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Antecedentes

PROBLEMA RESUELTO 1.
(Baksalary y Baksalary, 2000, LAA)

P = Py
P% = P, XZZX e ¢'C1,C2,P1,P2?
X = cP1+ P



PROBLEMA RESUELTO 2.
(Baksalary, Baksalary y Styan, 2002, LAA)

P2 = P
T =T X? =X < jc1,0, P, T?
X = P+cT



PROBLEMA RESUELTO 2.
(Baksalary, Baksalary y Styan, 2002, LAA)

P2 = P
T =T X? =X < jc1,0, P, T?
X = P+cT
T°=T
Y

Existen tinicos proyectores P», Ps:
P,P; = P3P, =0, T =P, — Ps.

X=c1P+c T =c1P+ 2Py — o Ps.



Problema
P2—=P, P2=P, P2=P, )

PP, = PP ’

X = C1P1 + C2P2 + C3P3 )

X2 =X <= ¢C1,C2,C3, P, Py, P5?



Problema
P2—=P, P2=P, P2=P, )

PP, = PP ’

X = C1P1 + C2P2 + C3P3 )

X?=X <= c1,0,03 P, Py, P3?

UN ENFOQUE (TEDIOSO).
X =X <
c1(c1 —1)P1 4+ ca(co — 1)Pa +c5(c5 — 1)P5 +
c162(P1Py 4+ PoPq) 4 c1¢3(P1P3 + P3P1) + c2c3(P2P3 + P3Py)
= 0.



;Como se puede simplificar

este problema?



Usar la teoria espectral:

P2=P,i=1,2,
=T = 3P,P,: { PP, =P,P; =0,
T=P,—P,.



Usar la teoria espectral:

P2=P,i=1,2,

=T = 3P,P,: { PP, =P,P; =0,
T=P,—P,.




Sea P un proyector 2 x 2 tal que Pu = uy Pv = 0, siendo u, v
dos vectores columna linealmente independientes de IR2.

lin(v) . X

RZ
lin(u)

Px




Todo proyector P es diagonalizable.

Luego existe W invertible tal que

P=WIp0o)W .

Puede que algtiin sumando no esté presente.



Todo proyector P es diagonalizable.

Luego existe W invertible tal que

P=WIp0o)W .

Puede que algtiin sumando no esté presente.
IDEA:

X — WXW 1

donde W es invertible y “lo méas conveniente posible”.



PRIMER CASO
P;P; = P;P; paratodosi,j € {1,2,3}.




PRIMER CASO
P;P; = P;P; para todosi,j € {1,2,3}.

Intento: Diagonalizacion simultdnea.

Teorema: Sean {A;}¥ ; matrices diagonalizables tales que
A;A; = AjA; para todos i, j. Entonces existe W invertible
tal que W 'A;W es diagonal paratodoi=1,...,k.

P;, = Wdiag()\li, e ,)\m-)W—l, i=1,2,3; A]‘i € {0, 1}
La idempotencia de c1 Py + c;P» + c3P3 implica que

Cl)\jl + Cz)\]'z + C37\]’3 € {0, 1}.

i Demasiadas alternativas !



PRIMER CASO
P;P; = P;P; paratodosi,j € {1,2,3}.




PRIMER CASO
P;P; = P;P; para todosi,j € {1,2,3}.
Existe W invertible tal que P; = W(I & 0)W 1.



PRIMER CASO

P;P; = P;P; para todosi,j € {1,2,3}.

Existe W invertible tal que P; = W(I & 0)W 1.
Se representa

_ A1 A2\ (-1 _ B1 By (-1
PZ—W<A3 A4)W , P3—W<B3 B4>W .



PRIMER CASO

P;P; = P;P; para todosi,j € {1,2,3}.

Existe W invertible tal que P; = W(I & 0)W 1.
Se representa

_ A1 A2\ (-1 _ B1 By (-1
PZ—W<A3 A4)W , P3—W<B3 B4>W .

PP, = P,P4

L (1 0\ (A A\ _ (A A\ (10
0 0/\A;s Ay)  \A; A J\o 0

= A, =0, A; =0.



PRIMER CASO

P;P; = P;P; para todosi,j € {1,2,3}.

Existe W invertible tal que P; = W(I & 0)W 1.
Se representa

_ A1 A2\ (-1 _ B1 By (-1
PZ—W<A3 A4)W , P3—W<B3 B4>W .

PP, = P,P4

L (1 0) (A A2 _ (Ar A5\ (T 0
00)\A; A, \A; A \o 0
= A, =0, A; =0.

P.P; = P3P, = B, =0, B; =0.






P,=WXaeY)W! y P;3=W(SaT)W .

P,P; =P3P, = XS =SX, TY=YT.

P, P; proyectores = X, Y, S y T son proyectores.



P,=WXaeY)W! y P;3=W(SaT)W .
P,P; =P3P, = XS =SX, TY=YT.
P, P; proyectores = X, Y, S y T son proyectores.

c1P1 + Py + 1 P3 =
=W (I®0)+ca(XBY)+c3(SHT)| WL



P,=WXaeY)W! y P;3=W(SaT)W .

P,P; =P3P, = XS =SX, TY=YT.
P, P; proyectores = X, Y, S y T son proyectores.

c1P1 + Py + 1 P3 =
=W (I®0)+ca(XBY)+c3(SHT)| WL

c1I + c2X + ¢3S es proyector
<~ y
oY + 3T es proyector

c1P1+ 2Py + c3Ps
es proyector



c1I + c2X + ¢3S, X son proyectores y conmutan

(c1I+ c2X + ¢3S)X es proyector

4

(c1 + c2)X + ¢3XS es proyector.



PRIMER CASO (hermitico)
P;P; = P;P; para todosi,j € {1,2,3}.
P, =P parai=1,2,3.



PRIMER CASO (hermitico)
P;P; = P;P; para todosi,j € {1,2,3}.
P, =P parai=1,2,3.

Teorema: Sean {A;}f_; matrices normales tales que A;A; =
AjA; para todos i,j. Entonces existe W unitaria tal que
W*A,W es diagonal paratodoi=1,...,k.

Se puede suponer que Py, P, y P3 son diagonales.

Todas las soluciones obtenidas previamente son validas.



SEGUNDO CASO
P.P;, = P;P; parai € {2,3} P,P; 7& P,Ps.



SEGUNDO CASO
P.P;, = P;P; parai € {2,3} P,P; 7& P,Ps.

e P =W O)W_l, P, =W(X® Y)W_l, P; = W(S& T)W‘l.
e X, Y, S, T son proyectores.
e XS#ASX 6 YT #TY.

o ciI+ X +c3S y Y+ 3T son proyectores.



SEGUNDO CASO
P.P;, = P;P; parai € {2,3} P,P; 7& P,Ps.

e P =W O)W_l, P, =W(X® Y)W_l, P; = W(S& T)W‘l.
e X, Y, S, T son proyectores.
e XS#ASX 6 YT #TY.

o ciI+ X +c3S y Y+ 3T son proyectores.

SEGUNDO CASO. POSIBILIDAD 1

XS =SX, YT #TY.



SEGUNDO CASO
P.P;, = P;P; parai € {2,3} P,P; 7& P,Ps.

e P =W O)W_l, P, =W(X® Y)W_l, P; = W(S& T)W‘l.
e X, Y, S, T son proyectores.
e XS#ASX 6 YT #TY.

o ciI+ X +c3S y Y+ 3T son proyectores.

SEGUNDO CASO. POSIBILIDAD 2

XS # SX.



Se ha reducido el problema original al siguiente:

PROBLEMA.

X2 = X
S22 =S ¢ Cuando c1I + c2X + ¢3S es proyector?
XS # SX



La idempotencia de c1I 4 c2X 4 ¢3S implica

C2C3(XS O SX) = C1(1 — Cl)I —|—C2(1 —2c1— C2)X—|—C3(1 —2c1 — C3)S.



La idempotencia de c1I 4 c2X 4 ¢3S implica

C2C3(XS O SX) = C1(1 — Cl)I —|—C2(1 —2c1— C2)X—|—C3(1 —2c1 — C3)S.

Existe U invertible tal que X = U(I1& 0)U L.

A I\
UXU—<00,



La idempotencia de c1I 4 c2X 4 ¢3S implica

C2C3(XS O SX) = C1(1 — Cl)I —|—C2(1 —2c1— C2)X—|—C3(1 —2c1 — C3)S.

Existe U invertible tal que X = U(I1& 0)U L.

-1 i I 0 —1 o Sl SZ
UXU—(00 , U 'SU = S, S, )



La idempotencia de c1I 4 c2X 4 ¢3S implica

C2C3(XS O SX) = C1(1 — Cl)I —|—C2(1 —2c1— C2)X—|—C3(1 —2c1 — C3)S.

Existe U invertible tal que X = U(I1& 0)U L.

-1 i I 0 —1 o Sl SZ
UXU—(00 , U 'SU = S, S, )



La idempotencia de c1I 4 c2X 4 ¢3S implica

CzC3(XS—|—SX) = C1(1 — C1> I—|—€2(1 —2c1 — C22X—|—E3(1 —2c1 — C3ZS.

o B Y

Existe U invertible tal que X = U(I1® 0)U L.

-1 . I 0 ~1 o Sl SZ
UXU—(00 , U 'SU = S, S, )

281 S\ (10 10 S; S,
o (900) == 1)+ 0) (s 5)



2C1+C2—|—C3:1.

Se substituye esto en

C2C3(XS + SX) = C1(1 = Cl)I —I-Cz(l —2c1 — C2)X-|—C3(1 —2c1 — C3)S
y se obtiene

C1(C1 — 1)

_ . 2
- l=(x-8)



SEGUNDO CASO (hermitico)
P.P;, = P;P; parai € {2,3} P,P; 7& P,Ps.
P, =P parai=1,2,3.



SEGUNDO CASO (hermitico)

P.P;, = P;P; parai € {2,3} P,P; 7& P,Ps.
P, =P parai=1,2,3.

Existe W unitaria tal que

e P =W(IB0OW*, P, =W(XBY)W*, P;=W(SET)W".
e X, Y, S, T son proyectores ortogonales.
e XS#SX 6 YT #TY.

o ciI + X+ ¢3S y Y+ 3T son proyectores.



SEGUNDO CASO (hermitico)

P.P;, = P;P; parai € {2,3} P,P; 7& P,Ps.
P, =P parai=1,2,3.

Existe W unitaria tal que

e P =W(IB0OW*, P, =W(XBY)W*, P;=W(SET)W".
e X, Y, S, T son proyectores ortogonales.

e XS #SX 6 YT#TY.

o ciI + X+ ¢3S y Y+ 3T son proyectores.

SEGUNDO CASO (hermitico). Posibilidad 1

XS =SX, YT #TY.



SEGUNDO CASO (hermitico)

P.P;, = P;P; parai € {2,3} P,P; 7& P,Ps.
P, =P parai=1,2,3.

Existe W unitaria tal que

e P =W(IB0OW*, P, =W(XBY)W*, P;=W(SET)W".
e X, Y, S, T son proyectores ortogonales.

e XS #SX 6 YT#TY.

o ciI + X+ ¢3S y Y+ 3T son proyectores.

SEGUNDO CASO (hermitico). Posibilidad 2

XS # SX.



SEGUNDO CASO (hermitico). POSIBILIDAD 2

XS # SX.
Se obtuvo en el caso no necesariamente hermitico
— 1l
alea =Dy x_g)p

C2C3



SEGUNDO CASO (hermitico). POSIBILIDAD 2

XS # SX.
Se obtuvo en el caso no necesariamente hermitico
— 1l
alea =Dy x_g)p
CoC3

Recordemos que X y S son hermiticas.

C1<C1-—-1)

—T=(X=8)(X-8)"



SEGUNDO CASO (hermitico). POSIBILIDAD 2

XS # SX.
Se obtuvo en el caso no necesariamente hermitico
—1
ala—1)y_ (X —S)2.
CoC3
Recordemos que Xy S son hermiticas.
—1
a@ =Dy x_s)x—s)

CoC3

Luego
C1 (C1 — 1)

> 0.
C2C3



TERCER CASO
PP, = P,P; y ademads P;P; # P3P; parai € {1,2}.



TERCER CASO
PP, = P,P; y ademads P;P; # P3P; parai € {1,2}.

P, =W(I®0)W!



TERCER CASO
PP, = P,P; y ademads P;P; # P3P; parai € {1,2}.

P, =W(I®0)W!

P, = W(X& Y)W}, siendo X e Y proyectores



TERCER CASO
PP, = P,P; y ademads P;P; # P3P; parai € {1,2}.

P, = W(I @ 0)W!
P, = W(X& Y)W}, siendo X e Y proyectores

_ K L 1 ,
P3—W(M N)W , dondeL#0 6 M # 0

Supondremos de ahora en adelante que L # 0.



La idempotencia de c1 Py + c;P; + c3P3 implica

2¢1¢,P1Py + c1¢3(P1P3 + P3Py) + coc3(PoP3 + P3P)
= C1(1 — C1)P1 + C2(1 — C2)P2 + C3(1 — C3)P3.

Por tanto

oo, (X0 e (LY XK + KX XL +LY
230 0 =AM o0 253 \YM + MX YN +NY

=c1(l1—a) <(I) g) +02(1—c2) G)( 3) +c3(1 —c3) (151 ;)



La idempotencia de c1 Py + c;P; + c3P3 implica

2¢1¢,P1Py + c1¢3(P1P3 + P3Py) + coc3(PoP3 + P3P)
= C1(1 — C1)P1 + C2(1 — C2)P2 + C3(1 — C3)P3.

Por tanto

oo, (X0 e (LY XK + KX XL +LY
230 0 =AM o0 253 \YM + MX YN +NY

=c1(l1—a) <(I) g) +02(1—c2) G)( 3) +c3(1 —c3) (151 ;)

(C1 + C3 — 1)1_. =F Cz(XL F LY) = 0.



Recordemos que X e Y son proyectores.
Existen matrices invertibles U y V tales que

X=U{Ia0)U! e Y=V(Ip0)V .
N—— N——
Dy Dy



Recordemos que X e Y son proyectores.
Existen matrices invertibles U y V tales que

X=U{Ia0)U! e Y=V(Ip0)V .
N—— N——
Dy Dy

(c1+c3—1)L+c2(XL+LY) = 0.



Recordemos que X e Y son proyectores.
Existen matrices invertibles U y V tales que

X=U{Ia0)U! e Y=V(Ip0)V .
N—— N——
Dy Dy

(c1+c3— 1)L+ c2(UDxU 'L+ LVDyV 1) = 0.



Recordemos que X e Y son proyectores.
Existen matrices invertibles U y V tales que

X=U{Ia0)U! e Y=V(Ip0)V .
N—— N——
Dy Dy

(c1+c3— 1)L+ c2(UDxU 'L+ LVDyV 1) = 0.

(c14+c3— 1)ULV + (DU 'LV + U 'LVDy) = 0.



Recordemos que X e Y son proyectores.
Existen matrices invertibles U y V tales que

X=U{Ia0)U! e Y=V(Ip0)V .
N—— N——
Dy Dy

(c1+c3— 1)L+ c2(UDxU 'L+ LVDyV 1) = 0.

(c14+c3— 1)U 'LV + (DU 'LV + U 'LVDy) = 0.



Recordemos que X e Y son proyectores.
Existen matrices invertibles U y V tales que

X=U{Ia0)U! e Y=V(Ip0)V .
N—— N——
Dy Dy

(c1+c3— 1)L+ c2(UDxU 'L+ LVDyV 1) = 0.

(c14+c3— 1)U 'LV + (DU 'LV + U 'LVDy) = 0.

L L, 2L; L, (0 0
(1 +es—1) <L3 L4>+C2<L3 0)‘(0 0)‘



c1+2c+c3=1 6 c1+ca+cz3=1 6 c1+c3=1.




C1—|—2C2—|—C3:1 o) C1—|—C2+C3:1 0 C1—|—C3:1.

Intento: Substituir estas condiciones en
2c102P1Py 4 c1¢3(P1P3 + P3P1) + coc3(PoP3 + P3Ps)

= Cl(l = C1)P1 + Cz(l = Cz)Pz + 03(1 = C3)P3.



TERCER CASO
PP, = P,P; y ademads P;P; # P3P; parai € {1,2}.

c1+200+c=1 6 c1+cr+cz=1 6 c1+c3=1.



C1—|—2C2—|—C3:1 o) C1—|—C2+C3:1 0 C1—|—C3:1.
y

2C1—|—C2—|—C3:1 o) C1—|—C2—|—C3:1 o) C2—|—C3:1.



C1—|—2C2—|—C3:1 o) C1—|—C2+C3:1 0 C1—|—C3:1.
y

2C1—|—C2—|—C3:1 o) C1—|—C2—|—C3:1 o) C2—|—C3:1.

c1+200+cz=1 ci+cx+cz3=1 c1+cz3=1

2c1+c+c3=1 * * *
cit+c+cez=1 * * *
cp+c3=1 * * *




C1—|—2C2—|—C3:1 o) C1—|—C2+C3:1 0 C1—|—C3:1.
y

2C1—|—C2—|—C3:1 o) C1—|—C2—|—C3:1 o) C2—|—C3:1.

c1+200+cz=1 ci+cx+cz3=1 c1+cz3=1

2cit+c+c3=1 * c1 =20 *

ci+c+cez=1 co =0 * ;=0

co+c3=1 * c1 =20 *



C1—|—2C2—|—C3:1 o) C1—|—C2+C3:1 0 C1—|—C3:1.
y

2C1—|—C2—|—C3:1 o) C1—|—C2—|—C3:1 o) C2—|—C3:1.

c1+2c+c3=1 c1+c2+cz3=1 c1+cz=1

_ 1 =0 c1+cp=0
2C1+C2+C3_1 {3C1+C3:0} ClKO {C1+C3:1}
cit+cr+cz3=1 Cz)g() c1+cr+cez3=1 CQXO

cp+cz=1 c1+c=1

cot+c3=1 {61—1-6220} Cl)go { c1=c }



Ahora basta substituir estas condiciones en

2C1C2P1P2 + C1C3(P1P3 = P3P1) + C2C3(P2P3 I Png)

= C1(1 — C1)P1 + Cz(l — Cz)Pz + C3(1 — C3)P3.



TERCER CASO (hermitico)
PP, = P,P; y ademads P;P; # P3P; parai € {1,2}.
P, =P parai=1,2,3.



TERCER CASO (hermitico)

PP, = P,P; y ademads P;P; # P3P; parai € {1,2}.
P, =P parai=1,2,3.

Existe W unitaria tal que

P, = W(I D O)W_l,
P, = W(X® Y)W, siendo X e Y proyectores ortogonales,

P3:w(llﬁ ;)W_l, donde L # 0, K = K*, N = N*.

La idempotencia de P3 implica (entre otras cosas)

N = L*L + N?2.



Se obtuvo en el caso no hermitico

m_a idempotencia de ¢1 P + caPy + c3P3 implica \

2c1cP1 Py + C1C3(P1P3 + P3P1) -+ C2C3(P2P3 + P3P2)
= C1(1 — Cl)Pl -+ C2(1 — Cz)Pz —+ C3(1 — C3)P3.

Por tanto

peres (X O) oo, (2K LY, (XK+KX  XL+LY
%280 o IBAM o 258 \YM +MX YN+ NY

\: a(1—c) <(I) g) +c2(1 —cp) (i)( 2) +c3(1 —c3) <1I\</[ 1]\}) j




Se obtuvo en el caso no hermitico

m_a idempotencia de ¢1Pq + cpPy + c3P3 implica

2c1cP1 Py + C1C3(P1P3 + P3P1) -+ C2C3(P2P3 + P3P2)
= C1(1 — Cl)Pl -+ C2(1 — Cz)Pz —+ C3(1 — C3)P3.

Por tanto
peron (X0 e 2K L © e XK+ KX XL+LY
%280 o IBAM o 25 \YM + MX YN +NY

=c1(1—c1) <(I) g) +c2(1—¢2) (i)( 3) +c3(1 —¢3) (I{(,[ 1]\})

o

C2C3(YN + NY) = C2(1 — Cz)Y + C3(1 — C3)N.



Se obtuvo en el caso no hermitico

-

c1+20+c3=1

ci1+cp+cez=1

~

2c1+c+c3=1

ci+et+ca=1

cp+c3=1

N

C1 =0C
3c1+c3=0

0

c1+c=0
cp+c3=1

0

ci+et+a=1

0

{
{

c1+cz3=1
c1+c=0
c1+c3=1
CXO
€1 =20C2
c1+c3=1

|
Y,




Se obtuvo en el caso no hermitico

4 )

c1+2c0+c3=1 c1+ca+e=1 c1+c3=1

2c1+cr+cz=1 { =02 } CXO {C1+C2:0}

3ci+c3=0 c1+ecz3=1

ci+cep+e=1 C 0 ci+cp+cez=1 C 0
_ c1+c=0 €1 =02

Se substituye c; +c3 = 1 en

C2C3(YN F NY) = Cz(l — Cz)Y F C3(1 — C3)N,

y se consigue
YN +NY=Y-+N.



N = L*L + N2
= YN +NY—Y = L*L + N?
YN+NY=Y+N



N = L*L + N2
= YN +NY—Y = L*L + N?
YN+NY=Y+N

Como Y es proyector,

L'L+(N-Y)*=0.



N = L*L + N2
= YN +NY—Y = L*L + N?
YN+NY=Y+N

Como Y es proyector,

L'L+(N-Y)*=0.

Como Y y N son hermiticos,

L'L+ (N - Y)(N — Y)* = 0.



N = L*L + N2
= YN +NY—Y = L*L + N?
YN+NY=Y+N

Como Y es proyector,

L'L+(N-Y)*=0.

Como Y y N son hermiticos,

L'L+ (N - Y)(N — Y)* = 0.



=1
+C3—
=1 C1

C3 =

1 c1+c+

+C3 =

+ 2¢

C1

=0
C1+C2:1}
+c3 =
C1>g0 {CSXO
2
=1
e } I Ty =
By { 3C1>+£3020 C1+ Co
+C3—
Co :
2C1—|‘
+c+ce3=1
C1

(%2
01Xc0

c1—|—>Q:O}

+c3=1 {

c1+ecz=1
=1
Cr +C3



c1i+20+c3=1 ci1+c+cz3=1 c1+c=1

_ 1=y a1+ =0
2+t =1 {3C1+C3:0} C1>g0 {C1+>‘§3:1}

cit+cr+c3=1 Cz)go ci+c+c3=1 CZXO

cp+c3=1 {Cl—'—xzo} Cl)g() { Clxcz }

c2+ecz=1 c1t+c=1




