , /|z|. En resumen, si queremos que w sea un
logaritmo razonable de z estamos obligados a

Re(w) = log |z|; exp(ilm(w)) = é

Hacemos reflexionar al alumno que con la parte real no hay ningin problema; sin embargo
explicamos la idea geométrica de z/|z| y lo que debe cumplir la parte imaginaria de w. Estas
consideraciones nos llevan a definir de manera rigurosa un argumento de un nimero complejo
z # 0 como un nimero real « tal que

Senalamos que un nimero complejo tiene infinitos argumentos; pero éstos distan como minimo
27. Por lo que podemos definir el argumento principal de z # 0 (denotado Arg(z)) como
el argumento de z que estd en | — m, 7| y el argumento sub-pi (denotado Arg,(z)) como el
argumento de z que estd en |0, 27w]. Explicamos la principal dificultad de los argumentos: no
son continuos, explicitamente Arg sélo es continuo en C\] — 00, 0] y Arg,. sélo es continuo en
C\ [0, +o0].
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Ahora la tarea de definir el logaritmo complejo es facil. Surge una dificultad que tene-
mos que ser capaces de que el alumno la entienda, como hemos obtenido diferentes tipos de
argumentos de nimeros complejos, obtenemos diferentes tipos de logaritmos:

log(z) =log |z| +iArg(z) ; Logaritmo principal,
log,(z) =log|z| +1Arg,.(z) ; Logaritmo sub-pi.

Senalamos que los logaritmos son holomorfos donde sus respectivos argumentos son conti-
nuos y su derivada es 1/z. Ademas, si |z| < 1 entonces log(1+2) = z2—22/2+23/3—24/4+- - -.
Es importante explicar que la propiedad

log(zw) = log(z) + log(w)

sélo es cierta si Arg(z) + Arg(w) €] — m, w]. Anédlogamente para log,.

Una aplicacién directa de los logaritmos complejos es evaluar z* para z € C\ {0} y a ¢ Z.
Esta aplicacién la dejamos para mas tarde al evaluar integrales de funciones irracionales
porque introducirla ahora es bastante artificial; pese a que el lugar apropiado desde el punto
de vista logico seria ahora.

Como bibliografia aparte de [40] son ttiles [39, 69].

1.4. Integracion en el plano complejo

En esta seccién introducimos y desarrollamos el concepto de integral de una funcién com-
pleja sobre una curva, que es la base del teorema de los residuos. Al principio definimos lo
que son los caminos (diferenciables a trozos) y circuitos. Como ejemplos damos los seg-
mentos y las circunferencias. También definimos el camino opuesto y la yuxtaposicion
de caminos.

Decimos que una funcién f : [a,b] — C es integrable en [a, b] si la parte real e imaginaria
de f son integrables en [a,b]. En este caso, definimos la integral de f : [a,b] — C como

b b b
/f(t)dt:/ Re(f(t))dt+i/ Tm(f(¢)) dt.

Enunciamos sin demostrar que si f,|f| : [a,b] — C son integrables, entonces ’ fab f(t) dt‘ <

J21fF)] dt.

A continuacién definimos la integral sobre un camino en el plano complejo. Si~ : [a,b] — C
es un camino y f : y([a,b]) — C es continua, definimos la integral de f sobre v como

b
/ f(z)dz = / F () (#) dt.

Establecemos las propiedades inmediatas de la integracién compleja, todas de muy facil de-
mostraciéon. Nos detenemos un poco mas en la siguiente:

/Wf(z) dz

< L(v)sup{|f(2)] : z € 7([a, b]) },
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siendo L(y) = fab |7/ (t)| dt la longitud de la curva 5. Senalamos que ‘fv f(z) dz‘ <

z)|dz no tiene ni siquiera sentido en C, puesto que el miembro derecho es un nimero
, q p q
complejo y C no tiene orden.

También enunciamos el teorema integral de Cauchy. Si f : € — C es holomorfa, en
donde €2 es un abierto simplemente conexo, entonces fv f(2)dz = 0 para cualquier circuito =y
contenido en (2. La demostracién es muy facil (la hacemos en clase) si se usan las ecuaciones
de Cauchy-Riemann y el teorema de Green.

Terminamos la seccion enunciando los siguientes lemas que se usaran en lo que sigue.

a) Sea S = {rel’ : 0 < a<t<f<mr >0} un sector, f : S — C continua tal que
|f(2)| — 0 cuando |z| — 0 y sean yg(t) = Re'’, t € [a, B], m > 0. Entonces

lim (2)e! ™ dz = 0.
R=00 Jyp

b) Existe un lema anélogo cuando S es un sector contenido en el semiplano Imz < 0y m < 0.

c) Sea f una funcién continua en el sector 0 < |z —a| < r, 0 < arg, (z —a) < «a, (donde
0 < a < 27) y supongamos que (z — a)f(z) — A cuando z — a. Si 7. es el arco de
circunferencia |z — a| = ¢ contenido en el sector dado y recorrido en sentido positivo,
entonces

h’m/ f(z)dz =1Aa.

e—0

Ye

d) Si f es continua en el recinto |z| > Ry, 0 < Arg,(z) < a (0 < o < 27) ysi |zf(z)] — 0
cuando |z| — o0, entonces si yg es un arco de circunferencia de |z| = R contenido en el
recinto dado se verifica

11%1’210 . f(z)dz=0.

Es fundamental demostrar estos lemas para que el alumno se vaya familiarizando con este
tipo de técnicas. En este momento no presentamos ningin ejemplo porque creemos mucho
mas oportuno esperar al teorema de los residuos.

1.5. Singularidades aisladas, series de Laurent y calculo de
residuos

La integracién de funciones complejas sobre un circuito depende, como ya intuy6 Gauss,
fundamentalmente de los puntos situados en el interior de la regién limitada por el circuito y
en los cuales la funcién no es holomorfa. Este hecho se precisard més adelante, en donde se
discutira el significado de los puntos donde la funcién que hay que integrar no es holomorfa.

Definimos lo que es una singularidad aislada, dando ejemplos. Para aclarar la situacién
expresamos claramente que las funciones logaritmo no poseen una singularidad aislada donde
no son holomorfas. Este ejemplo del logaritmo pretende hacer ver al alumno que no es lo
mismo “no holomorfia” que singularidad aislada. Es més, un punto de singularidad aislada
puede ser de holomorfia, damos el ejemplo de f(z) = sen z/z en el origen.
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1.6. EIl Teorema de los Residuos

A continuacién enunciamos el teorema del desarrollo en serie de Laurent, que permite
clasificar las singularidades aisladas. Sea ) un abierto de C y sea zg € (). Entonces si
f:Q\ {20} — C es holomorfa, existe r > 0 tal que

o0

f(z) = Z an(z — 20)", (1.2)

n=—oo

para todo z tal que 0 < |z — 2| < r, donde

1 f(2)
n==—",[] ————=d e N,
a /y z n

27 ), (2 — zo)nt1

y 7 es cualquier circunferencia centrada en zy de radio menor que r y orientada positivamente.

Por motivos de tiempo omitimos la demostracién de este teorema (se puede encontrar en
[19]). La convergencia de (1.2) es sobre los cerrados y acotados de {z € C: 0 < |z — zo| < r}.
No damos ejemplos de calcular los coeficientes del desarrollo de Laurent, debido a que sélo el
coeficiente de 1/(z — zg) es el que interesa.

En base al desarrollo de Laurent clasificamos las singularidades aisladas: evitables, polos
de orden k£ y singularidades esenciales.

El concepto més importante de la seccién es el de residuo de una funcién en un punto
zo: es el coeficiente de 1/(z — zp) en (1.2), denotado por Res(f, zo).

Debido a que saber hallar el residuo es fundamental para el cdlculo de integrales, hecho que
es preciso comentar a los alumnos, se da a continuaciéon un férmula para calcular el residuo
de las funciones de la forma f/g y que la singularidad anula a f y a g. Proporcionamos un
método que dividimos en dos partes:

1. Averiguar el orden del polo mediante el siguiente teorema (que si probamos): Sea z
una singularidad aislada de h = f/g, donde f y g son holomorfas en zy. El valor zj es
una raiz de orden k de f y una raiz de orden k' de g. Entonces si

e k> k', entonces 2y es una singularidad evitable de h.
e k < k', entonces 2y es un polo de orden k' — k de h.

2. Si zp es un polo de orden k de h, entonces se puede hallar el residuo de zy mediante la
férmula:

k—1
Res(f.20) = (= dm, (o ) = 0)1)

Hacemos un par de ejemplos sencillos.

1.6. EIl Teorema de los Residuos

Esta es la seccién més importante del capitulo en donde establecemos el teorema de
los residuos y aplicamos este teorema para calcular algunas integrales reales. Presentamos
ejemplos del uso de los lemas vistos antes.

Motivamos el caso mas simple del teorema de los residuos con la siguiente discusién: Sea
Q un abierto de C, zo € Qy f: Q\ {20} — C holomorfa. Sea = un circuito simple (que no se
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1. Funciones de variable compleja

autointersecta) contenido en Q\ {zp} que rodea a zy recorrido en sentido positivo. En primer
lugar demostramos (de un modo bastante informal) que si 7. es la circunferencia de radio ¢
centrada en zo entonces [ f(2)dz = [ f(z)dz (véase la figura 1.1).

Ve

Figura 1.1.: Para demostrar que f7 f(z)dz = f% f(2) dz se considera el camino de la derecha
y se hace tender el angulo de la “abertura” a cero.

Ahora podemos usar el teorema del desarrollo de Laurent e intercambiar el sumatorio por
la integral para obtener

[e.9]

o 2m
f(z)dz = Z an/ (z—2z)"dz =1 Z ané‘”H/ et th0 g, (1.3)
Ye 0

n=-—o00 Ve n=-—0o

Ahora es trivial deducir f,y f(z)dz = 2mia_;. Puede parecer sorprendente que sélo el término
a—1 contribuya al valor f7 f(2)dz. Sin embargo, esto debe ser evidente, ya que el valor de ¢
es indiferente (se puede tomar cualquier circunferencia centrada en zy contenida en ) y en
(1.3), cada sumando del lado derecho es proporcional a "1, Podemos esperar que sélo los
términos que no dependan de € deben de contribuir al valor de fv f(z)dz. Esto sélo ocurre
cuando n + 1 =0.

Ahora que hemos motivado el caso mas simple del teorema de los residuos. Enunciamos
este teorema como sigue: Sean {2 un abierto simplemente conexo y z1,...,2, € . Si f :
Q\{z1,...,2n} — C es holomorfa y si 7 es un circuito simple orientado positivamente
contenido en () y que no pasa por ninguna de las singularidades, entonces se tiene

/f(z) dz = 27i ZRes(f, Zk)
v k=1

Este teorema es el resultado mas importante del capitulo e intentamos hacer comprender
su utilidad mediante ejemplos de integrales reales.

1. Si0<ayO0<b, hallese [*°° LE0Ar dy.

Presentamos este ejemplo por varias razones. El circuito es el més simple posible (véase
la figura 1.2, izquierda). Si probamos con el candidato natural f(z) = zsen(az)/(z2+b?),
no podemos aplicar ninguno de los lemas vistos. Debemos modificar la funcién: f(z) =
zexp(az)/(z% + b?). Por tltimo la aplicacién de los lemas previos es sencilla.
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2. Calctlese fooo % dx.

Si tomamos la funcién natural f(z) = sen z/z no podemos aplicar ninguno de los lemas
previos. Por lo que hay que tomar una parecida: f(z) = exp(iz)/z. El origen es
una singularidad aislada de f, por lo que hay que evitar el origen (véase la figura 1.2
derecha). Este ejemplo muestra el uso del lema para arcos pequernios.

Figura 1.2.: Los circuitos de los ejemplos 1 y 2.

3. Héllese [ exp(—t?) cos(2bt) dt para 0 < b, si se sabe previamente que [;° exp(—t?) dt =
V.

Este ejemplo muestra el uso de arcos rectangulares (véase la figura 1.3 izquierda). Nor-
malmente las integrales sobre los arcos verticales (de longitud fija) tienden a 0, mientras
que las integrales sobre los tramos horizontales tienden al valor deseado. Es conveniente
recordar el teorema integral de Cauchy.

4. Calctlese [3° se:h(lf) dzx para 0 < b.

En este ejemplo tenemos otra vez un circuito rectangular, con dos caracteristicas inte-
resantes: hemos de evitar que el circuito pase por singularidades y el tramo horizontal
superior se elige porque la funcién sh es 27i-periddica.

21

ib

Figura 1.3.: Los circuitos de los ejemplos 3 y 4.

5. Calctlese fooo ﬁ.

Este ejemplo es conveniente por varias razones. En primer lugar aparece una raiz
cuadrada. Hemos de recordar que esta funcién no es univalorada. Insistimos que z®
debe ser evaluado por medio de exp(alog(z)), y segin el logaritmo que elijamos aparece
una raiz u otra.

Otra caracteristica importante del problema es que los puntos donde la funcién log
no es holomorfa no son singularidades aisladas, por eso el circuito (véase la figura 1.4
izquierda) evita a la semirrecta [0, 4-o00].
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6. Sean f una funcién holomorfa en C\ {z1,...,2,}, Re(zj) < a'y a > 0 tales que existen
constantes M, b, c > 0 cumpliendo |f(z)| < M/|z|® cuando |z| > b. Pruébese que para
t>0

—ioco

a+ioo at+iR n
V.P./ e f(z)dz = Rh’m / e f(z)dz = 2mi Z Res(e*' f(z), zj).
a —®Ja—iR :
j=1

Este ejemplo es interesante pues la conclusion difiere a lo realizado hasta ahora y pro-
porciona un resultado 1til para la transformada de Laplace.

}Reia a+iR
/ geia

Re! (27—2) a—1R

Figura 1.4.: Los circuitos de los ejemplos 5 y 6.

Recomendamos como bibliografia del tema sobre todo [40]. Para profundizar més aspectos
colaterales proponemos [14, 39]. Para problemas podemos destacar [69] y para afianzar més
los conceptos vistos en cursos previos [3, 65].
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2. La transformada de Fourier

OBJETIVOS:

Estudiar las propiedades mas importantes de las transformadas de Fourier dirigi-
das a la resoluciéon de ecuaciones en derivadas parciales.

Pese al éxito e impacto de las series de Fourier! como soluciones de ecuaciones en deri-

vadas parciales, uno de los mayores problemas del siglo XIX fue hallar soluciones de estas
ecuaciones en forma explicita, esto es, en términos de las funciones elementales e integrales
de las funciones que aparecen como datos en tales ecuaciones.

El método mas significativo para resolver ecuaciones en derivadas parciales en forma
explicita fue el de la integral de Fourier. La idea se debe a Fourier, Cauchy y Poisson. Es
imposible asignar prioridad a este descubrimiento, pues todos presentaron ensayos orales en
la Academia de Ciencias en Paris que no fueron publicados sino hasta algiin tiempo después.
Pero cada uno escuché los ensayos de los otros, y resulta imposible aseverar, a partir de las
publicaciones, lo que cada uno de ellos tomo de las versiones orales de los restantes. La idea
inicial fue tomar la serie de Fourier de una funcion 2p-periédica y hacer tender p a co. Los tres
matematicos mencionados no se preocuparon de pasos hoy en dia discutibles (intercambio de
limites, de sumatorios por integrales,...).

2.1. Transformada de Fourier y primeras propiedades

Definimos lo que es una funcién absolutamente integrable, ya que sélo a estas funciones
se les puede aplicar la transformada de Fourier. Ahora definimos la transformada de
Fourier de una funcién f : IR — IR absolutamente integrable como una funcién F[f] de
variable real w, dada por

Ff](w) = j% /  f)ein dr.

Observamos que la definicién estd bien hecha (la integral converge) debido a que f es abso-
lutamente integrable. Como ejemplos calculamos las transformadas de e~ %I, e‘xz, X[-1,1]- El
segundo ejemplo muestra la necesidad de utilizar circuitos de variable compleja.

Enunciamos las siguientes propiedades de la transformada de Fourier:

a) Linealidad.

!Histéricamente las series de Fourier aparecieron antes que la transformada de Fourier.
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2. La transformada de Fourier

b) Si f y f’ son absolutamente integrables, entonces
FIf(w) = iwF[f](w).
c) Si f, f'y f” son absolutamente integrables, entonces
FIf"w) = —w’F[fl(w).
d) Si f(k) son absolutamente integrables para k = 0,1,...,n, entonces
FF)w) = (10)"FLf](w)-

e) Si f es absolutamente integrable y si definimos g(x) = f(ax) para a > 0, entonces

Tlg)(w) = I,

a

f) Si f es absolutamente integrable y si definimos g(z) = f(x — a) para a € IR, entonces

Estas propiedades son de facil demostracion. De una manera bastante imprecisa, decimos que
de la propiedad d) se deduce que cuantos més grados de derivabilidad posea una funcién, su
transformada tiende mas rapidamente a 0 cuando w tiende a infinito.

También decimos que si f es absolutamente integrable entonces lim,, .+ F[f](w) = 0 (no
lo demostramos aunque se deduce del lema de Riemann-Lebesgue) y que F[f] es continua (de
hecho es uniformemente continua).

Explicamos la necesidad de acudir a tablas de integrales que permiten hallar transforma-
das y antitransformadas de funciones parecidas que aparecen en dichas tablas (aconsejamos
[23, 29]). Aplicamos estas propiedades para resolver los siguientes problemas sencillos sin
necesidad de calcular integrales.

a) Hallar la transformada de f(x) = exp(—ax?) para a > 0.

b) Hallar la antitransformada de F(w) = exp(—w?).

Una utilidad de la transformada de Fourier es convertir un problema complicado en otro
mas simple. Es importante notar que una vez resuelto el problema mas sencillo hay que
obtener la solucién del problema original. Esto se logra mediante la transformacién inversa.

Senalamos que la transformada de Fourier de dos funciones que difieren en un nimero
finito de puntos coinciden. Esto explica claramente que no se puede definir F~! de una
manera puramente formal. Otra dificultad es que aunque f sea absolutamente integrable,
es posible que F[f] no lo sea, por ejemplo la funcién x|_; ) claramente es absolutamente

integrable y sin embargo se puede probar (no lo hacemos) que F[x[_1 1j}(w) = \/gM no es

w
absolutamente integrable.
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2.2. Resoluciéon de la ecuacion del calor en una varilla infinita

Enunciamos la férmula de inversién de Fourier?: Sea f : IR — IR absolutamente
integrable tal que f’ es continua a trozos, entonces para todo x € IR se cumple

f(liJrO)Jrf(x*O)_ 1 > iwzx
5 —mV.P./M?[f](w)e dw.

Senalamos dos hechos que suelen aparecer en la practica: Si f es continua en z, entonces
el miembro izquierdo se reduce a f(x). Si F[f] es absolutamente integrable en IR, entonces se
puede suprimir el simbolo de valor principal.

Hemos seguido [40], pero también se pueden consultar [20, 72].

2.2. Resolucidon de la ecuacidon del calor en una varilla infinita

Sea u(z,t) la temperatura de una varilla infinita en el punto = y en el tiempo ¢. Supon-
dremos que la temperatura inicial de la varilla es f(z) = exp(—2?). La ecuacién del calor se
puede modelar por medio del problema

gy = Uy, —oo <z <oo, t>0,
u(z,0) = exp(—z?), —00 < T < 00.

Més adelante se resolverd el caso general donde exp(—z?) se reemplaza por una funcién
absolutamente integrable f(z).

Se fija una variable (en este caso t) y se considera la otra variable activa. La variable
activa tiene que estar en todo IR pues si no, no tendria sentido la transformada de u(z,t). La
funcién exp(—x?) tiene que ser absolutamente integrable, ya que si no, no se le podria aplicar
la transformada de Fourier. Mediante este ejemplo se explica el método usual: Supongamos
que para cada t > 0 fijo la funcién x — u(z,t) es absolutamente integrable y sea U(t)(w) =

Flu(, ))(w).

1. Transformar todos los miembros del problema original para obtener un problema de
valor inicial. En este caso, tras aplicar de modo informal la regla de Leibniz para

integrales impropias?.

d
—?W?U(t)(w) = E[U(t)(w)]v t>0,
U(0)(w) = L exp(—w?/4).
2. Resolver el problema de valor inicial. Obtenemos en este ejemplo

1 22 2
Ut)(w) = —=e 107w g™ /4,
V2
2En realidad se puede enunciar bajo condiciones més débiles (la condicién de Jordan o la de Dini), pero tal
como se enuncia es suficiente para las aplicaciones de este curso.

3Sea f : [a, +oo[x[c,d] — R. Si [ f(2,y) dz converge puntualmente en e, d[ y si [ f,(x,y) da converge
uniformemente en |, d[ entonces se cumple

diy (/w f(w)dx) =/:O fo(@,y)dz

para cada y €]c, d|.

213



2. La transformada de Fourier

3. Antitransformar la solucién del problema fécil mediante la férmula de inversién o el uso
de tablas. En ese caso, aplicamos la formula de inversion y puesto que u es derivable,

1 * 1
— —e
V2 Joo V2

2(,2 :
w?(« t+1/4)elwx dw.

1 > iwz _
) = <= /_OO U (1) ()6l dw =

Observamos que la variable que conviene tomar (si fuera posible) como activa es aquélla
que aparece con un orden de derivacién parcial mayor, ya que de este modo la ecuacién
diferencial ordinaria transformada es de orden menor.

Hemos de indicar que lo que estamos hallando son las soluciones absolutamente integrables
del problema. Como ejemplo muy sencillo presentamos el siguiente: Si resolvemos f' = f
mediante la transformada de Fourier obtenemos f = 0, lo que no es extrano, pues la tnica
solucién absolutamente integrable de f' = f es f = 0.

2.3. Convolucion de funciones

Definimos la convoluciéon de dos funciones f y g absolutamente integrables como la
funcién representada por f x g : IR — IR dada por

(0@ = o= [ roae -1,

si esta integral existe. Se pueden imponer varias condiciones sobre f y g para que f * g
exista. Si alguna de las dos condiciones siguientes se cumple, entonces demostramos que la
convolucion estd bien definida:

a) f 6 g estan acotadas en IR.

b) |f|? v |g|? son absolutamente integrables en IR.

La demostracién de a) es facil y se deja como ejercicio. Es interesante hacer la de b) pues se
recuerda a los alumnos la desigualdad de Cauchy-Schwarz para integrales. También damos
el ejemplo de las dos funciones absolutamente integrables f(z) = z~'/2, g(z) = (1 — z)/2,
definidas en ]0,1[ y fuera toman el valor 0 para ver que no basta que las funciones sean
absolutamente integrables para que exista la convolucién.

El motivo de introducir la convolucién de dos funciones es el siguiente: Como ya hemos
visto, el paso final en resolver ecuaciones diferenciales parciales mediante la transformada
de Fourier consiste en antitransformar una funcién. Si esta funcién se puede expresar como
el producto de dos transformadas, entonces la férmula de convolucion proporciona una
manera de hallar la antitransformada. Si f, g, f * g son absolutamente integrables y si alguna
de las dos condiciones a) o b) mencionadas arriba se cumplen, entonces

Ff = g1 = F[f1F]g].

Como ejemplo de la formula de convolucion resolvemos la ecuacion del calor de una varilla
infinita:
aPUgy = Uy, —co<x<oo, t>0,
u(z,0) = f(x), —00 < T < 00
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2.3. Convolucion de funciones

siendo f absolutamente integrable.

Como antes seguimos los mismos pasos: Transformacién del problema, resolucion del
problema facil, antitransformar la solucién del problema facil. La utilizacion de la férmula
de convolucién se hace patente en este ejemplo puesto que si U(t)(w) es la transformada de
u(x,t) considerando t fija, entonces

Es claro que podemos expresar exp(—a?w?t) como F[g](w) para cierta funcién g y aplicar la
férmula de convolucién.

Otro ejemplo que resolvemos es la ecuacion de Laplace para un semiplano

Upr + Uyy =0 —oo <z < oo, y>0,
u(z,0) = f(x), —00 <z < 00,

donde f es absolutamente integrable y u(z,y) acotada.

De nuevo, los pasos son los mismos. Debemos tomar x como variable activa (pues la
otra no recorre todo IR). Sea, para y fijo, U(y)(w) la transformada de z — u(z,y). Aqui la
dificultad del problema estriba en que al transformar el problema se obtiene

d2U

OE WU =0, U(0)(w) = F(w),

en donde F' = F[f]. La solucién de este problema de valor inicial es
U(y)(w) = Ci(w)e” + Ca(w)e™Y, Ci(w) + Cr(w) = F(w).

Pero, como u estd acotada, entonces U también estd acotada, y de las soluciones anteriores
hay que tomar sdélo

U(y)(w) = F(w)e .

Ahora acabar el problema es fécil si se aplica la férmula de convolucién, obteniendo la férmula

de Poisson:
y [~ @)
== —L——dt.
uay) = o /oo (x—t)>+y°
Otro ejemplo es el célculo de

2

o0 —Ww
e
5 COSWT dw
0 ]. 4+ w

para xz > 0.

Mediante una manipulacién sencilla logramos convertir la integral, como un multiplo de
la antitransformada de F(w) = e " /(1 4+ w?), con lo que es evidente el uso de la férmula de
convolucion.

Aparte de los libros mencionados en la seccién anterior se pueden consultar [25, 73] para
problemas.
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2. La transformada de Fourier

2.4. Transformadas de Fourier en senos y cosenos

Una de las desventajas de la transformada de Fourier es que la funcién que hay que
transformar tiene que estar definida en todo IR. En muchas aplicaciones nos encontramos
que las funciones sélo estan definidas en [0, +o0o[. Para salvar esta dificultad se definen las
transformadas de Fourier en senos y cosenos. Si f es absolutamente integrable en
[0, +00[ la transformada de Fourier en senos, F5[f], y la transformada de Fourier en cosenos
F.[f] son dos funciones definidas en [0, +o00| dadas por

Fslfl(w) = / f(z)sen(wz) dz, Felflw) = / f(z) cos(wzx) dz.
0 0
Enunciamos a continuacion las propiedades més importantes de estas transformadas:

a) Linealidad.

b) Si fy f’ son absolutamente integrables en [0, +00[, entonces
Fs[flw) = —wT[flw),  Fe[flw) = £0) + wTs[fl(w).
¢) Si f, f'y f” son absolutamente integrables en [0, +oo[, entonces
Fslf"(w) = wf(0) = wW?F[fl(w),  Flf)(w) = —f(0) = w?Fc[f](w)-

d) Las férmulas de inversién: Si f es absolutamente integrable en [0, +oo] tal que f y f’ son
continuas a trozos, entonces

fle+0)+ flz—-0) 2

! -2 /0 %, [f](w) sen(wz) dz = = /0 F.[f)(w) cos(wz) da.

Senalamos explicitamente que la propiedad de convolucién no se cumple para las trans-
formadas de senos y cosenos, aunque considerando las extensiones pares o impares (segin
convenga) se puede conseguir algo parecido a la férmula de convolucién.

A continuacién ponemos como ejemplo dos ecuaciones en derivadas parciales que se pue-
den resolver mediante este tipo de transformadas. En el primero no se puede aplicar la
transformada en senos pero si la de cosenos y en el segundo problema no se puede aplicar la
transformada en cosenos, pero si la de senos. Explicamos claramente la razén de que no se
pueda utilizar este tipo de transformadas.

Ugr = U0 z,t >0, gy = ut0 z,t >0,
ug(0,t) =g(t) t>0, u(0,t)=A t>0,
u(z,0) =0 x> 0. u(z,0)=0 z>0.

El primer problema permite revisar el método de variacién de pardmetros para resolver
una ecuacién diferencial ordinaria.
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3. La transformada de Laplace

OBJETIVOS:

Saber las propiedades de la transformada de Laplace. Resolver ecuaciones en de-
rivadas parciales y ecuaciones integrales de Volterra mediante esta transformada.

En el ensayo Théorie analytique des probabilités, publicado en 1812, Laplace presento lo
que ahora se llama la transformada de Laplace para la soluciéon de ecuaciones diferenciales
lineales de coeficientes constantes; pese a que Euler en un trabajo publicado en 1743 habia
resuelto este tipo de ecuaciones de otro modo. En el método de Laplace se observa que la
solucién general de la homogénea es una combinacién lineal de n soluciones independientes.
Asimismo, Laplace prueba que la solucién general de la no homogénea es la suma de la solucién
general de la homogénea més una particular. Incidentalmente, la bisqueda de la solucién le
llevé a hacer integraciones en el plano complejo para resolver las integrales reales que surgian.

En 1823 Poisson descubrié la férmula de inversiéon para la transformada de Laplace en
donde tuvo que usar un circuito complejo. Tras el éxito de la transformada de Fourier para
la resolucién de ecuaciones en derivadas parciales, se empezé a usar la transformada de La-
place para resolver este tipo de ecuaciones. Hoy en dia la transformada de Laplace es una
herramienta indispensable para la resoluciéon de problemas que surgen de la fisica.

3.1. Primeras propiedades

La principal ventaja que posee la transformada de Laplace con respecto a la de Fourier
es que es aplicable a una clase de funciones mas amplia. Una funcién f : [0, +oo[— IR es
original si cumple las propiedades siguientes:

a) f es localmente integrable y continua a trozos.

b) Existen constantes so € IR, tp > 0y M > 0 tales que |f(t)| < Me'*° para cualquier ¢ > to.

Si f es una funcién original definimos la transformada de Laplace como

Llflts) = [ et

Es sencillo ver que la integral existe si Re(s) > so. El menor valor so que verifica la condicién
b) se llama la abcisa de convergencia. Este valor proporciona una idea del mayor recinto
posible donde la transformada de Laplace existe. A partir de ahora cuando se escriba f(0)
se sobreentederd lim; o4 f'(t) y de forma andloga con las derivadas superiores.

Demostramos las propiedades mas importantes de la transformada de Laplace:
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3. La transformada de Laplace

a) Linealidad.
b) Si f es original, b € C y si g(z) = f(2)e?, entonces L[g](s) = L[f](s — b).
c) Si f es original, a > 0y si g(z) = f(az), entonces L[g](s) = 2L[f](

).

d) Si f es original y si g(z) = f(z — a), entonces L[g](s) = e~ **L[f](s) (la propiedad de
retardo).

Q|»

e) L[1](s) = 1/s para Re(s) > 0.

En este momento podemos calcular las transformadas de e®, cost, sent, sh t y ch t.

No demostramos que si f es una funcién original, entonces limpe(s)—oc £[f](s) = 0 (véase
[40]). Como corolario trivial, si una funcién no tiende a cero cuando Re(s) — oo, entonces
esta funcién no puede ser la transformada de otra funcién.

Enunciamos y probamos las siguientes propiedades mas avanzadas. Sea f una funcién
original.

a) Si ademés f7, ..., f(™ son funciones originales, se tiene
b b b

LIfFM](s) = s"L[f](s) — s" 7L f(0) = s" 72/ (0) — -+ — sfD(0) — F71(0).

b) Si F(t) = fot £(£) d¢ es original, entonces L[F](s) = <)

S

c) Si L[f] es derivable, entonces <LL[f] = —L[tf(t)], o mds general, si L[f] tiene derivada
de orden n entonces
dn
—L[f] = (=D)"L[t" f(¢t)].
L A 0)

Para probar esta propiedad usamos sin rigor la regla de Leibniz para integrales impropias.

d) Si f tiene periodo T, entonces

Jo e ()t
Lifl(s) = T _ =T
Como un ejemplo de la aplicacién de la propiedad a) demostramos que L[t"](s) = n!/s" 1.

Enunciamos la férmula de convolucién: Si f y g son dos funciones originales, entonces
f * g es original y se verifica

V2rL[f * g] = L[f]L]g].

Notamos que la integral v/27 f * g(t) se reduce a fg fu)g(t —u) du.

Hacemos algunos problemas de antitranformar funciones relativamente sencillas. Un libro
en donde vienen bastantes problemas para ir practicando es [64].
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3.2. La Férmula de inversiéon de Laplace

3.2. La Férmula de inversion de Laplace

El siguiente resultado, que se conoce como la férmula de inversién, es importante puesto
que como un objetivo de la transformada de Laplace es reducir un problema de incégnita f en
otro mas sencillo de incégnita L[f]; una vez resuelto éste, tenemos que recuperar la funcién
f. Naturalmente tenemos que imponer algin tipo de condiciones porque es claro que dos
funciones que difieren en un ntimero finito de valores, sus transformadas de Laplace coinciden.
Su enunciado es el siguiente: Sea f una funcién original tal que f y f’ son continuas a trozos.
Si b > sg, donde sg es la abcisa de convergencia, entonces para t € IR

a+ib
N0 Lfe0) Ly, [~

= — m
2 27 b—oo

LIf](s)es ds.
—ib

Recordamos el ejemplo 6 de la seccién del teorema de los residuos (en el primer capitulo
del temario de esta asignatura) que permite calcular de forma cémoda en numerosas ocasiones
la antitransformada. Un caso particular que aparece en muchas ocasiones es cuando L[f] es
una funcién racional con el grado del denominador mayor que el del numerador.

También hallamos la antitransformada de F(s) = e~V*/\/s para s > 0. Incluimos este
ejemplo por varios motivos: en primer lugar resulta complicado el uso de tablas y en segundo
lugar utilizamos la férmula de inversién de Laplace mediante el circuito de la figura 3.1 en el
plano complejo, viendo otra utilidad del logaritmo complejo.

a+iR

L/

a—1R

Figura 3.1.: El circuito para hallar la antitrasformada de e~ V* /s

La siguiente herramienta util para la resolucién de antitransformadas es el teorema de
Efrés: Si f es una funcién original y F(s) es su transformada de Laplace, entonces

8] ()

No demostramos este teorema (la prueba se puede encontrar en [58]).

Analizamos dos ejemplos: Hallar la antitransformada de exp(—+/s)/s y de exp(—+/s)/+/s.
El primer ejemplo es facil de hacer usando el teorema de Efrds. Mientras que si se intenta
aplicar este teorema para el segundo ejemplo, resulta que hay que antitransformar la funcién
F(s) = e~ %, que por la propiedad de retardo, hay que antitransformar la funcién constante
1; pero esto es imposible, puesto que la transformada de una funcién original debe tender a
0 cuando la parte real de su variable tiende a +oc0.
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3. La transformada de Laplace

3.3. Las ecuaciones integrales de Volterra

El objetivo de esta seccién es hallar todas las soluciones de la ecuacién

o) = F(z) + /0 k(e — )o(t) dt, (3.1)

donde f y k son originales. El método es sencillo y consiste en aplicar la transformada de
Laplace a (3.1) y usar la férmula de convolucién. El problema se reduce a resolver una
ecuacién algebraica para L[¢].

Con esta técnica se puede resolver el problema de la tautdcrona. Una cuenta se mueve
sobre un alambre sin rozamiento partiendo del reposo y se desea hallar la forma que debe
tener el alambre para que el tiempo que tarda la cuenta en alcanzar el punto méas bajo sea
constante. En primer lugar, demostramos que si la cuenta parte del punto (k, h) entonces el
tiempo 1" que tarda en llegar al punto (0,0) es

| /h ds
V29 .Jo Vh—y’
en donde ds es el diferencial de longitud de arco e y = y(x) es la funcién cuya grafica coincide
con el alambre. Si ds = ¢(y)dy para alguna funcién ¢ (que hay que hallar), entonces hay
que resolver
ro L [Mew)dy
V29 Jo Vh—y’
denonde T es una constante. Este problema se puede resolver facilmente por medio de la
transformada de Laplace, obteniendo que

TV 1
Py) = T

Como
ds=0¢(y)dy=/14+ | — i d

de las dos tltimas ecuaciones se puede encontrar una ecuacién diferencial para y = y(x) que
nos da la forma que debe tener el alambre buscado. Este problema se ha obtenido de [64].

El resto de la seccién se basa en [40]. También puede encontrarse material suplementario
en [5, 74].

3.4. La transformada de Laplace y las ecuaciones en derivadas
parciales

En esta seccion resolvemos varias ecuaciones en derivadas parciales mediante la transfor-
mada de Laplace. El primer ejemplo es, para p € IR

u(0,t) =p t>0 (3.2)
0
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3.4. La transformada de Laplace y las ecuaciones en derivadas parciales

Tras forzar que sean la variable ¢ activa y la variable x pasiva, convertimos (3.2) en el siguiente
problema de valor inicial

dU p
Cde’ s
donde U(z) = L[u(z,-)]. La solucién de (3.3) es

sU(x) = ; (3.3)

Llu(z)](s) = Do—sa,

S

Se puede hallar u(z,t) ficilmente mediante la propiedad de retardo.

La siguiente ecuacion en derivadas parciales que resolvemos es

Ut = Ugy z>0,t>0
u(0,t) = ug(0,1) t>0
u(z,0) = ugp x>0

siendo u(z,t) acotada. Desarrollamos este ejemplo por varios motivos:

a) Normalmente conviene elegir la variable pasiva la que aparece con menor orden de deriva-
cién; pero en este caso no conviene hacer esto.

b) Necesitamos usar el hecho de que L[u(z,-)] es una funcién acotada.
c¢) Utilizamos el teorema de Efrés.

d) Expresamos las integrales que aparecen en la solucién en forma de la integral tabulada erf.

A continuacién resolvemos otro ejemplo, la ecuacién de la cuerda vibrante de longitud ¢
con extremos fijos, donde conocemos la posicién inicial y sabemos que la velocidad inicial es
nula.

Py = U 0O<z<ect>0,
u(z,0) = Bsen(mz/c) 0<z<cg,
ut(z,0) =0 0<uz,
u(0,1) = 0 t>0,
u(c,t) =0 t>0.

donde B es una constante real no nula Resolvemos esta ecuacién en derivadas parciales por
los siguientes motivos:

a) Cuando la variable estd acotada no puede tomarse como activa.
b) Utilizamos el hecho de que L[f](s) — 0 cuando Re(s) — oo.

c¢) Utilizamos el ejemplo 6 de la seccién 1.6.

La referencia basica de todo el tema es [40]. Para la resolucién de ecuaciones en derivadas
parciales mediante la transformada de Laplace se pueden consultar [5, 57, 74], siendo el
primero especialmente indicado para observar las aplicaciones de la transformada de Laplace
en electrénica.
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4. Soluciones de ecuaciones diferenciales de
segundo orden mediante series de potencias

OBJETIVOS:

Conocer el método de los coeficientes indeterminados para la resolucién de ecua-
ciones diferenciales lineales de segundo orden en forma de series de potencias.
Conocer las funciones de Bessel.

Las series fueron consideradas en el siglo XVIII, y lo son hoy todavia, una parte esencial del
calculo infinitesimal. La tnica manera que tuvo Newton de manejar funciones no polinémicas
era desarrolldndolas en serie de potencias y derivando e integrando término a término. Los
éxitos obtenidos mediante el uso de series fueron siendo mas numerosos a medida que las
matematicas se desarrollaban. Las dificultades con el nuevo concepto no fueron identificadas
como tales; las series eran polinomios infinitos. Por otro lado; parecia claro, como Euler y
Lagrange creian, que toda funcién podia expresarse en forma de serie de potencias.

Sabemos que Newton y Leibniz utilizaron series para resolver ecuaciones de primer orden
mediante el método de coeficientes indeterminados. En 1733 Daniel Bernouilli establece que,
para una cadena de densidad uniforme en suspensién que oscila, el desplazamiento y(z) a una
distancia x del extremo inferior satisface la ecuacion diferencial
dy

— (2 = 0.
a (w®)+y

Utiliza el método de coeficientes indeterminados y establece una solucién que en notacién
moderna es y(z) = AJp(2y/z/a), donde Jy es la funcién de Bessel de orden 0. Esta es la

primera vez donde se utilizan las funciones de Bessel.

Euler prosiguié el trabajo de Daniel Bernouilli en 1736 en donde plantea una ecuacion de
segundo orden y obtiene la solucién en forma de serie. Euler utilizé este método constante-
mente. Podemos citar que en 1735 el tinico método que tenia Euler para resolver la ecuacién
y¥) = y era utilizando las series de potencias. En 1766 en un trabajo sobre la membrana

oscilante aparece
d?u  1du 32
—_— - 1-— =0
dr2+rdr+< r2>u '

hoy llamada ecuacién de Bessel, que Euler la resolvié por medio de una serie. El primer
estudio sistemadtico de las soluciones de esta ecuacién fue hecho por Bessel (1784-1846) en
1824 mientras trabajaba en el estudio de los planetas. En 1867, Hankel (1839-1873) continué
el estudio de las ecuaciones de Bessel.

En 1769 Euler trato la ecuacién

(1 —2)y" + (c— (a+ b+ 1)x)y — aby =0, (4.1)

2925



4. Soluciones de ecuaciones diferenciales de segundo orden mediante series de potencias

de la que di6 la solucion en serie

_ ab ala+1)b(b+1) ala+1)(a+2)b(b+1)(b+2) _ .
y(x) =1+ T+ e+ 1) ? Sele £ (et 2) 23+ ... = F(a,b, ? 37))
4.2

Hoy llamada serie hipergeométrica (término usado por Pfaff (1765-1825)) El estudio de las so-
luciones de (4.1) fué llevado mas lejos por Gauss. Demostré de forma rigurosa la convergencia
de la serie (4.2) y establecié la férmula

I'(e)I'(c—a—b)
I'(c—a)l(c—b)

F(a,b,c;1) =

No fue hasta a mediados del siglo XIX cuando se enfatiz6 en la necesidad de comprobar las
operaciones no justificadas sobre series, como la derivacién e integraciéon término a término, o
que toda funcién puede desarrollarse en serie de potencias. En la dltima mitad del siglo XIX
se resolvid el problema de la derivacion de series de funciones que culminé con el desarrollo
del método de Frobenius y el teorema de Fuchs (1833-1902) sobre el comportamiento de las
series de las soluciones de la ecuacién diferencial lineal de segundo orden.

4.1. Soluciones mediante series alrededor de un punto regular

El objetivo de esta seccidn es resolver ecuaciones diferenciales lineales de segundo orden

p(x)y" + q(x)y" +r(x)y =0 (4.3)

en forma de serie de potencias centrada en xy bajo ciertas condiciones que determinaremos
después.

Decimos que xg es un punto regular de (4.3) si p(z¢) # 0. Dividiendo por p(x) tenemos
que (4.3) se puede escribir como

v+ Q(z)y + R(z) = 0. (4.4)

Si Q(z) y R(x) son funciones continuas en xg, entonces el conjunto de soluciones de (4.4) es
un subespacio vectorial de dimensién 2.

Buscamos soluciones de (4.4) en forma de serie: Y > an(z — x)". El método que pre-
sentamos consiste en forzar a que esta serie verifique la ecuacién (4.4), habiendo desarrollado
previamente R(x) y Q(z) en forma de serie, derivando término a término e igualando los
coeficientes correspondientes por la unicidad del desarrollo de Taylor. Presentamos como
ejemplo la ecuacién de Ayry: v’ = xy.

Insistimos a los alumnos que la serie obtenida sélo converge en el itervalo de convergen-
cia. Para acotar este intervalo enunciamos el siguiente teorema. Sean Q(x), R(x) funciones
desarrollables en serie de Taylor alrededor de ¢ siendo los radios de convergencia rq y rg.
Entonces cualquier solucién de (4.4) es desarrollable en serie de Taylor alrededor de xg, cuyo
radio de convergencia es mayor o igual que min{rg,rg}.

Finalizamos la seccién resolviendo la ecuacién de Legendre:

(1—2%)y" — 22y +n(n+ 1)y =0,
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4.2. Soluciones mediante series alrededor de un punto singular-regular

donde n es un natural. Notamos que xg = 0 es un punto regular, que rg = rg = 1; y sin
embargo, al resolver la ecuaciéon en forma de serie obtenemos que la ecuacién admite una
solucién polinémica de grado justamente n, por lo que converge en todo IR. Por lo que en el
teorema, el radio de convergencia puede ser mayor que el minimo de r¢q y rg.

4.2. Soluciones mediante series alrededor de un punto
singular-regular

Decimos que un punto z( es singular-regular de la ecuacién (4.3) si la funcién ¢/p es
holomorfa o posee un polo simple en xy y 7/p es holomorfa o posee un polo simple o doble en
xo. Observamos que entonces (4.3) puede expresarse como

(z — 20)*y" + (z — 20)Q(z)y + R(x)y =0, (4.5)

donde @@ y R son holomorfas en zy. Notamos que la ecuacién de Euler-Cauchy es un caso
particular (4.5).

Buscamos soluciones de la forma
x
(x —x0)® Z an(z — x0)". (4.6)
n=1

Donde s es un parametro a priori desconocido. Nuestros objetivos son

1. Determinar los valores de s para los cuales la ecuacién (4.5) admite soluciones de la
forma (4.6) con radio de convergencia positivo.

2. Determinar una relacion de recurrencia que permita hallar los coeficientes a,,.

Obligando que la serie (4.6) verifique (4.5) e igualando términos independientes obtenemos
la ecuacion indicial
E(s) :=s(s—1) 4+ p(xzo)s + q(xg) =0

y una ley de recurrencia siempre y cuando que E(n + s) # 0 para todo n € IN. Bajo esta
condicién se puede resolver (4.5). La situacién general, que resuelve todos los restantes casos,
se enuncia en el siguiente teorema. Sean Q(x) y R(x) holomorfas en x¢, sea r el menor de los
radios de convergencia de las series de Taylor de (Q y R y sean s,t las raices de la ecuacién
indicial asociada a (4.5). Entonces (4.5) tiene dos soluciones linealmente independientes y1, y2
definidas en |zg — r, 2o + r[\{zo} de la forma:

a) Si s —t no es un entero
[e.e] o0
y1(z) = |z — zo|® Z an(z —20)", y2(z) = |2 — 20" Z bp(z — x0)".
n=0 n=0
b) Sis=t

oo oo
yi(@) = |z — 20 Y an(x —20)", ya(x) = y1(2)logle — xo| + |z — wo|* > bn(w — z0)"
n=0 n=0

2927



4. Soluciones de ecuaciones diferenciales de segundo orden mediante series de potencias

c) Si s —t es un entero no nulo

y1(z) = | — xol® Z an(x —20)", y2(x) = ay(x)log|z — xo| + |z — 20! Z bn(x — 20)".
n=0

n=0

Tlustramos este teorema resolviendo la ecuacién x2y” + 3zy’ + (1 + 2)y = 0, teniendo la
ecuacion indicial una raiz doble en -1.

La bibliografia que recomendamos al alumno es [11, 36, 40, 74].

4.3. Funciones de Bessel

En esta seccion consideraremos la ecuacion de Bessel

2 / 2 2\,
7y +ay + (2" —n7)y =0,
donde 1 € R. Independientemente de la importancia que tiene esta ecuacién en la fisica, esta
ecuacion ilustra adecuadamente los tres casos enunciados en el teorema de la seccion anterior.
Estudiando la ecuacién indicial tenemos tres casos diferentes, aunque estudiamos sélo dos de
estos casos:

e 2n ¢ 7. Desarrollando la solucién en serie obtenemos dos soluciones independientes
llamadas funciones de Bessel de primera especie de 6rdenes 1 y -1, denotadas
respectivamente J, y J_,.

e 1 = 0. Desarrollando la solucién en serie obtenemos dos funciones independientes, una
es la funcion de Bessel de primera especie de orden 0, denotada Jy y la otra es la
funcion de Bessel de segunda especie de orden 0, denotada Yj.

Al ser ésta una seccién basada en la anterior, la bibliografia es la comentada alli, aunque
un libro donde se trata exhaustivamente las funciones de Bessel y sus propiedades es [71].
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Contenido del Capitulo 4

1. Soluciones mediante series alrededor de un punto regular.

e Puntos regulares. Busqueda de soluciones mediante series de potencias. Ejemplos

e Dominio de convergencia. Teorema que justifica la resolucién por el método de las
series de potencias.

2. Soluciones mediante series alrededor de un punto singular-regular.

e Planteamiento de la ecuacion indicial.

e Teorema que da la solucién alrededor de un punto singular-regular. Ejemplos.
3. Funciones de Bessel.

e Ecuacién de Bessel. Resolucién y obtencién de las funciones de Bessel.
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230



5. Series de Fourier

OBJETIVOS:

Saber las principales propiedades de las series de Fourier. Desarrollar el método
de separacion de variables.

El analisis de Fourier, una de las més poderosas herramientas de la matemaética y de la
fisica, surgi6 del problema de la cuerda vibrante, estudiado ya por Fuler y Daniel Bernouilli
en el siglo XVIII. El trabajo de Fourier sobre la representacion de funciones como sumas
trigonométricas fue publicado en su Théorie analytique de la chaleur en 1822. El objetivo de
Fourier fue resolver la ecuacion del calor:

U = gy O<z<p, 0<t,
u(0,t) = u(p,t) = 0<t,
u(z,0) = f(x) 0<xz<p,

donde u(z,t) representa la temperatura de una barra metalica de longitud p en el punto x
y en el tiempo t. Fourier, al intentar resolver esta ecuaciéon por el método que hoy en dia
conocemos por separacién de variables, se vio obligado a expresar f(x) como

o0
flx) = Z by, sen(nmx/p).
n=1
Fourier, tras una serie de pasos nada rigurosos dedujo que
9 [P
by, = / f(x)sen(nmz/p)dx.
b Jo

A pesar de que las series de Fourier se originaron dentro de la fisica matemadtica, su
importancia sobre el desarrollo del analisis ha sido fundamental. De aqui surgen por citar
solo algunos ejemplos la teoria de los desarrollos en serie de funciones de Sturm-Liouville
que veremos en el capitulo siguiente, los conjuntos ortonormales de funciones y la teoria de
integracion de Lebesgue.

El hecho de que la serie de Fourier converja a la funcién bajo ciertas condiciones es
un fundamental. Dirichlet y Dini a mediados del siglo XIX establecieron dos condiciones
diferentes bajo las cuales se cumple la convergencia. Estas condiciones para la convergencia
son suficientes pero no necesarias. La mera continuidad de la funcién no es suficiente para
asegurar la convergencia como prob6 du Bois-Reymond en 1876.
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5. Series de Fourier

5.1. Primeras propiedades de las series de Fourier

Definimos los coeficientes de Fourier de una funcién f localmente integrable y 2u-
periddica:
1

an = — f(z) cos nx du; by = — f(z)sennx dx.
™ J_r TJ-xm

y su serie de Fourier:

oo
ag
> + E an cosnx + b, senne.

n=1

Para una funcién f localmente integrable y 2L-periédica (lo que ocurre en la mayoria de
las aplicaciones), mediante un simple cambio de variables se tiene que

1 [t 1t
an:L/_Lf(ac)coanxdx; bn:L/_Lf(:U)sennzmdx.

y que su serie de Fourier es

a nwT nwT
> —I-ZancosT—{—bnsenT.
n=1
En este momento es importante observar que dos funciones diferentes, 2w-periddicas y
localmente integrables en [—m, | pueden tener las mismas series de Fourier. Basta para ello
que se diferencien en un numero finito de puntos. También es 1til observar los siguientes
hechos elementales:

e Si f es par, entonces b, =0y a, = %foﬂ f(z) cos nx dz.

e Si f es impar, entonces a, =0y b, = %fg sen nx dz.
El problema central de la teoria es el siguiente: ;cuando una serie de Fourier converge a la
funcién de partida? Los resultados siguientes (debidos a Dirichlet y a Dini, respectivamente)

que se enuncian son, por este motivo, claves en todo el tema:

e Sea f localmente integrable, 27 periddica y de variacién acotada en un entorno de xg.
Entonces
f(xo +0) + f(zo — 0)
2

o
ap
=5 + Z ay, cos nxg + by, sen nwy. (5.1)

n=1

e Sea f continua a trozos, 2w periddica tal que existen f’ (zo) y f\(xo). Entonces se
verifica (5.1).

Observamos que si f es continua en g, el miembro izquierdo de (5.1) se reduce a f(xz).

Como punto final enunciamos el lema de Riemann-Lebesgue: Si f es integrable en [—7, 7],
entonces sus coeficientes de Fourier tienden a 0.
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5.2. Método de separacién de variables.

5.2. Meétodo de separacion de variables.

El objetivo de esta seccién es introducir el método de separacién de variables para resolver
ecuaciones en derivadas parciales. Explicamos algunos ejemplos concretos que surgen de la
fisica.

La ecuacién del calor homogénea. Si u(x,t) describe la temperatura de una varilla
metdlica de longitud p en el punto = y en el tiempo ¢ con temperatura fijas en los extremos
nulas y con temperatura inicial f(x), se puede probar utilizando argumentos fisicos que la
funcién u verifica la siguiente ecuacién en derivadas parciales:

Clpy = Uy O<z<p, 0<t,
u(0,t) = u(p,t) =0 0<t,
u(z,0) = f(x) 0<z<p

Suponiendo que u(z,t) = X (x)T(t) (de aqui el nombre de separacién de variables), substitu-
yendo en las tres primeras ecuaciones tenemos que existen infinitas soluciones de la forma

kmx kme\?
uk(m,t):AkseDTeXp _<p> t|.

Sumando todas las funciones uj; obtenemos que
o0
u(a,t) = agug(z,t)
k=1

también verifica estas tres ecuaciones. En este punto hemos de resaltar que estamos buscando
la solucion formal del problema, puesto que en realidad intercambiamos una serie infinita por
la derivacién. Haciendo ¢ = 0, obtenemos la serie de Fourier de f (extendida de forma impar
y 2p-periédica), con lo que si f cumple alguno de los dos teoremas de convergencia ya hemos
resuelto el problema.

La ecuacion del calor no homogénea. FEl problema es igual al anterior salvo que
la condicién segunda de la ecuacién del calor homogénea, se substituye por u(0,t) = A,
u(p,t) = B. Este problema se reduce mediante el cambio

u(z,t) = w(z,t) +v(z),

a la resolucion de la ecuacion del calor homogénea en w y a la resolucién del problema

La ecuacion de ondas. Una cuerda de longitud p cuyos extremos estan fijos y de la cual
se conoce la posicion y velocidad inicial cumple

Clgy = Ut O<z<p, 0<t,
u(0,t) = u(p,t) =0 0<t,
u(z,0) = f(x) 0<z<p,
ut(x,0) = g(z) 0<z<p.

La ecuaciéon de Laplace es una de las ecuaciones que maés frecuentemente aparece en
la fisica. La ecuacién de Laplace en 2 dimensiones tiene la forma wugz; + uyy = 0 y en tres
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5. Series de Fourier

dimensiones ., + tyy +u.. = 0. Frecuentemente se utiliza la notacién V2u = 0, siendo V? el
operador laplaciano. La ecuacién de Laplace aparece en muy diversos campos de la fisica,
por ejemplo, en la distribucién de la temperatura estacionaria, el estado estacionario de una
membrana eldstica o del potencial eléctrico en una placa. Las ecuaciones de la fisica que
contienen a V2 establecen que la naturaleza siempre actiia para establecer la uniformidad.

Eestudiamos la ecuacién de Laplace cuando el dominio es un rectangulo. Antes de resolver
el caso general planteamos el siguiente problema particular

Ugz + Uyy = 0 O<z<a, 0<y<b,
u(z,0) = u(x,b) =0 0<z<a,
u(a,y) = f(y) 0<y<h

Observamos que las tres primeras ecuaciones son homogéneas. Este hecho es fundamental
pues se aplica al principio de superposicién. Asi pues, buscamos una sucesion (u,)5>; de fun-
ciones que verifiquen las cuatro primeras ecuaciones. Entonces > ° | apuy, es una candidata
formal para la solucién del problema (por el principio de superposicién). Ahora sélo falta
hallar los coeficientes «,, usando la teoria de las series de Fourier y la 1ltima ecuacién. Asi

hallamos la serie que es la solucién formal del problema.

Ahora resolvemos la ecuacién de Laplace en un rectdngulo donde se conoce el comporta-
miento de la solucién en la frontera. El problema es

Ugg +Uyy =0 0< 2 <a, 0<y <D,

u(z,0) = g1(z) 0<z<a,
u(z,b) = g2(x) 0<z<a,
w(0,9) = f1(y) 0<y<b,
u(a,y) = fa(y) 0<y<b.

La solucién de esta ecuacién en derivadas parciales podria parecer dificil, ya que no hay
condiciones iniciales homogéneas. Sin embargo este problema tiene una resolucion bastante
fécil si se descompone la solucién v = uy + ug + us + uq, donde cada wu; verifica un problema
parecido al que se acaba de resolver.

Si queremos resolver la ecuacién de Laplace planteado en el disco de radio ¢ centrado en el
origen, es natural usar coordenadas polares r, 0, donde el disco queda descrito por 0 < r < ¢,
0 <0 < 2x. La ecuacién de Laplace en polares es

1 1
Upr + —Up + —Upy = 0.
r r

Si conocemos el valor que toma u en la frontera del disco tenemos la condicién

u(c,0) = f(0),

en donde f es conocida. Puesto que 0 (6 27) en realidad es una “falsa frontera”exigimos
ademads que f(0), u(-,0), ug(-,0) sean funciones continuas 2m-periddicas.

Tras aplicar el método de separacién de variables, u(r,0) = R(r)T'(#), obtenemos que R
debe verificar una ecuacién de Euler-Cauchy. Es conveniente recordar esta ecuacion vista
en primer curso [37]. Ademds es preciso rechazar las soluciones no acotadas de R (debido
simplemente a una hipétesis fisica).

234



5.2. Método de separacién de variables.

En este problema, al igual que los anteriores, obtenemos una soluciéon formal. Pero com-
probar la convergencia para 0 < r < ¢ de la serie

[e.e]

u(r,6) = % + Z " (a, cosnf + [y, sennd),
n=1

donde
1 i 0 0de 1 i 0 0de
anp = — cosnf db, = — sennf df,
"= 77rf( ) o= — 7Trf( )
es facil si se usa el criterio de mayoracién de Weierstrass y el lema de Riemann-Lebesgue. Al
mismo tiempo conviene demostrar que

w(0,0) = ;ﬂ/ u(r,0)d6,  re0,d,

—T

lo que indica que la solucién del problema de Dirichlet en el centro de un disco es igual al
valor medio de sus valores a lo largo de la frontera del disco, resultado bastante intuitivo y que
conecta la fisica subyacente al modelo con el rigor matematico. Creemos que nunca hemos de
olvidar la fuerte relacién entre las ideas provenientes de la fisica y las ideas matemaéticas.

Las referencias de este capitulo son [11, 16, 25, 40, 47, 59, 70].
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Contenido del Capitulo 5

1. Primeras propiedades de las series de Fourier.

e Funciones localmente integrables. Coeficientes de Fourier. Series de Fourier de
funciones con periodo arbitrario.

e Criterios de convergencia. Lema de Riemann-Lebesgue.
2. Método de separacion de variables.

e La ecuacion del calor.
e La ecuacion de ondas.
e La ecuacién de Laplace para un rectangulo.

e El problema de Dirichlet para un disco.
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6. Problemas de Sturm-Liouville y desarrollos
en serie de autofunciones

OBJETIVOS:

Estudiar los problemas de Sturm-Liouville y el desarrollo en serie de autofunciones.
Resolver un tipo de ecuaciones en derivadas parciales mediante autofunciones.

Los problemas que implican ecuaciones en derivadas parciales de la fisica contienen comun-
mente condiciones sobre la frontera del dominio, tales como la condicién de que la cuerda
vibrante debe estar fija en los extremos o que la temperatura de una barra metalica esta
fija en sus extremos. Cuando el método de separaciéon de variables se aplica a una ecuacién
en derivadas parciales, esta ecuacién se descompone en dos o méas ecuaciones diferenciales
ordinarias, y las condiciones de frontera sobre la solucién deseada se convierten en condicio-
nes de frontera sobre una ecuacion diferencial ordinaria. Esta ecuacién diferencial ordinaria
contiene generalmente un parametro y sélo para valores particulares se obtienen soluciones
no triviales. Estos valores se llaman autovalores y la solucién para cualquier autovalor es
llamada autofuncién. Mds atn, para satisfacer la condicién inicial del problema es necesario
expresar una funciéon dada en serie de autofunciones.

Estos problemas de determinar los autovalores y autofunciones de una ecuacién diferencial
ordinaria con condiciones de frontera y de desarrollar una funciéon dada en términos de una
serie infinita de autofunciones, que datan de aproximadamente de 1750, se hicieron ma&s
prominentes al tiempo que se introducian nuevos sistemas de coordenadas y nuevas clases de
funciones tales como las funciones de Bessel y los polinomios de Legendre.

Sturm (1803-1855) y Liouville (1809-1882) decidieron atacar el problema general para
cualquier ecuacion diferencial de segundo orden. Sturm trabajé desde 1833 en problemas de
ecuaciones en derivadas parciales, principalmente sobre el flujo del calor en una barra metélica
de densidad variable. Liouville, informado por Sturm de los problemas sobre los que estaba
trabajando, se dedicé a la misma materia.

6.1. Introduccion al método de autofunciones

Comenzamos el tema con un breve repaso de la resolucién de la ecuacion del calor e
intentamos destacar las propiedades mas destacables: si intentamos resolver

C2uzx = Ut, U(O,t) = U(p,t) =0
por el método de separacién de variables, u(z,t) = X (z)T(t), tenemos que X debe satisfacer

X"(z) 4+ XX (z) =0,

X(0) = X(p) = 0. (-1
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6. Problemas de Sturm-Liouville y desarrollos en serie de autofunciones

Vimos que existe una sucesion (A, )52 ; tal que problema (6.1) tiene solucién no trivial, digamos
X,,. Después obtuvimos la solucién de la ecuacién del calor en forma de serie:

t) = Xi(a)Ty(t)
k=1

Por 1ltimo, si queremos que u cumpla la condicién u(x,0) = f(z) debemos expresar f en
serie de Xp.

Para fijar méas los conceptos de desarrollo en serie de autofunciones aplicamos estas ideas
para resolver la siguiente ecuacién del calor no homogénea:

gy =ug +h(z,t) 0<z<p, 0<t,

u(0,t) =0, 0<t,
U(p,t) =0, 0<t,
u(z,0) = f(x), 0<z<p.

Conjeturamos como solucion
oo
t) =) Xp(x)T(t)
k=1

donde Xj son las soluciones no nulas obtenidas en la ecuacién del calor homogénea. Si
forzamos que u verifique la ecuacién en derivadas parciales, nos vemos obligados a desarrollar
h en serie de X}.

Este ejemplo es interesante por varios motivos: permite introducir de modo natural los
problemas de Sturm-Liouville, se prevé que se generalizara la teoria de las series de Fourier
y al mismo tiempo se intuye la idea fundamental del método de autofunciones: el desarrollo
en serie por medio de autofunciones.

También se puede advertir de la estrecha conexién que tiene este tema con el tema de
espacio vectorial euclideo estudiado en la asignatura de algebra lineal: dados los espacios
euclideos IR", C([—m, 7]), observamos las siguientes analogias:

H R" C([—m,x]) H
Posee una base ortogonal. {1,cosz,senz,...}
es un sistema ortogonal.
Todo vector de IR™ es “Muchas” funciones se
combinacién lineal de la base anterior. | ponen en serie del sistema anterior.

Aunque advertimos que la analogia se hard todavia més patente cuando introduzcamos
cierto operador autoadjunto. Es muy conveniente para el alumno repasar los textos [2, 37].

6.2. Problemas de Sturm-Liouville homogéneos

Tras aplicar el método de separacién de variables a

(puz)e —qu—ruy =0 0<z<1, 0<t,
uz(0,t) + hiu(0,t) =0, 0<t,
ug(c,t) + hau(c,t) = 0, 0<t,
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6.2. Problemas de Sturm-Liouville homogéneos

siendo r, p, ¢ funciones solamente de x. Ademds r, p,p’, g son continuas y r,p > 0, obtenemos
el siguiente problema llamado de Sturm-Liouville:

(py') — qy — Ary =0,
y'(0) + h1y(0) = 0, (6.2)
y' (1) + hoy(1) = 0.

Los autovalores del problema son los valores de A tales que (6.2) tiene solucién no nula.
Estas soluciones se llaman autofunciones asociadas a A.

Definiendo el subespacio V' y el operador lineal L dados por

V ={f €€*0,1],C) : f'(0) + h1 f(0) = f'(1) + haof(1) = 0}, 63
6.3
L:V—=V;  L(f)=Lpf) —afl,

pretendemos dos objetivos: que el alumno entienda la conveniencia de la economizaciéon de
las expresiones por medio de una notacién adecuada y demostrar que conceptos tedricos del
algebra lineal (aplicaciones lineales) tienen aplicacién directa en el estudio de las ecuaciones
diferenciales. Demostramos los siguientes hechos bésicos de este operador:

e [ es lineal.

e )\ es un autovalor si y sélo si existe y € V'\ {0} tal que L(y) = Ay, es decir A es un valor
propio de L.

e f es una autofuncién asociada a A si y sélo si f es un vector propio asociado a A.

e El conjunto de autofunciones asociado a un cierto autovalor es un subespacio vectorial
de V.

Una igualdad 1til que probamos es la identidad de Lagrange: Si u, v son dos funciones
dos veces diferenciables, entonces

1
/ r[L(w)v — uL(v)] dz = [p(v'v — uv/)}é .
0
A partir de ahora consideramos a V' dotado del siguiente producto escalar: Sean u,v € V,

1
(u,v>—/0 r(z)u(z)v(x) de. (6.4)

Gracias a la identidad de Lagrange podemos demostrar ficilmente que L es autoadjunto,
es decir, (L(u),v) = (u, L(v)) para todos u,v € V. A partir de que L sea autoadjunto se
obtienen autométicamente las siguientes afirmaciones:

e Si A es un autovalor del problema de Sturm-Liouville, entonces A es real.

e Si Ay u son dos autovalores diferentes y f, g son dos autofunciones asociadas, entonces
f v g son ortogonales respecto al producto escalar (6.4).
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6. Problemas de Sturm-Liouville y desarrollos en serie de autofunciones

La siguiente propiedad de los espacios vectoriales euclideos de dimensién finita es fun-
damental: si {ui,...,u,} es una base ortonormal de un espacio vectorial V' de dimensién
finita, entonces dado z € V se tiene = )" | (2, u;)u;. Enunciamos el siguiente resultado
relacionado con esta afirmacion: Dado un problema de Sturm-Liouville se verifica:

e Existe una sucesién de autovalores reales (\,)5 ; tales que lim,, o0 [Ap| = 00.
e El conjunto de autofunciones asociado a un autovalor es un subespacio de dimensién 1.

e Si fy f’ son funciones continuas a trozos en |0, 1[, entonces para cada x €]0, 1]

fa+0)+flx=0) _
; =D (f:én)d(x),

n=1

considerando el producto escalar (6.4) y ¢, la autofuncién asociada a A, de norma 1.
Esta serie se llama serie de Sturm-Liouville de f.

Observamos que este resultado generaliza la teoria de las series de Fourier y que . si se
trunca la serie de Sturm-Liouville de f hasta el orden n se tiene la aproximacién por minimos
cuadrados de f sobre el subespacio generado por {¢1,..., ¢, }.

6.3. Problemas de Sturm-Liouville no homogéneos

Un problema de Sturm-Liouville es el siguiente problema de frontera:

, (6.5)

verificando p, ¢, las mismas condiciones que en la seccion previa, 4 € IR y f una funcién
cuya segunda derivada es continua a trozos en |0, 1].

El método que describimos a los alumnos en este momento nos da una solucién formal.
El problema (6.5) es equivalente a hallar y € V tal que L(y) = py + f/r, estando L y V
definidos en (6.3).

Sea la solucién ®(xz) = > o7 bpdn(x), donde ¢, son las autofunciones de norma 1 y
b, € IR estan por determinar. La expresién de ® en forma de serie es rigurosa, puesto que ®
tiene segunda derivada continua, pero la manipulacién de la serie exige un paso no riguroso
(este paso, expresado simbdlicamente, es L(X) = ¥(L)). Tras imponer que L(®) = ud® + f/r
obtenemos

S I~

= Z()\n - N)¢na
n=1

en donde se ve la necesidad de desarrollar f/r en serie de autofunciones. Dependiendo del
valor de p se obtienen el (los) valor(es) posible(s) de by,.
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6.4. Resolucion de ecuaciones en derivadas parciales mediante series de autofunciones

6.4. Resolucion de ecuaciones en derivadas parciales mediante
series de autofunciones

Veremos como encontrar soluciones de determinadas ecuaciones en derivadas parciales
mediante series de autofunciones de correspondientes problemas de Sturm-Liouville. Este
método sirve para resolver ecuaciones en derivadas parciales del siguiente problema:

(p(x)uz)z —q(x)y =r(z)us + F(z,t), 0<x<1l; 0<t
uz(0,t) + hiu(0,t) =0, 0<t
uz(1,t) + hou(1,t) =0, 0<t

u(z,0) = f(x), 0<z<1

Maiés que dar un desarrollo excesivamente tedrico del método, explicamos el método con
un ejemplo concreto. Los pasos son:

1. Separacién de variables en el problema homogéneo.

2. Hallar los autovalores y las autofunciones en el problema de Sturm-Liouville correspon-
diente.

3. Normalizar las autofunciones.
4. Expresar la solucién u(z,t) en forma de serie de Sturm-Liouville.

5. Resolver las ecuaciones diferenciales que cumplen los coeficientes de u(z, ).

Normalmente hay tres pasos conflictivos en donde el alumno se encuentra menos seguro.
El primero es, como ya hemos repetido, que las operaciones son formales. El segundo es
la necesidad de desarrollar F(x,t) en serie de Sturm-Liouville, los alumnos no distinguen
claramente entre variable activa y pasiva; pese a que esta distincion ya ha surgido antes.
El tercer paso problematico es que al tratar de resolver las ecuaciones diferenciales para los
coeficientes de la serie de u(z,t) surgen normalmente ecuaciones diferenciales que es preciso
resolver variacion de parametros.

Las referencias bésicas son [11, 25, 40, 60].
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Contenido del Capitulo 6

1. Introduccién al método de autofunciones.

e Breve descripcién de resolucién de la ecuacion del calor.

e Resolucién de la ecuacion del calor no homogénea.
2. Problemas de Sturm-Liouville homogéneos.

e Planteamiento de un problema de Sturm-Liouville homogéneo.
e Definiciéon de autovalores y autofunciones de un problema de Sturm-Liouville.

e Operador lineal asociado. Propiedades.
3. Problemas de Sturm-Liouville no homogéneos.

e Forma de un problema de Sturm-Liouville no homogéneo. Planteamiento usando
el operador lineal asociado.

e Solucion general. Condiciones de existencia y unicidad de soluciones.

4. Resoluciéon de ecuaciones en derivadas parciales mediante series de autofun-
ciones.

e Planteamiento general de la ecuacion.

e Método de resolucion.
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A. Examen de Algebra Lineal

Problema 1

Una persona se mueve en una serie de puntos como indica la figura:

P() P1 PQ Pnfl Pn PnJrl
® — o — ¢ — -+ — e — & — o

Decide ir al punto de la derecha o de la izquierda lanzando una moneda. El “paseo”termina
cuando alcanza los puntos Py 6 P,y1. El propdsito del problema es calcular la probabilidad
de que la persona llegue al punto P, partiendo de P,.. Para ello se definen

0 1/2 0 0
0 1/2 0
0 1/2 1/2 0 1/2 0
A2:<1/2 (/)> Ag=( 12 0 12 ), Au= é 1/2 (/) 12 |07
0 12 0 0 0 1/2 0

a) Halle los valores y vectores propios de Ag y de Az. Halle todos los valores de t € [0, 7] de
modo que cost sea valor propio de As. Lo mismo para As.

b) Conjeture n valores de ¢t € [0,7] de modo que cost sea valor propio de A,,. Pruebe que
(sent,sen?2t,...,sennt)® es un vector propio de A, asociado al valor propio cost.

Observe que la relacién matricial que regula el proceso descrito al principio es

1| x 1|0
Pit1=| O| A, |0 |ps,
0Oy |1

donde x = (1/2,0,...,0), y = (0,...,0,1/2) y pi es un vector columna de IR"*?2 cuya i-ésima
coordenada es la probabilidad de que la persona esté en el punto ¢ — 1 tras k pasos.

c) Sea M una matriz cuadrada de orden n, sean u e v dos vectores fila de R" y sea N la
siguiente matriz cuadrada de orden n + 2 formada por bloques:

1 u 0
N = 0O M O
0 v 1

Pruebe que
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A. Examen de Algebra Lineal

d) Si I — M es invertible, pruebe que I + M + -+ + M*1 = (I — M*)(I — M)~L.

e) Si M es diagonalizable, todos sus valores propios tienen médulo menor que 1y si [ — M
es invertible, entonces pruebe que si k — oo, entonces N¥ tiende a .

1 u(I-M)"t o0
0 O 0
0 vI—-M)"t 1

f) Sabiendo que A,, es invertible y que los valores propios de A,, tienen médulo menor que
1, utilice los apartados anteriores para demostrar que la probabilidad de que la persona
acabe en P, 11 partiendo de P, es y (I —An)_ler, siendo e, el vector columna r-ésimo de la
base candnica de IR". Demuestre que dicha probabilidad es r/(n + 1). Ayuda: demuestre
previamente que (1,2,3,--- ,n—1,n)({ — A,) = (n+ 1)y.

Problema 2

Este problema estudia el comportamiento de f € C!(IR) respecto a los valores de f y f
en a # b. Para ello se considera la aplicacién lineal ® : €'(IR) — R* dada por

a) Sea ®,, la restriccién de ® a P,,. Halle la matriz de ®,, en las bases candnicas. Llame A,
a esta matriz.

b) Halle el nicleo de ®; (en funcién de a y b).

c) Obtenga la factorizacion LU de As. Use esta factorizacion para hallar el (los) polinomio(s)
p € Ps tal(es) que ®o(p) = (1 +a,1,1+b,1). Si no existe(n), diga la razén.

d) Para a =0y b= 1, demuestre que no existe ningtin p € Ps tal que ®2(p) = ®(cos ).

e) Para a =0y b =1, obtenga la factorizacién QR de la matriz Ay. Use esta factorizacién
para hallar la solucién por mininimos cuadrados de ®9(p) = ®(cosmz). Compare los
resultados.
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B. Examen de Ecuaciones Diferenciales
Ordinarias

Problema 1

En este problema se estudia el efecto de un terremoto sobre un edificio de dos pisos.
Supondremos que el piso ¢ tiene masa m; y que estan unidos por un conector cuya accién se
parece a un muelle (normalmente, los elementos estructurales de un edificio son de acero, que
es un material muy eldstico). Se puede demostrar que si z;(t) es el desplazamiento horizontal
del piso 7, entonces se tiene

mix] = —kox1 + ki(ze — x1) + F. cos(wt),

B.1
moxlh = —ki(xg — 1), (B1)

donde kg es la constante de proporcionalidad de la fuerza de restitucion entre el primer piso
y el suelo, k1 es la constante de proporcionalidad de la fuerza de restitucién entre los dos
suelos. Se supone que la fuerza externa del terremoto, cuya amplitud es F,, actia sélo sobre
el primer piso y es de tipo oscilatorio (un terremoto suele durar entre 2 y 3 segundos, por lo
que si T = 27 /w es la duracién, entonces normalmente 2 < T < 3).

a) Transforme (B.1) en un sistema de ecuaciones diferenciales de primer orden de la forma
Y’ = AY + F, donde Y, F son vectores de funciones y A es una matriz cuadrada.

En el resto de los apartados tome kg =6,k; =4, m; =mg =1,w = 3.

b) Resuelva el sistema homogéneo asociado.
c) Si F, = 21, halle una solucién particular del sistema no homogéneo.
d) Si F, =21y x1(0) = 22(0) = 24(0) = 2/ (0) = 0, resuelva el sistema completo.

Problema 2

Una cuenta esta restringida a resbalar sin friccion a lo largo de una varilla rigida recta
de longitud 2L. La varilla gira en el plano vertical con velocidad angular constante w > 0
en torno a un punto fijo P en la mitad de la varilla; pero el disenio permite que la cuenta se
deslice por toda la varilla. Sea r(t) la distancia (con signo) de la cuenta a P. La ecuacién
diferencial que satisface r(t) es

/,

" = w?r — gsen(wt). (B.2)

a) Resuelva la ecuacién homogénea asociada a (B.2).

b) Halle una solucién particular de (B.2).
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B. Examen de Ecuaciones Diferenciales Ordinarias

)

Halle r(t) sabiendo que cumple (B.2) y que inicialmente estd en la posicién rg y tiene
velocidad inicial vy (es decir, 7(0) = ro; 7(0) = vg). Determine ry y vy para que la cuenta
tenga un movimiento armonico simple (es decir, que 7(¢) sea una oscilacién pura). Halle
una condicién suficiente sobre rg y vg para que la cuenta salga disparada de la varilla.

En este apartado se investigara de forma numérica en qué tiempo T la cuenta sale de la
varilla suponiendo que r(0) = 0 y vg = 7/(0) = 1. En este apartado tome w =3; L=1y
g = 9’8. Para ello se plantea el problema de contorno

r" = 9r — 9'8sen(3t), r(0) =0, r(T) = 1.

Mediante diferencias finitas exprese r(7'/3) y r(27/3) en funcién de T. A continuacién
aproxime r’(0) = 1 mediante una diferencia finita para encontrar una ecuacién numérica
que debe cumplir 7.

Este apartado ofrece otro enfoque para resolver la ecuacién diferencial (B.2). Sea s(t)
una funcién que cumple s” = w?s (que debe hallar). Mediante el cambio de variables
r(t) = u(t)s(t) transforme (B.2) en una ecuacién diferencial de primer orden que debera
identificar y resolver. Ayuda: para este apartado necesitard el valor de las siguientes

integrales:
axr

/e““ cos(bx)dx = m(a cos(bx) + bsen(bx)) + C,

axr

/e‘” sen(bx) dzx = m(a sen(bx) — beos(bx)) + C.
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C. Examen de Analisis Vectorial

Problema 1 Es sabido que el potencial eléctrico U en zonas libres de cargas cumple
V2U = 0. En este problema, se abordara un pequeiio estudio de estas funciones.

a) Sea f : R — IR con derivadas parciales continuas, donde R es un abierto de IR?. Sea
C C R una curva cerrada sin autointersecciones recorrida en sentido positivo que encierra
el recinto 2. Pruebe que

0 0
1o dns il ay= [[ Q9P + 19 deay.

b) Pruebe que si U cumple V2U = 0 en § entonces estd determinada por sus valores en C.
Para ello considere dos campos Uy, Us tales que V2U;V2Us = 0 en Q vy que Uy = Us en
C, defina f = U; — Uy y aplique el apartado anterior para probar que f =0 en 2.

¢) Verifique la expresién del apartado a) para f(x,y) = 2 y las dos curvas siguientes: La
circunferencia 22 + y? = 1 y el cuadrado de vértices (0,0), (1,0), (0,1), (1, 1).

Problema 2 El campo dipolar magnético en un punto x respecto al origen es dado por

_ ko 3(m-x)X_i
C Arx rd r3

Ba(x)

donde m es el momento dipolar magnético que se supone constante y r = [|x|. Tras situar
los ejes de coordenadas de manera adecuada, podemos suponer que m = (0,0, m).

a) Calcule (sin usar el teorema de la divergencia) [[4BgdS si S es la esfera centrada en el
origen y de radio R.

b) Demuestre que div B4 = 0.

¢) Calcule [[¢BgdS si S es el cilindro {(z,y,2) : 2* +y* = R, —H <z < H} si H > 0.
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C. Examen de Anilisis Vectorial
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D. Examen de Matematicas

Problema 1

Usese el rectangulo de vértices —R, R, R + 27i, R — 27i y la funcién

~ exp(iz)
1) = 1+ coshz

para calcular
/ * cosx
—dx
o l-+coshx

donde a > 0.

Problema 2

Resuelva mediante la transformada de Laplace la siguiente ecuacién integral

¢(x) =senx +2 /01‘ o(t) cos(x — t) dt.
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D. Examen de Mateméticas
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