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1. Metodologia docente

La ensenanza de las matematicas en las escuelas técnicas

e (Qué matematicas hay que impartir y como hacerlo.

e ;Cémo motivar al alumno en las clases de matematicas?

e Errores:

— Suponer que un estudiante de una carrera técnica esta in-
teresado en las matematicas como un fin en si mismas.

— Esquema

Definicién = Ejemplos =

= Teorema = Demostracién = Corolarios



e ;Para qué sirven las matematicas?

e Conexioén con otras asignaturas de la carrera.
Esquema propuesto

Problema real = Formulacion matematica =

= Teoria = Validacién = Predicciones



Caracteristicas generales
e No distincion entre clases tedricas y de problemas.

e Ejemplos
— Comprobacion de la teoria..

— Los positivos y los negativos.
— No se referiran sélo a las matematicas, sino también a otras

ciencias.

e Lvitar las demostraciones no constructivas.



Evaluacion
Optaremos por el clasico examen.

1. Amplitud (evitar el factor suerte).

2. Cuestiones tedricas y problemas (evitar los exdmenes de natu-
raleza memoristica).

3. Uso correcto del lenguaje propio de la asignatura.

4. Simultaneidad en todos los alumnos del mismo curso (evitar
los agravios comparativos entre exdmenes distintos).

5. Un mismo profesor debe corregir la misma pregunta a todos
los alumnos, incluso a los de grupos a los cuales el profesor no
imparta clase.
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Programa de Algebra Lineal (1)

Seis Créditos

1. Geometria de IR? y IR?.

2. Matrices.

3. Sistemas de ecuaciones lineales.
4. Espacios vectoriales.

5. Aplicaciones lineales.

()



Programa de Algebra Lineal (y 2)
()

6. Curvas de Bézier.

7. Espacio vectorial euclideo.

8. Aproximacion por minimos cuadrados.
9. Teoria espectral.

10. Aplicaciones de la teoria espectral.



1. Geometria de R* y R?

1.1 La geometria y el algebra de vectores.
1.2 El producto escalar.

1.3 Usos geométricos del producto escalar.
1.4 El producto vectorial.

1.5 Ecuaciones de rectas y planos.



2. Matrices

2.1 Primeras definiciones.

2.2 Potencias de matrices.

2.3 Determinante de una matriz cuadrada.
2.4 Inversa de una matriz cuadrada.

2.5 Matrices por bloques.



3. Sistemas de ecuaciones lineales

3.1 Sistemas lineales.
3.2 El método de eliminacién de Gauss.
3.3 Factorizacion LU de una matriz.

3.4 Algoritmo de Gauss-Jordan para el calculo de la inversa de una
matriz.

3.5 Pivotacion parcial.



4. Espacios vectoriales

4.1 Definiciones y primeras propiedades.
4.2 Subespacios vectoriales.
4.3 Bases en un espacio vectorial.

4.4 Caélculo coordenado en un espacio vectorial de dimension finita.



5. Aplicaciones lineales

5.1 Definicién y ejemplos.
5.2 La matriz asociada a una aplicacién lineal.
5.3 Aplicaciones afines.

5.4 El nucleo y la imagen de una aplicacion lineal.



6. Curvas de Bézier

6.1 El algoritmo de De Casteljau.
6.2 Curvas de Bézier y polinomios de Bernstein.
6.3 Propiedades de las curvas de Bézier.

6.4 Vectores tangentes.



7. Espacio vectorial euclideo

7.1 Producto escalar.

7.2 Norma y angulo en un espacio euclideo.

7.3 Proyecciones sobre subespacios.

7.4 Bases ortogonales y proceso de Gram-Schmidt.

7.5 Matrices ortogonales. Factorizacion QR.



8. Aproximaciéon por minimos cuadrados

8.1 Método de los minimos cuadrados.
8.2 Ajuste de datos.
8.3 Minimos cuadrados ponderados.

8.4 Distancia entre variedades lineales.



9. Teoria espectral

9.1 Conceptos basicos.
9.2 Diagonalizacién de matrices.

9.3 Diagonalizacién de matrices simétricas.



10. Aplicaciones de la teoria espectral

10.1 Potencias de matrices.
10.2 Calculo de sucesiones dadas por recurrencia lineal.
10.3 Cadenas de Markov lineales.

10.4 Identificacion de conicas y cuadricas.
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Programa de Ecuaciones Diferenciales Ordinarias

Tres Créditos

—_

. Ecuaciones diferenciales de primer orden.

2. Ecuaciones diferenciales lineales de orden n.
3. Aplicaciones de las ecuaciones diferenciales.

4. Sistemas lineales de ecuaciones diferenciales.
5

. Cdlculo variacional.



1. Ecuaciones diferenciales de primer orden

1.1 Ecuaciones separables y reducibles a separables.
1.2 Ecuaciones exactas y reducibles a exactas.
1.3 Ecuaciones lineales de primer orden.

1.4 Algunos ejemplos de las ecuaciones diferenciales de primer or-
den.

1.5 Trayectorias ortogonales y oblicuas.



2. Ecuaciones diferenciales lineales de orden n

2.1 La ecuacién lineal de orden n.
2.2 La ecuacién lineal homogénea de coeficientes constantes.
2.3 Busqueda de soluciones particulares de la ecuaciéon no homogénea.

2.4 Ecuacién de Euler-Cauchy.



3. Aplicaciones de las ecuaciones diferenciales

3.1 Vibraciones en sistemas mecéanicos y circuitos eléctricos.



4. Sistemas lineales de ecuaciones diferenciales

4.1 Introduccion.
4.2 Propiedades de los sistemas de ecuaciones diferenciales lineales.
4.3 Sistemas homogéneos de coeficientes constantes.

4.4 Busqueda de una solucién particular en los sistemas no ho-
mogéneos.

4.5 Sistemas de ecuaciones diferenciales lineales de orden superior.



5. Calculo variacional

5.1 Introduccion.
5.2 La ecuacién de Euler.
5.3 Integrales con mas de una funciéon argumento.

5.4 Problemas condicionados.
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Programa de Analisis Vectorial

Cuatro Créditos y Medio

ee A ey & = 9 =

Curvas parametrizadas.

Integrales de linea.

Superficies parametrizadas.

Integrales de superficie.

Campos conservativos y solenoidales.
Coordenadas curvilineas ortogonales.
El campo gravitatorio y electrostatico.

El campo magnético.



1. Curvas parametrizadas

1.1 Ejemplos.

1.2 Vectores tangentes.
1.3 Curvas regulares.
1.4 Longitud de arco.

1.5 Movimiento de una particula.



2. Integrales de linea

2.1 Integrales curvilineas de campos escalares.
2.2 Integral curvilinea de un campo vectorial.

2.3 El teorema de Green.



3. Superficies parametrizadas

3.1 Definicién y ejemplos de superficies parametrizadas.

3.2 El plano tangente.



4. Integrales de superficie

4.1 Integrales de superficie de campos escalares.
4.2 Integrales de superficies de campos vectoriales.
4.3 El teorema de Gauss-Ostrogradsky.

4.4 El teorema de Stokes.



5. Campos conservativos y solenoidales

5.1 Campos conservativos.

5.2 Campos solenoidales.



6. Coordenadas curvilineas ortogonales

6.1 Repaso de las coordenadas polares, cilindricas y esféricas.
6.2 Definicién de las coordenadas curvilineas ortogonales.

6.3 Los operadores diferenciales en coordenadas curvilineas orto-
gonales.



7. El campo gravitatorio y electrostatico

7.1 El potencial gravitatorio y electrostatico.

7.2 La ley de Gauss.



8. El campo magnético

8.1 Fluidos.

8.2 La derivada material.

8.3 El teorema del transporte.

8.4 La ecuaciéon de continuidad.

8.5 La ley de Lorentz y la ley de Biot y Savart.
8.6 Propiedades del campo magnético.

8.7 Las ecuaciones de Maxwell.
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Programa de Matematicas

Seis Créditos

1.

Funciones de variable compleja.
La transformada de Fourier.
La transformada de Laplace.

Soluciones de ecuaciones diferenciales de segundo orden me-
diante series de potencias.

Series de Fourier.

Problemas de Sturm-Liouville y desarrollos en serie de auto-
funciones.



1. Funciones de variable compleja

1.1 Introduccion y preliminares.

1.2 Funciones holomortas.

1.3 La exponencial y el logaritmo complejo.

1.4 Integracion en el plano complejo.

1.5 Singularidades aisladas, series de Laurent y calculo de residuos.

1.6 El Teorema de los Residuos.



2. La transformada de Fourier

2.1 Transformada de Fourier y primeras propiedades.
2.2 Resolucion de la ecuacién del calor en una varilla infinita.
2.3 Convolucién de funciones.

2.4 Transformadas de Fourier en senos y cosenos.



3. La transformada de Laplace

3.1 Primeras propiedades.
3.2 La Formula de inversion de Laplace.
3.3 Las ecuaciones integrales de Volterra.

3.4 La transformada de Laplace y las ecuaciones en derivadas par-
ciales.



4. Soluciones de ecuaciones diferenciales de se-
gundo orden mediante series de potencias

4.1 Soluciones mediante series alrededor de un punto regular.
4.2 Soluciones mediante series alrededor de un punto singular-regular.

4.3 Funciones de Bessel.



5. Series de Fourier

5.1 Primeras propiedades de las series de Fourier.

5.2 Método de separacion de variables.



6. Problemas de Sturm-Liouville y desarrollos en
serie de autofunciones

6.1 Introduccién al método de autofunciones.
6.2 Problemas de Sturm-Liouville homogéneos.
6.3 Problemas de Sturm-Liouville no homogéneos.

6.4 Resolucion de ecuaciones en derivadas parciales mediante series
de autofunciones.
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Diferenciabilidad en espacios

de Banach



Disitintas formas de diferenciabilidad

DEFINICION. Sean D abiertode X, f: D - IRy xz € D.
e f es Gateaux diferenciable (GD) en x si

()t L1 = @)

t—0 t

existe Vu € By y df, € X*.
e f es Fréchet diferenciable (FD) en z si

/ _ St te) - f2)
f(z)(u) = lim ;

t—0

existe V u € By, es uniforme para u € Bx y f'(z) € X*.



e f es fuertemente subdiferenciable (SSD) en z si

existe V u € By y es uniforme para u € By.



TEOREMA (Mazur-1933). Sean D un abierto convexo de X y
f D — IR continua. Si X es separable entonces el conjunto de
puntos donde f es GD es un subconjunto G denso de D.

DEFINICION. X es un espacio de Asplund si cualquier funcién
continua convexa definida en un abierto convexo D C X es FD en
un subconjunto G denso de D.



||| FD Ekeland, Lebourg (1976)  y es Asplund

ad OQTZ\

Fécil white s

Existe un bump FD Existe un bump SSD

Trivial

e Existe un espacio de Asplund que no posee una norma GD.
(Haydon, 1990).

e Interesa encontrar condiciones geométricas que no impliquen
la GD de la norma para que el espacio sea de Asplund.



PROPOSICION. Sean D un abierto convexo de X, f : D — IR
convexa y sea xg € D. Entonces f es GD en z( si y sélo si existe
un unico z* € X* tal que

(x — zo,2") < f(z) — f(=0), Ve € D.

R

Zo T



DEFINICION. Sea f : X — IR U {400} convexa, propia e in-
feriormente || - ||-semicontinua. Si x € dom(f) y € > 0, la e

subdiferencial de f en x es

Of(x) ={a" e X*: (y—z,2") < f(y) — f(x)+e Vye X}
La subdiferencial es 0f = dyf.

PROPOSICION. Si f : D — IR es continua y convexa, siendo
D un abierto convexo, entonces 0f(x) es w*-compacto, convexo no

vacio de X*.



Continuidad de la subdiferencial

DEFINICION. Sea ® : X — P(X*) y 7 una topologia en X*.

e & es superiormente 7 semicontinua en z € X (7USC)
si para cada T-abierto U que verifique ®(x) C U, existe un
entorno V' de x tal que ®(y) C U para todo y € V.

e ® es inferiormente 7 semicontinua en r € X (7LSC) si
para cada T-abierto U que verifique ®(z) N U # (), existe un
entorno V' de x tal que ®(y) N U # () para todo y € V.

e ® esrestringida superiormente 7 semicontinua en x € X
(RTUSC) si para cada U, T-entorno de 0 en X* existe V,
entorno de x tal que ®(y) C ®(x) + U para todo y € V.



e Of es siempre es w*USC.

e Of es || - ||[LSC <= f es FD .

e 0f es w'LSC <= f es GD.

e O0f es R|| - [|[USC <= f es SSD.

e J| - || es RwUSC = X de Asplund. (Contreras y Paya 1994).
e 0f es RwUSC <= (Benitez y Montesinos, 2000).



DEFINICION. Sea f : X — IR U {+o00} propia, convexa e infe-
riormente semicontinua. La conjugada de Fenchel de f es

[ (") =sup{(z,2*) — f(z) :x € X}, [f*: X" —>TRU{oc0}.

e f* es convexa, inferiormente w*-semicontinua y propia.

TEOREMA. (Fenchel-Moreau) Sea f : X — IR U {oco} propia
inferiormente semicontinua y convexa. Si x € dom(f), entonces

flz) = [ (x).



TEOREMA. Sean f : D — IR una funcién continua y convexa,
siendo D un abierto convexo no vacio de X y x € D. Equivalen

1. 9f es RwUSC en x.

2. Para todo N, w-entorno de 0 en X*, existe ¢ > 0 tal que

O.f(x) C df(x) + N.
3. Dados € > 0 y u™ € Sx«, existe 0 > 0 tal que

7@+ ™) — f(=)
t

—sup{(u™*,2%) 1 2" € Of (x)} <,

para cualquier 0 < t < 9.



En la definiciéon de FD, GD y SSD no se exige que f sea convexa;
sin embargo una hipdtesis esencial en el teorema anterior es que f
sea convexa.

PROBLEMA. Sea f : D — IR, en donde D es un abierto de X.
. Existe una caraterizacion mediante cocientes diferenciales para f
(y s6lo para f) de modo que si f es convexa, se obtenga el teorema
anterior?

DEFINICION. Sea f : D — IR localmente Lipschitz, siendo D un
abierto de X. La derivada de Clarke en x € D es

o) —
fo(z,v) = ljinfﬁg fly + 7;\) f(y)'

La subdiferencial de Clarke es

O°f(x) ={x" € X*: f°(x,v) > (v,2"),Yv € Bx}.
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Analisis Matricial



Combinaciones lineales de matrices

PROBLEMA GENERAL. A # B € C™"\ {0}, a,b € C

A cumple Py
B cumple Pp X cumple Px <= ;a,b, A, B?
X =adA+bB



PROBLEMA RESUELTO. (Baksalary y Baksalary, 2000)

A2 = A
B> = B X? =X < ja,b, A B?
X = aA+bB

PROBLEMA RESUELTO. (Baksalary, Baksalary y Styan, 2002)

A2 = A
B3 B X? =X < ja,b A B?
X = aA+bB



PROBLEMA RESUELTO. (Benitez y Thome, 2005)

A2 = A

K+l _
BAB B gA X?=X < ;a,b,A B?
X = aA+bB

Diagonalizacién simultanea.



PROBLEMA.

A2 = A

K+l _
BAB ; gA X?=X < ;a,b,A B?
X = aA+bB

3S . S7IBS = diag(\y, ..., An), AT =\,
B« S'BS; A« S71AS.

Sin=2
ail a2 A0
A= , B= . A )
<&21 CL22> (O M) 7 H

X’=XA=A4A == at+bA+p) =1

PROBLEMA. Generalizar este argumento para matrices n X n.



PROBLEMA.

A2 = A
B es diagonalizable 9 . 5
AB + BA X=X < ja,b A, B
X = aA+bB
CONJETURA.
2 _
= A , X?=X =
B es diagonalizable A
AB # BA E])\,,LLEO‘(B):{ B ’ }
X L aA+bB l=a+bA+pu).



PROBLEMA.
A2

A

> W
[N

CONJETURA.
A2 A

BA

By

~ W
3

-l

A
diagonalizable
BA

aA+bB

diagonalizable

aA+ bB

X?=X < ;a,b,A B?

X=X =
INpu€oa(B):1=a+bA+ p).



Dos maneras posibles de atacar este ultimo problema.

1. B=SJS™!, en donde J es la forma canénica de Jordan de B.

2. Usar la densidad en C"*" de las matrices diagonalizables de
orden n.

Se define ® : C*" x C"*" — P(C?) dada por
O(X,Y) ={(z,y) € C*: (X +yY)* =zX +yY}

y se denota por C5*" el conjunto de los proyectores de orden n.

PROBLEMA. Estudiense las propiedades topolégicas de . ;Qué
ocurre si se restringe ® a CJ*" x C**"?



PROBLEMA RESUELTO. (Baksalary y Benitez, 2006)

\

A2=A

B*=B

C*=C X?=X
X =aA+bB+cC > 0

AB =BA,AC =CA,BC #CB 6
AB = BA, AC + CA, BC # CB.

{/UBBA¢K7CAJ%7CBé } ia.bc, A, B,C?
*

e AB=BA=0,(a,b) =(1,-1) = (aA+bB)> = aA + bB.

PROBLEMA. Substituir x por AB # BA, AC # CA, BC # CB.



PROBLEMA RESUELTO. (Bakasalry, Baksalary y Grof3, 2006)

A2 =
B2 =
x AB = BA =
X:

A+
B+

aA? + BB?
aA+ bB

X?= X"« ja,b A B?

PROBLEMA. Substituir x por AB = BA.
TEOREMA. (Hartwig y Spindelbock, 1986.) Equivalencia de las
EP-matrices. Sea A € C™*". Son equivalentes

e Ay AT tienen el mismo espacio columna.

o AAT = ATA.

e U unitaria y K invertible: A =U(K & 0)U*.



PROBLEMA. Sean A; y Ay dos EP-matrices. Existen dos matri-
ces unitarias U; y dos matrices invertibles K; tales que

A = U (K1 @OU;, Ay = Us(Ko ®0)U;.

. Qué condicién sobre Uy, Us, K1 y K5 es necesaria y suficiente para

que A1A2 = AQAl?



Aspectos topologicos de la teoria de matrices

TEOREMA. (Benitez 2006) Sea A € C"*". Equivalen
e Para cada e > 0 existe k € IN tal que ||A*! — A <e.
e A es diagonalizable y o(A) C {0} U /1.

Burde (2005) estudi6 la ecuacion XA — AX = XP para p € IN.
PROBLEMA. Sea A una matriz cuadrada. Hallese la matriz X
tal que alguna de las dos condiciones de debajo se cumple:

o | XA—-XA—-X?|| <eparaunp e INye>0 dados.
e Para cada € > 0, existe p € IN tal que || XA — AX — X?|| <e.



TEOREMA. Si A € C™", (Ag)2, € C™" y limy_oo A = A,
entonces las siguientes afirmaciones equivalen:

1. limkﬁoo AZ = A+.

2. Existe ky € IN tal que el rango de A;. coincide con el rango de
A para todo k > ky.

3. sup{||Af] : k € N} < 0.

PROBLEMA. ;Existe una caracterizacion similar al teorema para
la continuidad de la inversa de grupo?



Indice

B Diferenciabilidad en espacios de Banach.
B Analisis matricial.
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Diseno geométrico asistido por
ordenador



El algoritmo de de Casteljau

e Sean py,p1,p2 € R’ y t € [0, 1].
e Se construyen

bi(t) = (1 —1t)po+tp1,
bi(t) = (1 —1t)p1+tps
y

bi(t) = (1—1t)by(t) + thy(t).

Cuando t varia entre 0 y 1, el punto b2(#) describe una curva.



Las curvas de Bézier

e La curva B[po, p1, p2](t) = bi(t) se llama curva de Bézier.
e Los puntos pg, p1, p2 se llaman puntos de control.

P1 P1




El algoritmo de de Casteljau
e Sean py,p1,....pn € Ry t € [0, 1].
e Se construyen

b;(t) = (1 — t)p; + tPis1, i=0,...,n—1.
e Luego
b7 (t) = (1 — t)b;(t) +tbj,,(t), i=0,...,n—2.
e Y asi progresivamente hasta
b (t) = (1 — )by (t) + thi (1)

La curva by : [0,1] — IR? se llama curva de Bézier con puntos
de control py, ..., p,.

b = Blpo,- - -, Pnl-



Forma cerrada de las curvas de Bézier

TEOREMA. La curva generada por el algoritmo de de Casteljau
con puntos de control py,...,p, €s

B[po,.,.,pn](t) — ZB]?(t)pk;, te [07 1]7
k=0

siendo By (t) = (7)t*(1 — ¢)"* los polinomios de Bernstein.



Propiedades

4 B[p()) T 7pn](0) =Poy B[pm co 7pn](1) = Pn-
e Invarianza afin: Si 7' : R? — IR? es afin, entonces

T(Blpo, - -, pal(t)) = B[T(po), - -, T(Pn)](?)-

e Vectores tangentes.




Dos defectos del algoritmo de de Casteljau

e No se pueden dibujar cénicas excepto parabolas.

e No es proyectivamente invariante.



Breve repaso del plano proyectivo real

En IR’ \ {0} se define la r.b.c.
Vo~ W = AAe R\ {0} :v=Xw.

El plano proyectivo real es IP? = (IR*\ {0})/ ~.
Sus elementos son puntos proyectivos.
La proyeccién canénica se denota 7 : IR® \ {0} — IP?.

Una recta proyectiva es un plano en IR? que pasa por el
origen.

El conjunto de las rectas proyectivas se denota por A(IP?).

™R3\ {0} — A(IP?), m"(w) = {x € R’ : w'x =0}.



Los puntos afines

e La ecuacion de la recta del infinito es z = 0.
e Un punto afin no pertenece a la recta del infinito.

e Si A(]Pz) es el conjunto de los puntos afines, las aplicaciones

R2 % A(P?) A(P?) L R?
(,9)" — 7@y )T ey, )T e (20T

son biyectivas y joi = Ip2, 10j = IA(IPQ) .



La razon doble

Sean 7(v1), T(Va), 7(vs), m(v4) € P? alineados tales que
v3 = avy + (v, V4 =Vi+ v

e La razén doble de w(vy),m(va), m(v3), m(vy) es

_ P

rd(7(vy), w(va), m(vs), m(vy)) = i

e La razon doble se conserva bajo las aplicaciones proyectivas.
e Sia,b,cdeR?

2|
Ef

rd(i(a), i(b), i(c), i(d)) =

2l
2l



Algoritmo (tres puntos iniciales) (Benitez, 2006)
cP?, € A(P?), €[0,1].

Se construyen

8 = ’I’ﬂL(P@,Pl),
Q(l) = TﬂL(Pl,PQ)

I’d(PO,PhPol,Qg) = u,
rd(PhP?aPllaQ(l)) = u,

= rn ,
rd(P()lvpllvp()QaQé):u'

El punto P?(u) describe una curva en 1P,



Puntos de control:
i(—1,1),4(0,—1),4(1, 1).

Rectas:
y="U= -r
y =4 = x;

recta impropia = o.

D85

nsr

D85

D&

D75

07

DES

DB

0585

&

05
2]

I I I I
] 06 -04 -0z

1}

L
D=2

I
0.4

L
0.6

L
D&

1



Tres propiedades geométricas del algoritmo:

e Invarianza proyectiva.

e Dualidad.

e Si la recta auxiliar es la impropia, entonces el algoritmo se
reduce al de de Casteljau.



PROBLEMA. ;Qué ocurre si se “mueve” la recta auxiliar? ;Es
este cambio continuo?

e Dotar de una topologia a A(IP?) (principio de dualidad).
e Dotar de una “métrica” a A(IP?).

Dado P = 7(v) € IP?, se denota P* = {r ¢ A(IP?) : P € r}.
TEOREMA La siguiente aplicacién es una métrica en A(IP?)\ P*.

\VAl Wo
(o (o). () = | S =

PROBLEMA. Sean P,Q € IP?. En A(IP?)\ (P* U Q*) hay dos
métricas: dp y dpy. (Cudl es la relacion entre ambas?



PROBLEMA. Sean P,,..., P, € Pyt €[0,1].
Sean r,s € A(IP?) \ {P;,..., P’} tales que

R(r) =a(Py,...,Py;r)(t), R(s) = a(Ry,. .., Py s)(t)

. Cémo es una estimacién de d(j(R(r)),j(R(s))) en términos de
dp (r,s) parai=0,...n7



Cénicas proyectivas

e Para n = 2, el algoritmo produce una coénica proyectiva.
e Una cénica proyectiva es € = {n(x) € IP? : x'Bx = 0}, donde
x € IR y B es una matriz simétrica 3 x 3.

TEOREMA. Si Py, P, P, no son colineales, entonces la curva
producida por el algoritmo es parte de la conica proyectiva

{n(x) € P? : x" (AT JA)x = 0},

donde A = [vo,vi,vo] ™, m(v;)) = By r = 7*(w) con wlv; = 1y
0 0 2
J=10 -10

2 0 0



Significado geométrico de la recta auxiliar
TEOREMA. Si Py, P, P, € IP? no estan alineados, entonces la

recta (W) es tangente a la curva § = a(Fy, Pi, Py; 7" (w)).
Supongamos que existe

r(oo) = lim j(5(?)),
entonces

j(7*(w)) es tangente en r(co).



PROBLEMA. Generalicese este algoritmo en IP?.

Algoritmo propuesto en IP? Generalizacién en IP?

Ql =rnL(P, P e

e En IP? dos rectas distintas se cortan en un sélo punto.

e En IP? lo tltimo no es cierto.

e En IP? un plano y una recta no contenida en este plano siempre
se cortan en un sélo punto.

! Substituir la recta auxiliar en IP? por un plano auxiliar en IP3.
PROBLEMA Una cuddrica en IP? (superficie) es {n(x) € IP? :

xTAx} = 0, donde x € IR* y A es una matriz simétrica 4 x 4. La
generalizacion directa del algoritmo describe una curva.



Ejemplo 1
Dados ¢, pg, p1 € IR? con
[po—cll =lpi—cl][=p, Po—cLlpi—c

dibujar el cuadrante pop; de la circunferencia

centrada en c y de radio p.

Por la invarianza afin de las curvas
racionales de Bézier, podemos suponer

(1) (1) o










Ejemplo 2




Ejemplo 3: Importancia de la recta auxiliar

., Qué ocurre si r se mueve manteniéndose tangente a la circun-
ferencia?
—z+y=12
P1

: Po







e Hay més puntos cerca de r(1) = (0,1) que de r(0) = (1,0).

e r(1/2) ~(0.4309,0.9024) estd més proximo a r(1) que a r(0).
o ||r'(1)|| =~ 0.5859 y ||x'(0)|| ~ 3.4142;

PROBLEMA. Sea r la curva producida por el algoritmo.

e Estudiese la variacion de la recta tangente.

e Sea 0 < tg < -+ < t,,, < 1. Estimese d(r(t;11),r(t;)) para
1=0,...,m—1.
o r(1/2).

e ;,Cuando d(r(0),r(1/2)) =d(r(1),r(1/2))?
o (IO, lIx" (DI



Superficies de Bézier
DEFINICION. Sean abc un tridngulo en R" y x € IR” tal que
x estd en la envoltura afin de a, b, c. Entonces existen o, 3,7 € IR
tales que
x = aa + b + vc, a+pB+v=1

(o, B,7) son las coordenadas baricéntricas de x respecto a abc.




Para m € IN, sean

A ={(i,5,k) e N> : i+ j + k = m},
T={(z,y,2) eR®:2,y,2>0,x+y+2=1}.
Para (i,7,k) € Ay (z,y,2) € T, sean

k

m)
ﬁk(mayv ) Z']']{I'ZE y Z

DEFINICION. Sea {b;; € €" : (i,5,k) € A,,} un conjunto de
(m+1)(m+2)/2 puntos de €" (llamados red triangular de con-
trol). La superficie r : 7' — €™ dada por

:U Y, % Z Bz]k X, Yy, z bZ]k
(4,5.k)€Am

se llama parche triangular de Bézier.



ALGORITMO. (De Casteljau) Sea una red triangular de control
{bzyk : (i7j7 k) S Am} y (.’,U,y,Z) € T.

Sean by, = by, para (i, 7, k) € Ay,

Supongase construidos bﬁ.jk € & paral =0,...,ne (i,j,k) €
A,_;. Sean

bijkl(xa Y, 2) = xbi’—kl,j,k(x: Y, 2) + ybé,j—kl,k(x: Y, 2) + Zbé,gykﬂ(ﬂ?a Y, 2).

Entonces

000(Z: Y, 2 Z B (x, y, 2)biji.
(i:,k) €A



PROBLEMA. Generalicese el algoritmo de Casteljau para super-
ficies de modo que sea proyectivamente invariante y que permita
dibujar cuddricas en IP3.

Afinmente Proyectivamente
invariante invariante
Curvas Razoén simple Razon doble

Superficies Coord. baricéntricas 777



