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Universidad Politécnica de Valencia. (2002).
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3. Applications of differential geometry to cartography.
International Journal of Mathematical Education in Science in
Technology. (2004).
Coautor: Néstor Thome.

4. Why it is impossible to make a perfect map?
International Journal of Mathematical Education in Science in
Technology. (2005).



Comunicaciones presentadas a congresos

De investigación

1. Combinación lineal de proyectores vs. matrices {4}-periódicas
de grupo.
CEDYA 2003.
Coautor: Néstor Thome.

2. Una versión revisada de resultados sobre matrices idempotentes
y tripotentes.
CEDYA 2005.
Coautor: Néstor Thome.



Comunicaciones presentadas a congresos

Docentes
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Dept. Matemática Aplicada. U.P.V. (2001).
Coautor: Néstor Thome.

2. La motivación en la enseñanza de la Metemática. Una apli-
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Jornadas de Innovación Docente: La enseñanza de las Mate-
máticas y proyecto EUROPA.
Dept. Matemática Aplicada. U.P.V. (2001).
Coautor: Néstor Thome.



3. Algunos aspectos de innovación educativa en la asignatura de
análisis vectorial de la E.T.S.I. de Telecomunicación de la Uni-
versidad Politécnica de Valencia.
I jornadas de innovación educativa. Metodoloǵıas activas y
evaluación.
U.P.V. (2001).
Coautores: Néstor Thome y Juan Ramón Torregrosa.

4. Soporte Multimedia en la Docencia del Análisis Vectorial.
I Jornada sobre enseñanza en las escuelas técnicas de teleco-
municación.
U.P.V. (2003).
Coautores: Néstor Thome y Juan Ramón Torregrosa.
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Índice

1. Metodoloǵıa docente.

2. Programa de Álgebra Lineal.

3. Programa de Ecuaciones Diferenciales Ordinarias.

4. Programa de Análisis Vectorial.

5. Programa de Matemáticas.



1. Metodoloǵıa docente

La enseñanza de las matemáticas en las escuelas técnicas

• Qué matemáticas hay que impartir y cómo hacerlo.

• ¿Cómo motivar al alumno en las clases de matemáticas?

• Errores:

– Suponer que un estudiante de una carrera técnica está in-
teresado en las matemáticas como un fin en śı mismas.

– Esquema

Definición ⇒ Ejemplos ⇒

⇒ Teorema ⇒ Demostración ⇒ Corolarios



• ¿Para qué sirven las matemáticas?

• Conexión con otras asignaturas de la carrera.

Esquema propuesto

Problema real ⇒ Formulación matemática ⇒

⇒ Teoŕıa ⇒ Validación ⇒ Predicciones



Caracteŕısticas generales

• No distinción entre clases teóricas y de problemas.

• Ejemplos

– Comprobación de la teoŕıa..

– Los positivos y los negativos.

– No se referirán sólo a las matemáticas, sino también a otras
ciencias.

• Evitar las demostraciones no constructivas.



Evaluación
Optaremos por el clásico examen.

1. Amplitud (evitar el factor suerte).

2. Cuestiones teóricas y problemas (evitar los exámenes de natu-
raleza memoŕıstica).

3. Uso correcto del lenguaje propio de la asignatura.

4. Simultaneidad en todos los alumnos del mismo curso (evitar
los agravios comparativos entre exámenes distintos).

5. Un mismo profesor debe corregir la misma pregunta a todos
los alumnos, incluso a los de grupos a los cuales el profesor no
imparta clase.



Índice

� Metodoloǵıa docente.

2. Programa de Álgebra Lineal.

3. Programa de Ecuaciones Diferenciales Ordinarias.

4. Programa de Análisis Vectorial.

5. Programa de Matemáticas.



Programa de Álgebra Lineal (1)

Seis Créditos

1. Geometŕıa de IR2 y IR3.

2. Matrices.

3. Sistemas de ecuaciones lineales.

4. Espacios vectoriales.

5. Aplicaciones lineales.

(...)



Programa de Álgebra Lineal (y 2)

(...)

6. Curvas de Bézier.

7. Espacio vectorial eucĺıdeo.

8. Aproximación por mı́nimos cuadrados.

9. Teoŕıa espectral.

10. Aplicaciones de la teoŕıa espectral.



1. Geometŕıa de IR2 y IR3

1.1 La geometŕıa y el álgebra de vectores.

1.2 El producto escalar.

1.3 Usos geométricos del producto escalar.

1.4 El producto vectorial.

1.5 Ecuaciones de rectas y planos.



2. Matrices

2.1 Primeras definiciones.

2.2 Potencias de matrices.

2.3 Determinante de una matriz cuadrada.

2.4 Inversa de una matriz cuadrada.

2.5 Matrices por bloques.



3. Sistemas de ecuaciones lineales

3.1 Sistemas lineales.

3.2 El método de eliminación de Gauss.

3.3 Factorización LU de una matriz.

3.4 Algoritmo de Gauss-Jordan para el cálculo de la inversa de una
matriz.

3.5 Pivotación parcial.



4. Espacios vectoriales

4.1 Definiciones y primeras propiedades.

4.2 Subespacios vectoriales.

4.3 Bases en un espacio vectorial.

4.4 Cálculo coordenado en un espacio vectorial de dimensión finita.



5. Aplicaciones lineales

5.1 Definición y ejemplos.

5.2 La matriz asociada a una aplicación lineal.

5.3 Aplicaciones afines.

5.4 El núcleo y la imagen de una aplicación lineal.



6. Curvas de Bézier

6.1 El algoritmo de De Casteljau.

6.2 Curvas de Bézier y polinomios de Bernstein.

6.3 Propiedades de las curvas de Bézier.

6.4 Vectores tangentes.



7. Espacio vectorial eucĺıdeo

7.1 Producto escalar.

7.2 Norma y ángulo en un espacio eucĺıdeo.

7.3 Proyecciones sobre subespacios.

7.4 Bases ortogonales y proceso de Gram-Schmidt.

7.5 Matrices ortogonales. Factorización QR.



8. Aproximación por ḿınimos cuadrados

8.1 Método de los mı́nimos cuadrados.

8.2 Ajuste de datos.

8.3 Mı́nimos cuadrados ponderados.

8.4 Distancia entre variedades lineales.



9. Teoŕıa espectral

9.1 Conceptos básicos.

9.2 Diagonalización de matrices.

9.3 Diagonalización de matrices simétricas.



10. Aplicaciones de la teoŕıa espectral

10.1 Potencias de matrices.

10.2 Cálculo de sucesiones dadas por recurrencia lineal.

10.3 Cadenas de Márkov lineales.

10.4 Identificación de cónicas y cuádricas.
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� Metodoloǵıa docente.

� Programa de Álgebra Lineal.

3. Programa de Ecuaciones Diferenciales Ordinarias.
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Programa de Ecuaciones Diferenciales Ordinarias

Tres Créditos

1. Ecuaciones diferenciales de primer orden.

2. Ecuaciones diferenciales lineales de orden n.

3. Aplicaciones de las ecuaciones diferenciales.

4. Sistemas lineales de ecuaciones diferenciales.

5. Cálculo variacional.



1. Ecuaciones diferenciales de primer orden

1.1 Ecuaciones separables y reducibles a separables.

1.2 Ecuaciones exactas y reducibles a exactas.

1.3 Ecuaciones lineales de primer orden.

1.4 Algunos ejemplos de las ecuaciones diferenciales de primer or-
den.

1.5 Trayectorias ortogonales y oblicuas.



2. Ecuaciones diferenciales lineales de orden n

2.1 La ecuación lineal de orden n.

2.2 La ecuación lineal homogénea de coeficientes constantes.

2.3 Búsqueda de soluciones particulares de la ecuación no homogénea.

2.4 Ecuación de Euler-Cauchy.



3. Aplicaciones de las ecuaciones diferenciales

3.1 Vibraciones en sistemas mecánicos y circuitos eléctricos.



4. Sistemas lineales de ecuaciones diferenciales

4.1 Introducción.

4.2 Propiedades de los sistemas de ecuaciones diferenciales lineales.

4.3 Sistemas homogéneos de coeficientes constantes.

4.4 Búsqueda de una solución particular en los sistemas no ho-
mogéneos.

4.5 Sistemas de ecuaciones diferenciales lineales de orden superior.



5. Cálculo variacional

5.1 Introducción.

5.2 La ecuación de Euler.

5.3 Integrales con más de una función argumento.

5.4 Problemas condicionados.



Índice

� Metodoloǵıa docente.

� Programa de Álgebra Lineal.

� Programa de Ecuaciones Diferenciales Ordinarias.

4. Programa de Análisis Vectorial.

5. Programa de Matemáticas.



Programa de Análisis Vectorial

Cuatro Créditos y Medio

1. Curvas parametrizadas.

2. Integrales de ĺınea.

3. Superficies parametrizadas.

4. Integrales de superficie.

5. Campos conservativos y solenoidales.

6. Coordenadas curviĺıneas ortogonales.

7. El campo gravitatorio y electrostático.

8. El campo magnético.



1. Curvas parametrizadas

1.1 Ejemplos.

1.2 Vectores tangentes.

1.3 Curvas regulares.

1.4 Longitud de arco.

1.5 Movimiento de una part́ıcula.



2. Integrales de ĺınea

2.1 Integrales curviĺıneas de campos escalares.

2.2 Integral curviĺınea de un campo vectorial.

2.3 El teorema de Green.



3. Superficies parametrizadas

3.1 Definición y ejemplos de superficies parametrizadas.

3.2 El plano tangente.



4. Integrales de superficie

4.1 Integrales de superficie de campos escalares.

4.2 Integrales de superficies de campos vectoriales.

4.3 El teorema de Gauss-Ostrogradsky.

4.4 El teorema de Stokes.



5. Campos conservativos y solenoidales

5.1 Campos conservativos.

5.2 Campos solenoidales.



6. Coordenadas curviĺıneas ortogonales

6.1 Repaso de las coordenadas polares, ciĺındricas y esféricas.

6.2 Definición de las coordenadas curviĺıneas ortogonales.

6.3 Los operadores diferenciales en coordenadas curviĺıneas orto-
gonales.



7. El campo gravitatorio y electrostático

7.1 El potencial gravitatorio y electrostático.

7.2 La ley de Gauss.



8. El campo magnético

8.1 Fluidos.

8.2 La derivada material.

8.3 El teorema del transporte.

8.4 La ecuación de continuidad.

8.5 La ley de Lorentz y la ley de Biot y Savart.

8.6 Propiedades del campo magnético.

8.7 Las ecuaciones de Maxwell.



Índice

� Metodoloǵıa docente.

� Programa de Álgebra Lineal.

� Programa de Ecuaciones Diferenciales Ordinarias.

� Programa de Análisis Vectorial.

5. Programa de Matemáticas.



Programa de Matemáticas

Seis Créditos

1. Funciones de variable compleja.

2. La transformada de Fourier.

3. La transformada de Laplace.

4. Soluciones de ecuaciones diferenciales de segundo orden me-
diante series de potencias.

5. Series de Fourier.

6. Problemas de Sturm-Liouville y desarrollos en serie de auto-
funciones.



1. Funciones de variable compleja

1.1 Introducción y preliminares.

1.2 Funciones holomorfas.

1.3 La exponencial y el logaritmo complejo.

1.4 Integración en el plano complejo.

1.5 Singularidades aisladas, series de Laurent y cálculo de residuos.

1.6 El Teorema de los Residuos.



2. La transformada de Fourier

2.1 Transformada de Fourier y primeras propiedades.

2.2 Resolución de la ecuación del calor en una varilla infinita.

2.3 Convolución de funciones.

2.4 Transformadas de Fourier en senos y cosenos.



3. La transformada de Laplace

3.1 Primeras propiedades.

3.2 La Fórmula de inversión de Laplace.

3.3 Las ecuaciones integrales de Volterra.

3.4 La transformada de Laplace y las ecuaciones en derivadas par-
ciales.



4. Soluciones de ecuaciones diferenciales de se-
gundo orden mediante series de potencias

4.1 Soluciones mediante series alrededor de un punto regular.

4.2 Soluciones mediante series alrededor de un punto singular-regular.

4.3 Funciones de Bessel.



5. Series de Fourier

5.1 Primeras propiedades de las series de Fourier.

5.2 Método de separación de variables.



6. Problemas de Sturm-Liouville y desarrollos en
serie de autofunciones

6.1 Introducción al método de autofunciones.

6.2 Problemas de Sturm-Liouville homogéneos.

6.3 Problemas de Sturm-Liouville no homogéneos.

6.4 Resolución de ecuaciones en derivadas parciales mediante series
de autofunciones.



Proyecto de investigación

Julio Beńıtez López



Índice

1. Diferenciabilidad en espacios de Banach.

2. Análisis matricial.

3. Diseño geométrico asistido por ordenador.



Diferenciabilidad en espacios

de Banach



Disitintas formas de diferenciabilidad

Definición. Sean D abierto de X, f : D → IR y x ∈ D.

• f es Gâteaux diferenciable (GD) en x si

dfx(u) = lim
t→0

f(x + tu)− f(x)

t

existe ∀ u ∈ BX y dfx ∈ X∗.

• f es Fréchet diferenciable (FD) en x si

f ′(x)(u) = lim
t→0

f(x + tu)− f(x)

t

existe ∀ u ∈ BX , es uniforme para u ∈ BX y f ′(x) ∈ X∗.



• f es fuertemente subdiferenciable (SSD) en x si

d+fx(u) = lim
t→0+

f(x + tu)− f(x)

t

existe ∀ u ∈ BX y es uniforme para u ∈ BX .



Teorema (Mazur-1933). Sean D un abierto convexo de X y
f : D → IR continua. Si X es separable entonces el conjunto de
puntos donde f es GD es un subconjunto Gδ denso de D.

Definición. X es un espacio de Asplund si cualquier función
continua convexa definida en un abierto convexo D ⊂ X es FD en
un subconjunto Gδ denso de D.



Existe un bump FD Existe un bump SSD

‖ · ‖ FD X es Asplund

66

����������������������:

-

-

Fácil

Trivial

Ekeland, Lebourg (1976)

???

Leach, Whitefield (1972
)

• Existe un espacio de Asplund que no posee una norma GD.
(Haydon, 1990).

• Interesa encontrar condiciones geométricas que no impliquen
la GD de la norma para que el espacio sea de Asplund.



Proposición. Sean D un abierto convexo de X, f : D → IR
convexa y sea x0 ∈ D. Entonces f es GD en x0 si y sólo si existe
un único x∗ ∈ X∗ tal que

〈x− x0, x
∗〉 ≤ f(x)− f(x0), ∀x ∈ D.

e
��

���
���

���
��

x0 x X

IR

〈x− x0, x
∗〉

f(x)− f(x0)



Definición. Sea f : X → IR ∪ {+∞} convexa, propia e in-
feriormente ‖ · ‖-semicontinua. Si x ∈ dom(f) y ε ≥ 0, la ε-
subdiferencial de f en x es

∂εf(x) = {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x) + ε, ∀y ∈ X}.

La subdiferencial es ∂f = ∂0f .

Proposición. Si f : D → IR es continua y convexa, siendo
D un abierto convexo, entonces ∂f(x) es w∗-compacto, convexo no
vaćıo de X∗.



Continuidad de la subdiferencial

Definición. Sea Φ : X → P(X∗) y τ una topoloǵıa en X∗.

• Φ es superiormente τ semicontinua en x ∈ X (τUSC)
si para cada τ -abierto U que verifique Φ(x) ⊂ U , existe un
entorno V de x tal que Φ(y) ⊂ U para todo y ∈ V .

• Φ es inferiormente τ semicontinua en x ∈ X (τLSC) si
para cada τ -abierto U que verifique Φ(x) ∩ U 6= ∅, existe un
entorno V de x tal que Φ(y) ∩ U 6= ∅ para todo y ∈ V .

• Φ es restringida superiormente τ semicontinua en x ∈ X

(RτUSC) si para cada U , τ -entorno de 0 en X∗, existe V ,
entorno de x tal que Φ(y) ⊂ Φ(x) + U para todo y ∈ V .



• ∂f es siempre es w∗USC.

• ∂f es ‖ · ‖LSC ⇐⇒ f es FD .

• ∂f es w∗LSC ⇐⇒ f es GD.

• ∂f es R‖ · ‖USC ⇐⇒ f es SSD.

• ∂‖ · ‖ es RwUSC ⇒ X de Asplund. (Contreras y Payá 1994).

• ∂f es RwUSC ⇐⇒ (Beńıtez y Montesinos, 2000).



Definición. Sea f : X → IR ∪ {+∞} propia, convexa e infe-
riormente semicontinua. La conjugada de Fenchel de f es

f ∗(x∗) = sup{〈x, x∗〉 − f(x) : x ∈ X}, f ∗ : X∗ → IR ∪ {∞}.

• f ∗ es convexa, inferiormente w∗-semicontinua y propia.

Teorema. (Fenchel-Moreau) Sea f : X → IR ∪ {∞} propia
inferiormente semicontinua y convexa. Si x ∈ dom(f), entonces
f(x) = f ∗∗(x).



Teorema. Sean f : D → IR una función continua y convexa,
siendo D un abierto convexo no vaćıo de X y x ∈ D. Equivalen

1. ∂f es RwUSC en x.

2. Para todo N , w-entorno de 0 en X∗, existe ε > 0 tal que
∂εf(x) ⊂ ∂f(x) + N .

3. Dados ε > 0 y u∗∗ ∈ SX∗∗, existe δ > 0 tal que

f ∗∗(x + tu∗∗)− f(x)

t
− sup{〈u∗∗, x∗〉 : x∗ ∈ ∂f(x)} < ε,

para cualquier 0 < t < δ.



En la definición de FD, GD y SSD no se exige que f sea convexa;
sin embargo una hipótesis esencial en el teorema anterior es que f

sea convexa.
Problema. Sea f : D → IR, en donde D es un abierto de X.

¿Existe una caraterización mediante cocientes diferenciales para f
(y sólo para f) de modo que si f es convexa, se obtenga el teorema
anterior?

Definición. Sea f : D → IR localmente Lipschitz, siendo D un
abierto de X. La derivada de Clarke en x ∈ D es

f ◦(x, v) = lim sup
y→x;λ↓0

f(y + λv)− f(y)

λ
.

La subdiferencial de Clarke es

∂◦f(x) = {x∗ ∈ X∗ : f ◦(x, v) ≥ 〈v, x∗〉,∀v ∈ BX}.



Índice

� Diferenciabilidad en espacios de Banach.

2. Análisis matricial.

3. Diseño geométrico asistido por ordenador.



Análisis Matricial



Combinaciones lineales de matrices

Problema general. A 6= B ∈ Cn×n \ {0}, a, b ∈ C

A cumple PA

B cumple PB

X = aA + bB

 X cumple PX ⇐⇒ ¿a, b, A,B?



Problema resuelto. (Baksalary y Baksalary, 2000)

A2 = A

B2 = B

X = aA + bB

 X2 = X ⇐⇒ ¿a, b, A,B?

Problema resuelto. (Baksalary, Baksalary y Styan, 2002)

A2 = A

B3 = B

X = aA + bB

 X2 = X ⇐⇒ ¿a, b, A,B?



Problema resuelto. (Beńıtez y Thome, 2005)

A2 = A

Bk+1 = B

AB = BA

X = aA + bB

 X2 = X ⇐⇒ ¿a, b, A,B?

Diagonalización simultánea.



Problema.

A2 = A

Bk+1 = B
AB 6= BA

X = aA + bB

 X2 = X ⇐⇒ ¿a, b, A,B?

∃S : S−1BS = diag(λ1, . . . , λn), λk+1
i = λi.

B ↔ S−1BS; A ↔ S−1AS.
Si n = 2

A =

(
a11 a12

a21 a22

)
, B =

(
λ 0
0 µ

)
, λ 6= µ.

X2 = X, A2 = A ⇒ · · · ⇒ a + b(λ + µ) = 1.

Problema. Generalizar este argumento para matrices n× n.



Problema.

A2 = A

B es diagonalizable
AB 6= BA

X = aA + bB

 X2 = X ⇐⇒ ¿a, b, A,B?

Conjetura.

A2 = A

B es diagonalizable
AB 6= BA

X = aA + bB


X2 = X =⇒

∃λ, µ ∈ σ(B) :

{
λ 6= µ,

1 = a + b(λ + µ).

}



Problema.

A2 = A

B no es diagonalizable
AB 6= BA

X = aA + bB

 X2 = X ⇐⇒ ¿a, b, A,B?

Conjetura.

A2 = A

B no es diagonalizable
AB 6= BA

X = aA + bB


X2 = X =⇒

∃λ, µ ∈ σ(B) : 1 = a + b(λ + µ).



Dos maneras posibles de atacar este último problema.

1. B = SJS−1, en donde J es la forma canónica de Jordan de B.

2. Usar la densidad en Cn×n de las matrices diagonalizables de
orden n.

Se define Φ : Cn×n × Cn×n → P(C2) dada por

Φ(X, Y ) = {(x, y) ∈ C2 : (xX + yY )2 = xX + yY }

y se denota por Cn×n
P el conjunto de los proyectores de orden n.

Problema. Estúdiense las propiedades topológicas de Φ. ¿Qué
ocurre si se restringe Φ a Cn×n

P × Cn×n?



Problema resuelto. (Baksalary y Beńıtez, 2006)

A2 = A

B2 = B

C2 = C

X = aA + bB + cC

?


AB = BA, AC = CA, BC = CB ó
AB = BA, AC = CA, BC 6= CB ó
AB = BA, AC 6= CA, BC 6= CB.




X2 = X

m
¿a, b, c, A,B,C?

• AB = BA = 0, (a, b) = (1,−1) ⇒ (aA + bB)3 = aA + bB.

Problema. Substituir ? por AB 6= BA, AC 6= CA, BC 6= CB.



Problema resuelto. (Bakasalry, Baksalary y Groß, 2006)

A2 = A+

B2 = B+

? AB = BA = αA2 + βB2

X = aA + bB

 X2 = X+ ⇐⇒ ¿a, b, A,B?

Problema. Substituir ? por AB = BA.
Teorema. (Hartwig y Spindelböck, 1986.) Equivalencia de las

EP-matrices. Sea A ∈ Cn×n. Son equivalentes

• A y A+ tienen el mismo espacio columna.

• AA+ = A+A.

• ∃U unitaria y K invertible: A = U(K ⊕ 0)U ∗.



Problema. Sean A1 y A2 dos EP-matrices. Existen dos matri-
ces unitarias Ui y dos matrices invertibles Ki tales que

A1 = U1(K1 ⊕ 0)U ∗
1 , A2 = U2(K2 ⊕ 0)U ∗

2 .

¿Qué condición sobre U1, U2, K1 y K2 es necesaria y suficiente para
que A1A2 = A2A1?



Aspectos topológicos de la teoŕıa de matrices

Teorema. (Beńıtez 2006) Sea A ∈ Cn×n. Equivalen

• Para cada ε > 0 existe k ∈ IN tal que ‖Ak+1 − A‖ < ε.

• A es diagonalizable y σ(A) ⊂ {0} ∪ k
√

1.

Burde (2005) estudió la ecuación XA− AX = Xp, para p ∈ IN.
Problema. Sea A una matriz cuadrada. Hállese la matriz X

tal que alguna de las dos condiciones de debajo se cumple:

• ‖XA−XA−Xp‖ < ε para un p ∈ IN y ε > 0 dados.

• Para cada ε > 0, existe p ∈ IN tal que ‖XA− AX −Xp‖ < ε.



Teorema. Si A ∈ Cm×n, (Ak)
∞
k=1 ∈ Cm×n y limk→∞ Ak = A,

entonces las siguientes afirmaciones equivalen:

1. limk→∞ A+
k = A+.

2. Existe k0 ∈ IN tal que el rango de Ak coincide con el rango de
A para todo k ≥ k0.

3. sup{‖A+
k ‖ : k ∈ IN} < ∞.

Problema. ¿Existe una caracterización similar al teorema para
la continuidad de la inversa de grupo?



Índice

� Diferenciabilidad en espacios de Banach.

� Análisis matricial.

3. Diseño geométrico asistido por ordenador.



Diseño geométrico asistido por
ordenador



El algoritmo de de Casteljau
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db1
0(t)

db1
1(t)

tb2
0(t)

• Sean p0,p1,p2 ∈ IR3 y t ∈ [0, 1].
• Se construyen

b1
0(t) = (1− t)p0 + tp1,

b1
1(t) = (1− t)p1 + tp2

y

b2
0(t) = (1− t)b1

0(t) + tb1
1(t).

Cuando t vaŕıa entre 0 y 1, el punto b2
0(t) describe una curva.



Las curvas de Bézier

• La curva B[p0,p1,p2](t) = b2
0(t) se llama curva de Bézier.

• Los puntos p0,p1,p2 se llaman puntos de control.
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El algoritmo de de Casteljau
• Sean p0,p1, . . . ,pn ∈ IR3 y t ∈ [0, 1].
• Se construyen

b1
i (t) = (1− t)pi + tpi+1, i = 0, . . . , n− 1.

• Luego

b2
i (t) = (1− t)b1

i (t) + tb1
i+1(t), i = 0, . . . , n− 2.

• Y aśı progresivamente hasta

bn
0(t) = (1− t)bn−1

0 (t) + tbn−1
1 (t).

La curva bn
0 : [0, 1] → IR3 se llama curva de Bézier con puntos

de control p0, . . . ,pn.

bn
0 = B[p0, . . . ,pn].



Forma cerrada de las curvas de Bézier

Teorema. La curva generada por el algoritmo de de Casteljau
con puntos de control p0, . . . ,pn es

B[p0, . . . ,pn](t) =
n∑

k=0

Bn
k (t)pk, t ∈ [0, 1],

siendo Bn
k (t) =

(
n
k

)
tk(1− t)n−k los polinomios de Bernstein.



Propiedades

• B[p0, . . . ,pn](0) = p0 y B[p0, . . . ,pn](1) = pn.
• Invarianza af́ın: Si T : IR3 → IR3 es af́ın, entonces

T (B[p0, . . . ,pn](t)) = B[T (p0), . . . , T (pn)](t).

• Vectores tangentes.
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Dos defectos del algoritmo de de Casteljau

• No se pueden dibujar cónicas excepto parábolas.

• No es proyectivamente invariante.



Breve repaso del plano proyectivo real

• En IR3 \ {0} se define la r.b.e.

v ∼ w ⇐⇒ ∃λ ∈ IR \ {0} : v = λw.

• El plano proyectivo real es IP2 = (IR3 \ {0})/ ∼.

• Sus elementos son puntos proyectivos.

• La proyección canónica se denota π : IR3 \ {0} → IP2.

• Una recta proyectiva es un plano en IR2 que pasa por el
origen.

• El conjunto de las rectas proyectivas se denota por Λ(IP2).

• π∗ : IR3 \ {0} → Λ(IP2), π∗(w) = {x ∈ IR3 : wTx = 0}.



Los puntos afines

• La ecuación de la recta del infinito es z = 0.

• Un punto af́ın no pertenece a la recta del infinito.

• Si A(IP2) es el conjunto de los puntos afines, las aplicaciones

IR2 i→ A(IP2)
(x, y)T 7→ π(x, y, 1)T

A(IP2)
j→ IR2

π(x, y, z)T 7→
(

x
z ,

y
z

)T

son biyectivas y j ◦ i = IIR2, i ◦ j = IA(IP2) .



La razón doble

Sean π(v1), π(v2), π(v3), π(v4) ∈ IP2 alineados tales que

v3 = αv1 + βv2, v4 = γv1 + δv2

• La razón doble de π(v1), π(v2), π(v3), π(v4) es

rd(π(v1), π(v2), π(v3), π(v4)) =
βγ

αδ
.

• La razón doble se conserva bajo las aplicaciones proyectivas.
• Si a,b, c,d ∈ IR2,

rd(i(a), i(b), i(c), i(d)) =
−→ac/

−→
bc

−→
ad/

−→
bd



Algoritmo (tres puntos iniciales) (Beńıtez, 2006)
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0

dP 1
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##

tP 2
0

P0, P1, P2 ∈ IP2, r ∈ Λ(IP2), u ∈ [0, 1].

Se construyen

Q0
0 = r ∩ L(P0, P1),

Q0
1 = r ∩ L(P1, P2)

rd(P0, P1, P
1
0 , Q0

0) = u,

rd(P1, P2, P
1
1 , Q0

1) = u,

Q1
0 = r ∩ L(P 1

0 , P 1
1 ),

rd(P 1
0 , P 1

1 , P 2
0 , Q1

0) = u.

El punto P 2
0 (u) describe una curva en IP2.



Puntos de control:
i(−1, 1), i(0,−1), i(1, 1).

Rectas:
y = 2 ⇒ +;
y = 4 ⇒ ∗;
recta impropia ⇒ ◦.



Tres propiedades geométricas del algoritmo:

• Invarianza proyectiva.

• Dualidad.

• Si la recta auxiliar es la impropia, entonces el algoritmo se
reduce al de de Casteljau.



Problema. ¿Qué ocurre si se “mueve” la recta auxiliar? ¿Es
este cambio continuo?

• Dotar de una topoloǵıa a Λ(IP2) (principio de dualidad).

• Dotar de una “métrica” a Λ(IP2).

Dado P = π(v) ∈ IP2, se denota P ∗ = {r ∈ Λ(IP2) : P ∈ r}.
Teorema La siguiente aplicación es una métrica en Λ(IP2)\P ∗.

d∗P (π∗(w1), π
∗(w2)) =

∥∥∥∥ w1

wT
1 v

− w2

wT
2 v

∥∥∥∥ .

Problema. Sean P, Q ∈ IP2. En Λ(IP2) \ (P ∗ ∪ Q∗) hay dos
métricas: d∗P y d∗Q. ¿Cuál es la relación entre ambas?



Problema. Sean P0, . . . , Pn ∈ IP2 y t ∈ [0, 1].
Sean r, s ∈ Λ(IP2) \ {P ∗

0 , . . . , P ∗
n} tales que

R(r) = α(P0, . . . , Pn; r)(t), R(s) = α(P0, . . . , Pn; s)(t)

¿Cómo es una estimación de d(j(R(r)), j(R(s))) en términos de
d∗Pi

(r, s) para i = 0, . . . n?



Cónicas proyectivas

• Para n = 2, el algoritmo produce una cónica proyectiva.
• Una cónica proyectiva es C = {π(x) ∈ IP2 : xTBx = 0}, donde
x ∈ IR3 y B es una matriz simétrica 3× 3.

Teorema. Si P0, P1, P2 no son colineales, entonces la curva
producida por el algoritmo es parte de la cónica proyectiva

{π(x) ∈ IP2 : xT(ATJA)x = 0},

donde A = [v0,v1,v2]
−1, π(vi) = Pi y r = π∗(w) con wTvi = 1 y

J =

 0 0 2
0 −1 0
2 0 0

.



Significado geométrico de la recta auxiliar

Teorema. Si P0, P1, P2 ∈ IP2 no están alineados, entonces la
recta π∗(w) es tangente a la curva β = α(P0, P1, P2; π

∗(w)).
Supongamos que existe

r(∞) = lim
t→±∞

j(β(t)),

entonces

j(π∗(w)) es tangente en r(∞).



Problema. Generaĺıcese este algoritmo en IP3.

Algoritmo propuesto en IP2 Generalización en IP3

Qj
i = r ∩ L(P j

i , P j+1
i ) ???

• En IP2 dos rectas distintas se cortan en un sólo punto.
• En IP3 lo último no es cierto.
• En IP3 un plano y una recta no contenida en este plano siempre
se cortan en un sólo punto.

! Substituir la recta auxiliar en IP2 por un plano auxiliar en IP3.

Problema Una cuádrica en IP3 (superficie) es {π(x) ∈ IP3 :
xTAx} = 0, donde x ∈ IR4 y A es una matriz simétrica 4 × 4. La
generalización directa del algoritmo describe una curva.



Ejemplo 1

cp0c
cp1

c

Dados c,p0,p1 ∈ IR2 con

‖p0−c‖ = ‖p1−c‖ = ρ, p0−c ⊥ p1−c,

dibujar el cuadrante p0p1 de la circunferencia
centrada en c y de radio ρ.

Por la invarianza af́ın de las curvas
racionales de Bézier, podemos suponer

p0 =

(
1
0

)
, p1 =

(
0
1

)
, c =

(
0
0

)
.



e p0 =

(
1
0

)
ep1 =

(
0
1

)

@
@

@
@@

@
@

@
@@

x + y = −
√

2

c

e
r(∞)

e (
1
1

)

v0 =

 1
0
1

 , v1 =

 1
1
1

 , v2 =

 0
1
1

 , w =

 1
1√
2

 .



e p0

ep1

@
@

@
@@

@
@

@
@@

r
c

e
r(∞)

er(1/2)

r(1/2) =

 cos π
4

senπ
4

 , r(∞) =

 − cos π
4

−senπ
4

 .



Ejemplo 2

d
p0

dp1

@
@

@@

@
@

@@

x + y =
√

2

dr(∞)

v0 =

 1
0
1

 , v1 =

 1
1
1

 , v2 =

 0
1
1

 , w =

 1
1

−
√

2

 .



Ejemplo 3: Importancia de la recta auxiliar

¿Qué ocurre si r se mueve manteniéndose tangente a la circun-
ferencia?

d
p0

d p1

�
�

�
�

�
�

�
�

−x + y =
√

2

dr(∞)





• Hay más puntos cerca de r(1) = (0, 1) que de r(0) = (1, 0).

• r(1/2) ' (0.4309, 0.9024) está más próximo a r(1) que a r(0).

• ‖r′(1)‖ ' 0.5859 y ‖r′(0)‖ ' 3.4142;

Problema. Sea r la curva producida por el algoritmo.

• Estúdiese la variación de la recta tangente.

• Sea 0 < t0 < · · · < tm < 1. Est́ımese d(r(ti+1), r(ti)) para
i = 0, . . . ,m− 1.

• r(1/2).

• ¿Cuándo d(r(0), r(1/2)) = d(r(1), r(1/2))?

• ‖r′(0)‖, ‖r′(1)‖.



Superficies de Bézier
Definición. Sean abc un triángulo en IRn y x ∈ IRn tal que

x está en la envoltura af́ın de a,b, c. Entonces existen α, β, γ ∈ IR
tales que

x = αa + βb + γc, α + β + γ = 1.

(α, β, γ) son las coordenadas baricéntricas de x respecto a abc.
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Para m ∈ IN, sean

∆m = {(i, j, k) ∈ IN3 : i + j + k = m},
T = {(x, y, z) ∈ IR3 : x, y, z ≥ 0, x + y + z = 1}.

Para (i, j, k) ∈ ∆m y (x, y, z) ∈ T , sean

Bm
ijk(x, y, z) =

m!

i!j!k!
xiyjzk.

Definición. Sea {bijk ∈ En : (i, j, k) ∈ ∆m} un conjunto de
(m+1)(m+2)/2 puntos de En (llamados red triangular de con-
trol). La superficie r : T → En dada por

r(x, y, z) =
∑

(i,j,k)∈∆m

Bm
ijk(x, y, z)bijk

se llama parche triangular de Bézier.



Algoritmo. (De Casteljau) Sea una red triangular de control
{bijk : (i, j, k) ∈ ∆m} y (x, y, z) ∈ T .

Sean b0
ijk = bijk para (i, j, k) ∈ ∆m.

Supóngase construidos bl
ijk ∈ Ek para l = 0, . . . , n e (i, j, k) ∈

∆n−l. Sean

bl+1
ijk (x, y, z) = xbl

i+1,j,k(x, y, z) + ybl
i,j+1,k(x, y, z) + zbl

i,j,k+1(x, y, z).

Entonces

bm
000(x, y, z) =

∑
(i,j,k)∈∆m

Bm
ijk(x, y, z)bijk.



Problema. Generaĺıcese el algoritmo de Casteljau para super-
ficies de modo que sea proyectivamente invariante y que permita
dibujar cuádricas en IP3.

Afinmente Proyectivamente
invariante invariante

Curvas Razón simple Razón doble
Superficies Coord. baricéntricas ???


