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0 Introduccién

Las horas dedicadas a la docencia por un profesor universitario son menos que las que
imparte un profesor de ensenanza media o primaria. ;Por qué? No debemos olvidar que el
profesor de universidad es ademas de personal docente, investigador. La investigacién debe
ser uno de los pilares basicos en los que se base la universidad espanola, entre otros motivos
para asegurar una docencia de calidad y un desarrollo del pais en donde vivimos.

Un proyecto de investigacién, es ante todo, un proyecto y como tal, una parte importante
son las cuestiones abiertas. Estas preguntas sin respuesta son vitales para el buen desarrollo
de las matematicas; pues hacen avanzar a éstas de manera progresiva. En cada capitulo de
este proyecto de investigaciéon aparece una secciéon de problemas abiertos, en donde se puede
observar que los temas propuestos de investigacién tienen continuidad natural y se prestan a
ser investigados con més profundidad.

Aunque el rigor matemaético es, desde luego, una parte fundamental de toda investigacién
matematica, se ha intentado en este proyecto explicar de manera intuitiva e informal los
distintos aspectos que aparecen, pues de este modo es posible que se puedan resolver de
manera més cémoda los problemas que aqui se plantean. Como es bien sabido, Gauss dijo que
“cuando se finaliza un noble edificio no deben quedar visibles los andamios”; pero, continuando
con esta metafora, Gauss no solamente retiré los andamios sino que destruyé los planos.
Jacobi dijo que “sus demostraciones son rigidas, heladas... lo primero que hay que hacer es
descongelarlas’; mientras que Abel se refirié a Gauss como “un zorro que borra con la cola
sus huellas de la arena”.

Un aspecto que merece ser destacado es la diversidad de los temas propuestos como se
puede observar rapidamente en el indice. La formacién de un matematico debe ser completa,
pues a veces de manera insospechada puede haber vinculos entre varias ramas de las ma-
tematica que aparentemente estas desconectadas. Como un ejemplo, varias investigaciones
del capitulo dedicado al andlisis matricial han surgido de cuestiones de la estadistica.

Asimismo, no parece oportuno en este proyecto diferenciar entre matematica aplicada y
pura; pues a menudo resultados tedricos tienen gran aplicabilidad. Podemos ver que en este
proyecto se estudia el plano proyectivo real y su topologia como espacio cociente que resulta
ser de interés en el diseno geométrico asistido por ordenador. Un ejemplo clasico es la teoria
de numeros, sin ninguna aplicaciéon practica hasta que en 1977, Rivet, Shamir y Adleman,
cientificos del M.I.T., idearon un sistema de cifrado publico (llamado RSA) basado en la teoria
de nimeros primos.

Quiero expresar mi agradecimiento a mis companeros de la unidad docente del Departa-
mento de Matematica Aplicada de la E.T.S.I.T. de la Universidad Politécnica de Valencia por
su constante apoyo moral.
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1 Diferenciabilidad en espacios de Banach

1.1 Introduccion

El estudio de la diferenciabilidad de las funciones definidas sobre espacios de dimension
infinita ha estado presente desde el principio de la construccién de la teoria de operadores a
comienzos del siglo XX. Uno de los primeros esfuerzos importantes para elaborar una teoria
abstracta de espacios de funciones y de funcionales fue realizado por Fréchet en su tesis doc-
toral de 1906. En lo que Fréchet llamé calculo funcional, intenté unificar en términos
abstractos las ideas contenidas en los trabajos de Cantor, Volterra, Arzela, Hadamard y otros
matematicos del siglo XIX. En su tesis, Fréchet introdujo los espacios métricos y proporcioné
las nociones de continuidad y diferenciabilidad que extienden las correspondientes a funciones
reales en el marco de estos espacios generales. Merece la pena recordar su definicién de dife-
rencial, pues es el modelo de definiciones posteriores realizadas en situaciones mas generales.
Si y = y(z) es una funcién continua definida en [a,b] con valores reales, Fréchet supone la
existencia de un funcional lineal L tal que

Fly+mn] — Fly] — Lin] = eM(n),

donde n = n(x) es una es una “variacién sobre y(x)”, M(n) es el méximo del valor absoluto de
7 sobre [a, b] y € tiende a 0 cuando M tiende a 0. Entonces L es, por definicién, la diferencial
de F en y.

En los anos 20, Banach introdujo los espacios normados completos con el propdsito de
generalizar la teoria de las ecuaciones integrales. A partir de este momento se comienzan
a estudiar las propiedades de la diferenciabilidad de las funciones convexas y mas concre-
tamente de la norma en el marco de estos espacios. Resultados iniciales en la teoria son, sélo
por mencionar algunos, el Teorema de Mazur (1933) sobre la diferenciabilidad de las funciones
convexas en espacios separables, v la caracterizacién de Smulyan (1940) de la diferenciabilidad
de la norma en términos del comportamiento de los funcionales soporte de la bola cerrada

unidad del dual.

Comienza asi el estudio de la estructura de un espacio de Banach que es consecuencia de
la existencia de una norma equivalente con ciertas propiedades. El pricipal atractivo de este
tipo de resultados radica en la posibilidad de deducir propiedades topoldgicas a partir de la
forma de su bola unidad. Como ejemplo podemos citar los teoremas de Milman-Pettis: Todo
espacio de Banach uniformemente convexo es reflerivo, y de Fan-Glicksberg: Todo espacio de
Banach dual con norma Fréchet diferenciable es reflexivo.

Nuestro principal objetivo en la parte del proyecto de investigacién dedicada a la teoria de
los espacios de Banach es el estudio de las diferentes formas de diferenciabilidad de funciones
convexas en un espacio de Banach. Por otra parte dedicamos atencién al impacto que tienen
estos diferentes tipos de diferenciabilidad sobre la estructura topoldgica de los espacios de
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Banach, y en especial, a los espacios de Asplund.

1.2 Conceptos y resultados basicos

Antes de comenzar, establecemos una notacién estandar que usaremos en lo sucesivo. Los
espacios de Banach que aparecen son espacios sobre los niimeros reales. La letra maytiscula
X denota, siempre que no haya confusién, un espacio de Banach. Denotaremos por By la
bola unidad cerrada de X, esto es Bx = {z € X : [|z|| < 1}. La esfera unidad Sx es
{z € X : ||z|| = 1}. Una funcién bump en X es una funcién real definida en X con soporte
acotado no vacio. El dual topolégico de X, esto es {z* : X — IR : z* es lineal y continua}
serd denotado por X* y el dual topoldgico de X* sera denotado por X**. Six € X, 2* € X*
y x** € X** entonces se denoradn (z,z*) = z*(z) y (x™*,z*) = ™ (z*).

Una funcién f : X — IRU{+o0} es inferiormente 7-semicontinua, donde 7 es cualquier
topologia en X, si {z € X : f(z) < r} es 7-cerrado para todo r € IR. Se puede probar que
f es 7-inferiormente semicontinua si y sélamente si para todo x € X y toda red (z4)4ep
que T-converge a x, entonces f(z) < lim infsep f(x4). El dominio efectivo de f es el
subconjunto de X dado por dom(f) := {x € X : f(z) < +oc}. La funcién f se dice propia
si dom(f) # 0. Se puede demostrar muy facilmente que si I es un conjunto arbitrario de
indices y si f; : X — IR son 7-continuas para todo ¢ € I, entonces sup;c; f; es inferiormente
T-semicontinua. En particular, toda norma equivalente en un espacio X es inferiormente
w-semicontinua y que toda norma dual en X* es inferiormente w*-semicontinua.

El epigrafo de f : D — IR, donde D C X, es el subconjunto de X x IR dado por
epi(f) ={(z,\) : z € D, f(x) < A}. Si D es convexo, entonces f es una funcién convexa siy
s6lo si epi(f) es un conjunto convexo.

1.1 DEFINICION. Sea f: D — IR, donde D es un abierto no vacio del espacio de Banach X
y sea xg € D. Se dice que

(a) f es Gateaux diferenciable en x( si

Ao (0) = litn f(zo + tz;) ~ f(a0)

existe para todo w € Bx y si, al mismo tiempo, df,, € X*. El funcional lineal df,, se
llama la diferencial Gateaux de f en xg.

(b) f es Fréchet diferenciable en xg si

£ (0) () = 1im LF0 1) = f (o)

t—0 t

existe para todo u € By, es uniforme para u € Bx y si, al mismo tiempo, f'(xg) € X*.
El funcional lineal f'(x0) se llama la diferencial Fréchet! de f en x.

(c) Si el limite

, u € By

'La razén de que la diferencial Gateaux y la diferencial Fréchet se denoten de distinta manera es Ginicamente
por motivos histéricos.
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existe, este limite se llama derivada direccional de f por la derecha en la direccion
u.

Las funciones convexas, y en particular la norma, tienen unas propiedades adicionales
que hacen que su estudio merezca especial atencién. La siguiente proposicién, (véase, por
ejemplo, [27]), caracteriza la Gateaux diferenciabilidad de las funciones convexas.

1.2 PROPOSICION. Sea f: D — IR una funcién conveza definida en un abierto convexo no
vacio D del espacio de Banach X y sea xg € D. Entonces

(a) existe d¥ fu,(u) para todo u € Bx y es un funcional sublineal.

(b) f es Gateauz diferenciable en xq si y solo si —d¥ fr,(—u) = dT fr,(u) para todou € X y
también si y solo si existe un unico funcional lineal x* € X™* satisfaciendo

(x — xg, 2™y < f(x) — f(x0), Vx € D. (1.1)

La parte (b) de la proposicién anterior es importante pues caracteriza una propiedad
topoldgica (la diferencial Gateaux) en téminos de la desigualdad (1.1). Véase la figura 1.1.

R

w oz X
Figura 1.1:

Los funcionales lineales que satisfacen (1.1) juegan un papel importante en el estudio de
las funciones convexas.

1.3 DEFINICION. Sea f: X — RU{+4o00} una funcidn conveza, propia e inferiormente || -||-
semicontinua. Si x € dom(f), se define la subdiferencial de f en x como el subconjunto

de X*
of(@) ={2" € X*: (y —=z,2%) < f(y) — f(z), Vy € X},

mientras que Of (x) =0 si x ¢ dom(f).

Si particularizamos la definicién 1.3 al caso f = || - || obtenemos la funcién dualidad de
X. En este caso se puede probar sin ninguna dificultad que para x € Sx se tiene

O - ll(x) = {a" € Sx= = (w,2%) =1} ={a" € X" : (z,27) = 1, (y,2") < 1Vy € Bx},

que significa, desde el punto de vista geométrico, que el hiperplano de ecuacién (-, z*) = 1;
donde z* € 9||-||(x), pasa por el punto x y deja la bola unidad a un lado. O, equivalentemente,
manejando el espacio dual, que todos los elementos de 9| - ||(x) forman la cara de Bx-
determinada por el hiperplano de ecuacién (z,-) = 1.
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Notemos que una funcién continua convexa es Gateaux diferenciable en x si y sélo si
O0f (x) consta de un sélo elemento. Por tanto, si f no es Gateaux diferenciable en x, entonces
diam (0f(x)) # 0. La siguiente proposicién (véase [4]) muestra la relacién entre diam (0f(z))
y la aplicacién y — d* f.(y) + d* fo(—y).

1.4 PROPOSICION. Si f: D — IR es una funcién convexra definida en D, subconjunto abierto
convezro no vacio de un espacio de Banach X, y si es continua en x € D, entonces

diam (0f (z)) = sup{d" fo(y) + d* fo(—y) : y € Sx}.

Como una consecuencia inmediata se tiene que, bajo las condiciones de la proposicién
anterior, las siguientes afirmaciones son equivalentes:

a) f es Gateaux diferenciable en x.

(a)
(b) 8
)
)

f(x) consta de un sélo elemento.
(¢) diamdf(x) =
(d) d* fz(y) = d fu(y) para todo y € Sx.

La siguiente definiciéon es importante en la teoria de diferenciabilidad de los espacios de
Banach.

1.5 DEFINICION. Sea f : X — IR U {400} una funcion conveza, propia e inferiormente
|| - [|-semicontinua. Six € dom(f), € > 0, definimos la e-subdiferencial de la funcion f en
x como

Ocf(x) ={a" € X" : (y—z,2") < f(y) — f(z) +¢&, Vy € X}

Es claro que si 0 < €1 < €3, entonces O, f(x) C O, f(z). Ademads, se puede demostrar
(véase [27]) que, bajo las condiciones de la definicién 1.5, 0 f(x) es siempre un subconjunto
w*-cerrado no vacio de X™* para cualquier € > 0.

Cuando f = || - ||, la definicién 1.5 posee un significado geométrico atin més claro. Es facil
comprobar que si € Sx, entonces

O - lI(x) ={y" € Bx+ : {x,y") < 1 —¢},

lo cual significa que 0| - ||(z) es el subconjunto de los puntos de Bx+ que estédn entre los
hiperplanos de ecuaciones (z,-) =1 —¢, (z,-) = 1. Este dltimo es el hiperplano en el cual
estd contenido J|| - ||(z). Es decir, 0| - ||(x) es una seccién determinada por x en Bx-+.

Las funciones convexas en la recta real poseen muchos puntos de diferenciabilidad, méas
concretamente, si f es una funcion convexa definida en un intervalo abierto no vacio D de
R, entonces f'(x) (o df:, ya que en espacios de dimensidon finita la Gateauz diferenciabilidad
coincide con la Fréchet diferenciabilidad) existe para todo punto de D\ N, donde N es un
subconjunto numerable de D. El siguiente teorema se debe a Mazur y generaliza al resultado
anterior.

1.6 TEOREMA (Mazur). Si X es un espacio de Banach separable y si f es una funcion
convezxa continua definida en un abierto convero no vacio D de X, entonces el conjunto de
puntos donde f es Gateaux diferenciable es un subconjunto Gs denso de D.
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Observemos que hay espacios no separables en los cuales la condicién del teorema de Mazur
sigue siendo valida. Los intentos por caracterizar aquellos espacios en los cuales las funcio-
nes convexas y continuas son siempre genéricamente diferenciables ha motivado la siguiente
terminologia:

1.7 DEFINICION. Un espacio de Banach X se dice que es un espacio de Asplund si
cualquier funcion continua convexa definida en un abierto convexo no vacio D de X es Fréchet
diferenciable en un subconjunto G5 denso de D.

Se ha realizado un esfuerzo para encontrar condiciones geométricas suficientes para que
un espacio sea de Asplund. El propio Asplund probé en [2] que un espacio de Banach cuyo
dual es estrictamente convezo es de Asplund. Posteriormente, I. Ekeland y G. Lebourg, [11],
probaron que todo espacio con norma Fréchet diferenciable es de Asplund. En 1978, C. Stegall,
[29], consigue dar una forma definitiva a una larga serie de trabajos previos demostrando el
siguiente resultado:

1.8 TEOREMA. Sea X un espacio de Banach. Las siguientes afirmaciones equivalen:
(i) X es un espacio de Asplund.

(ii) X* posee la propiedad de Radon-Nykodjm?.

(iii) Todo subespacio separable de X tiene dual separable.

Durante anos se conjeturé que todo espacio de Asplund admite una norma equivalente
Fréchet diferenciable, conjetura errénea como ha demostrado R. Haydon, [18], encontrando
un espacio C(K) de Asplund que ni siquiera tiene una norma Gateaux diferenciable. A la vista
de este ejemplo interesa encontrar condiciones geométricas que no necesariamente impliquen
la Gateaux diferenciabilidad de la norma para que el espacio sea de Asplund. En la bisqueda
de propiedades de este tipo, se estudio la relacién entre la diferenciabilidad de la norma y la
aplicacién dualidad de un espacio de Banach.

Dada una funcién continua y convexa f definida en un abierto convexo no vacio A de
un espacio de Banach X podemos extender f a una funcién con dominio X, que seguimos
denotando del mismo modo, definiendo
{ lim inf f(y) z € A,

Yy—x

flo) = +00 T ¢ A

Se puede demostrar facilmente que la funcién resultante es inferiormente semicontinua y
convexa.

El siguiente concepto ha encontrado diversas aplicaciones en la teoria de los espacios de
Banach.

1.9 DEFINICION. Sean X un espacio de Banach y f: X — R U {400} una funcion propia,

convera e inferiormente || - ||-semicontinua 3. La conjugada de Fenchel de f es la funcion
definida en X* dada por

(") = sup{(x,z*) — f(z): x € X}.

2Un espacio de Banach X tiene la propiedad de Radon-Nykodym si cualquier K acotado no vacio de X
cumple que para cada ¢ > 0 existen z* € X™* y a > 0 tales que diam ({z € K : (z,z*) > supy(z*)—a}) <e.
3Esta definicién se puede hacer para una funcién propia y convexa arbitraria, véase, por ejemplo, [27].




1. Diferenciabilidad en espacios de Banach

Es trivial demostrar que f* es convexa. Es inferiormente w*-semicontinua por ser el supremo
de funciones w*-continuas. Ademads f* es propia, ya que si tomamos ¢ > 0, € dom(f) y
x* € 0:f(x), entonces

(y =z, 2%) < f(y) — f(z) +¢, Yy € X.
Es decir, f*(2*) < (z,2*) — f(x) + & < 4o0.

Es trivial demostrar que bajo las condiciones de la definicién 1.9 entonces

(z,2%) < f(x) + (7). (1.2)

para cualquier (z,z*) € X x X*. Ademas si € > 0, entonces 0. f(x) se puede caracterizar de
la manera siguiente: z* € 9. f(x) siy sélo si f(z) + f*(z*) < (x,2*) + ¢ (aqui, hemos tomado
Oof = 0f). En particular, se tiene x* € df(x) siy sélo si f(x) + f*(a*) = (x, z*).
Es sencillo probar que la conjugada de Fenchel de la norma viene dada por
0 x* € By~
* (% _ )
i ={ e LE B (13)

Noétese que por (1.3), si particularizamos (1.2) para x* € Sx~ se tiene (z,z*) < ||z|| para
cualquier z € X. Esto obviamente implica (z, 2*) < |z||[|z*|| para cuaquier (z,z*) € X x X*.
Por eso, cuando se intenta generalizar propiedades de la norma al caso de las funciones
convexas e inferiormente semicontinuas, una idea 1til es substituir (z,2*) < ||z||||z*|| por la
desigualdad (1.2).

Obsérvese que si f : X — IR U {400} es una funcién convexa, propia e inferiormente
semicontinua, entonces f* también es convexa, propia e inferiormente semicontinua (de he-
cho es inferiormente w*-semicontinua), por lo que a f* se le puede aplicar la definicién 1.9
obteniendo la funcién biconjugada de Fenchel.

El siguiente resultado, conocido como teorema de Fenchel-Moreau, muestra que esta fun-
cién extiende la funcién original (védse [6] para una demostracién sencilla que usa el teorema
de Hahn-Banach en X x R).

1.10 TEOREMA. Sea f : X — IR una funcion inferiormente semicontinua y convexra. Si
x € dom(f), entonces f(x) = f**(x).

1.3 La subdiferencial como operador monétono

Una propiedad que se deduce facilmente de la definicién de la subdiferencial de una funcién
convexa es la siguiente: Si f es una funcion continua convexa definida en el abierto convexo
no vacio D, entonces

(x —y,x* —y*) >0, Vae,y € D, x* € 0f(x), y* € df(y).

Las aplicaciones multivaluadas que cumplen esta condicién son muy importantes y han sido
extensamente estudiadas desde los anos sesenta en conexién con el andlisis no lineal. Las
siguientes definiciones son cldsicas y pueden encontrarse, por ejemplo, en [27]:



1.4. Continuidad de la subdiferencial

1.11 DEFINICION. Una aplicacion multivaluada ® : A — P(X*), donde A es un subconjunto
de un espacio de Banach X, se dice que es un operador mondétono si

(x —y,x* —y*) >0, Ve,y € A, 2" € ®(x), y* € P(y).

Un subconjunto G de X x X* es monétono si (x—y, z*—y*) > 0 siempre que (z,x*), (y,y*) €
G. Sid: A — P(X*) es un operador mondtono, entonces su grafo es un subconjunto
mondtono. Un subconjunto mondtono se dice maximal mondétono si es mazximal en la fa-
milia de subconjuntos mondtonos de X x X* ordenada por inclusion. Decimos que un operador
mondtono es maximal mondtono si su grafo es un subconjunto mazximal mondtono.

Es facil ver, a partir de la definicién, que un operador monétono ® : A — P(X*) es
maximal monétono si y sélo si la siguiente condicion es cierta: Dados cualesquieray € X, y* €
X* tales que

(y —z,y" — %) >0, Ve e X, z* € &(x),

entonces se sigue necesariamente que y* € ®(y). El siguiente teorema se debe a Rockafellar
(véase [28]).

1.12 TEOREMA. Sea X un espacio de Banach y f : X — IR U {400} una funcion conveza
e inferiormente semicontinua. Entonces Of es mazximal mondtona.

1.13 DEFINICION. Un punto y de un subconjunto A de un espacio de Banach'Y se dice un
punto soporte de A si existe y* € Y*, y* # 0 tal que y* alranza el supremo sobre A en y.
Cualquier y* que cumpla esta definicion se dice que es un funcional soporte de A en y, o
que y* soporta a A en y.

La terminologia geométrica surge del hecho de que un hiperplano cerrado se dice que
soporta a A si uno de los dos semiespacios cerrados que define el hiperplano contiene a A, el
otro semiespacio abierto no corta a A y este hiperplano corta a A. Si y* soporta a A en y,
entonces H = {z € Y : (z,y*) = sup,(-,y*)} es tal hiperplano.

La siguiente proposicién (véase [4]) relaciona los funcionales soporte de un epigrafo de una
funcién convexa con la subdiferencial; y es una consecuencia del teorema de maximalidad de
Rockafellar:

1.14 PROPOSICION. Sean X wun espacio de Banach, f una funcién continua y conveza
definida en un abierto convexo no vacio y x un punto de dicho abierto. Entonces, los fun-

cionales soporte de epi(f) en (z, f(x)) son los maltiplos positivos de los funcionales lineales
¢ € (X xR)* de la forma

(Y, \) = (y,z%) — A, " € df(x). (1.4)

1.4 Continuidad de la subdiferencial

La aplicacion subdiferencial es un ejemplo de una aplicacién multivaluada. La siguiente
definicién establece nociones de continuidad para este tipo de aplicaciones:
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R

Figura 1.2: Obsérvese que la “normal apunta hacia abajo”. Este es el significado geométrico
del signo negativo de A en (1.4).

1.15 DEFINICION. Sean (A,7) y (B,7') dos espacios topoldgicos y sea una aplicacién mul-
tialuada ® : A — P(B). Se dice que

(a) ® es superiormente 7 — 7'—semicontinua en x € A si para cada 7'-abierto U que
verifique ®(x) C U, existe un T-entorno V de x tal que ®(y) C U para todo y € V.

(b) @ es inferiormente 7 — 7'—semicontinua en = € A si para cada 7'-abierto U que
verifique ®(x) NU # (), existe un T-entorno V de x tal que ®(y) NU # (0 para todoy € V.

Nos interesa el caso en que ® sea la subdiferencial de una funciéon convexa y continua
definida en un conjunto D abierto, convexo y no vacio de un espacio de Banach X. Siempre
consideraremos al espacio de Banach X dotado de la topologia de la norma, mientras que en
X* consideraremos alternativamente las topologias de la norma, la w o la w*. Usaremos la
nomenclatura superiormente (inferiormente) 7—semicontinua cuando 7 sea una de las
topologias mencionadas anteriormente sobre X*. En la siguiente proposicién se considera el
caso en que 7 es la topologia w*.

1.16 PROPOSICION. Si f es una funcién continua convezra definida en el abierto convero no
vacio D de un espacio de Banach X, entonces la subdiferencial x — Of(x) es superiormente
w*-semicontinua.

La demostracién puede encontrarse, por ejemplo, en [27]. El caso particular en el que
f =1 -] fue demostrado en 1964 por Cudia en [9]. La siguiente proposicién (véase [4]) fue
demostrada en [9] para el caso particular cuando f es la norma.

1.17 PROPOSICION. Sea f una funcién convezxa y continua definida en un abierto convero
no vacio D del espacio de Banach X. Dado x € D, entonces

(a) f es Gateauz diferenciable en x si y sélamente si Of es inferiormente w*-semicontinua
en x.

(b) f es Fréchet diferenciable en x si y sélamente si Of es inferiormente || - ||-semicontinua
en x.

Como se mencioné previamente, si la aplicacion dualidad es univaluada en un punto z del
espacio de Banach X, entonces la norma de X es Gateux diferenciable en x. Como interesa
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1.4. Continuidad de la subdiferencial

encontrar condiciones geométricas mas débiles que la diferenciabilidad Gateux que impliquen
que X sea de Asplund, no hay més remedio que substituir la semicontinuidad inferior por
otra nocién mas débil. La semicontinuidad superior ha sido poco estudiada. La razén de
este desinterés se debe en, nuestra opininién, a tres razones fundamentales: No se conoce
una caracterizacién mediante cocientes diferenciales, no es estable frente a sumas directas, y
sobre todo, existe una nocién parecida a la semicontinuidad superior que ha resultado ser la
mas adecuada a la hora de trabajar con la funcién dualidad. Este tipo de continuidad fue
introducida en [13] y ha encontrado interesantes aplicaciones.

1.18 DEFINICION. Si (A,T) es un espacio topoldgico, (B,T') es un espacio vectorial to-
poldgico y ® : A — P(B) \ 0. Diremos que ® es restringida superiormente 7 — 7’ —semi-
continua en x € A si para cada U, 7’-entorno de 0 en B, existe V, T-entorno de x en A, tal
que ®(y) C ®(z) + U para todoy € V.

Es claro que la semicontinuidad superior implica la semicontinuidad restringida superior,
y si ®(z) es 7/-compacto ambas nociones coinciden. Igual que en la definicién 1.15, estaremos
interesados sélamente en el caso en que se considera la topologia de la normaen A C X y a
B = X* le dotamos de las topologias de la norma y w. El caso en que a X* se le dota de la
topologia w* es trivial por la Proposicién 1.16 y por ser df(x) siempre w*-compacto (si f es
continua en z).

El caso particular en donde la aplicacién dualidad es restringida || - ||-semicontinua su-
periormente fue estudiado en primer lugar en [17], probando que la aplicacién dualidad es
restringida || - ||-semicontinua superiormente en x € X siy sélo si el limite

 + tul| — ||z|
drll - = 1i I
I o) = tim 1250

(que existe para todo u € X) es uniforme para ||u|| < 1. La siguiente definicién fue introducida
en [12].

1.19 DEFINICION. Sean f : D — IR, D un abierto no vacio de un espacio de Banach X y
x € D. Decimos que la funcion f es fuertemente subdiferenciable en x si el limite

_ oy f@ttu) = f(x)
A" fo(u) = t1_1>%1+ t

es uniforme para u € X.

Son bastantes los trabajos dedicados a este tipo de extensién de la diferenciabilidad
Fréchet. Merecen destacarse [1, 8, 12, 13, 15, 16, 17].

Para la aplicacién subdiferencial de funciones convexas y continuas definidas en un abierto
convexo no vacio de un espacio de Banach X este ultimo concepto tiene una apropiada
caracterizacién geométrica, demostrada por primera vez en [17].

1.20 PROPOSICION. Si f es una funcién convexa y continua en el abierto convero no vacio
D de un espacio de Banach X, entonces f es fuertemente subdiferenciable en x € D si y sélo
si Of es restringida superiormente || - ||-semicontinua en x.

11



1. Diferenciabilidad en espacios de Banach

De la monotonicidad de los cocientes diferenciales y del teorema clasico de Dini se deduce
que cualquier norma en un espacio normado de dimensién finita es fuertemente subdiferen-
ciable. Una especie de reciproco también es cierto, como probaron Contreras y Payd en [§]:
En todo espacio de dimension infinita existe una norma equivalente que no es fuertemente
subdiferenciable.

1.5 Aplicaciones bastantes suaves

La siguiente nomenclatura se debe a Contreras y Payd. Aparecié por vez primera en [8]
con el objetivo de dar una condiciéon geométrica suficiente para que un espacio de Banach sea
de Asplund.

1.21 DEFINICION. Decimos que una funcion continua y conveza f definida en un abierto
convero no vacio D de un espacio de Banach X es bastante suave en x € D si la apli-
cacion Of : D — P(X™*) es restringida superiormente w-semicontinua en x. Andlogamente
decimos que ® : A — P(X*), donde A C X, es bastante suave en x € A, si es restringida
superiormente w-semicontinua en x.

Se pueden generalizar algunos resultados de [8, 13] en la siguiente proposicién (véase [5]),

que se puede considerar como el andlogo del test de Smulyan? para este tipo de diferenciabi-
lidad.

1.22 TEOREMA. Sean f una funcion convexa y continua definida en un abierto convero no
vacio D de X, x € D y 7 alguna de las siguientes topologias de X*: la de la norma, la w o
la w*. Las siguientes afirmaciones son equivalentes:

(a) Of es restringida T-semicontinua superiormente en x.

(b) Para todo N, T-entorno de 0 en X*, existe € > 0 tal que O.f(z) C Of(x) + N.

El caso particular cuando la funcién f es la norma de un espacio de Banach fue obtenido
por Giles, Gregory y Sims en [13], en donde se utiliza el teorema de Bishop-Phelps-Bollobés.
Para la demostracion del teorema 1.22 se utiliza lo que se puede considerar la generalizacién del
teorema Bishop-Phelps-Bollobas para funciones convexas e inferiormente || - ||-semicontinuas:
El teorema de Brgnsdted-Rockafellar: Sea f una funcion convexa continua definida en D, un
abierto convexo no vacio de un espacio de Banach X. Entonces dados cualesquiera xoy € D,
e >0, af € 0-f(x0), existen v, € D y xt € X* tales que x} € 0f(xc), ||ze — xo] < e,
ot — a3 < VE.

Cuando la aplicacién dualidad es restringida superiormente w-semicontinua, el espacio de
Banach X disfruta de numerosas propiedades. En la siguiente proposicién (véase [13]) se
caracteriza esta clase de continuidad.

1.23 PROPOSICION. Sea X un espacio de Banach y sea x € Sx. Las siguientes afirmaciones
son equivalentes:

4La norma es Fréchet (Gateux) diferenciable en = € X siy sélamente para cualquier 7%,y € Sx~, (z,z}) — 1,
(z,yn) — 1, entonces x;, — y;, tiende a 0 en la topologia de la norma (en la topologia débil). Véase [10].
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1.5. Aplicaciones bastantes suaves

(a) || - || es bastante suave en x.

(b) Para cada w-entorno de 0, N, en X*, existe 6 > 0 tal que

y* € Bx+, {x,y") >1-6 = y* €| [l(x) + N,

() 9| - (x) es denso en Q|| - ||**(x) para la topologia o(X***, X**) de X***.

Se hace patente, observando las proposiciones 1.17, 1.20 y 1.23, que se echa de menos
una caraterizacion mediante cocientes diferenciales de la propiedad “ser bastante suave”.
Observemos que en la proposicién anterior aparece de forma bastante natural la extensién
de la norma de X a X**. En la teoria de los espacios de Banach existe una generalizacién
de tal extensién: la biconjugada de Fenchel. Este tipo de operacion, como hemos visto en el
teorema 1.10, se aplica a la clase de funciones convexas e inferiormente semicontinuas.

El resultado fundamental sobre funciones bastante suaves es el teorema 1.25 aparecido
en [5]. El siguiente resultado, que generaliza al teorema de Goldstine®, es necesario para la
demostracién del teorema 1.25.

1.24 TEOREMA. Sea f : X — IR U {+oo} una funcion conveza, propia e inferiormente

semicontinua, entonces epi(f*) = epi(f)

Es posible que lo siguiente ayude a comprender los problemas planteados méas adelante:
En la demostracion estandar del teorema de Golstine se usa el teorema de Hahn-Banach,
mientras que en la prueba del teorema 1.24 se usa el teorema de Hahn-Banach en X x IR.
Esto es intuitivo si se piensa que la forma maés adecuada de manejar simultdneamente puntos
x de X y escalares f(z) de IR es usar elementos (z, f(x)) de X x IR.

Presentamos a continuacién la extensién de los resultados de Giles, Gregory y Sims (pro-
posicién 1.23) al caso de las funciones convexas y continuas.

1.25 TEOREMA. Sean f : D — IR wuna funcién continua y convexa, siendo D un abierto
convexo no vacio de un espacio de Banach X y x € D. Entonces las siguientes afirmaciones
son equivalentes:

a) f es bastante suave en x.

b) Para todo N, w-entorno de 0 en X*, existe € > 0 tal que 0-f(x) C df(x) + N
(c
d) d*frr =sup{(-,a") : 2" € 0f (x)}.

(e) Dadose >0 yu™ € Sx=«, existe § > 0 tal que

[ (@ ) — (@)
t

(a)
(b)
) Of(x) es o(X***, X**)-denso en Of*(x).
(d)
)

—sup{{(u*™,z*) : 2* € Of (x)} < e,

para cualquier 0 <t < 9.

= B
°Si X es un espacio de Banach, entonces Bx es w*-densa en Bxx+.
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1. Diferenciabilidad en espacios de Banach

Si X es un espacio de Banach, se tiene ||z|| = sup{|(z,z*)| : * € Bx+} para todo = € X.
La siguiente definicién tiene nexos con la anterior igualdad y ha demostrado tener aplicaciones
en la topologia de los espacios de Banach.

1.26 DEFINICION. Sea X un espacio de Banach y N un subespacio de X*. Se dice que N
es un subespacio normante, si es cerrado (en la topologia de la norma) y satisface

|lz|| = sup{[{z,2")| : 2* € BN}, VzeX.

Se puede demostrar de manera sencilla, aplicando el teorema de Hahn-Banach, que un subes-
pacio cerrado N de X* es normante si y solamente si By es w*-denso en Bx+. Denotaremos
por Nx la interseccién de todos los subespacios cerrados normantes de X*, que en general es
un subespacio cerrado pero no siempre normante. Los subespacios normantes de X* juegan
un papel importante en cuestiones de dualidad, ya que cualquier predual isométrico de X es
un subespacio de X* normante.

Ademis, los subespacios normantes de X™* guardan una relacion directa con la diferencia-
bilidad de la norma, como se puede observar en el siguiente hecho: Si la norma es bastante
suave en todo Sx y es Gateauz diferenciable en v € Sx, entonces * = d|| - ||z € Nx. En
efecto: si N es un subespacio cerrado normante de X*, como

1 =sup{(z,y*) : y* € Bn},

existe (yn)22, C By tal que (z,y}) — 1. Aplicando la proposicién 1.23 se puede comprobar
que y — x* en la topologfa w, por lo que 7* € By “ = By.

Si X admite un predual N, entonces N es un subespacio normante de X*. Si ademas X*
no posee subespacios propios normantes, entonces N = X*; por lo que X** = N* = X, es
decir X es reflexivo. Como Godefroy demostro, la hipdtesis de que X sea un espacio dual se
puede debilitar, exigiendo inicamente la siguiente propiedad:

1.27 DEFINICION. Se dice que un espacio de Banach X tiene la propiedad de la inter-
seccién finita-infinita (para abreviar escribiremos I Pf o) si toda familia de bolas cerradas
en X, con interseccion vacia, contiene una subfamilia finita con interseccion vacia.

Es facil ver que si X es un espacio de Banach dual, entonces X posee la propiedad 1Py .
En efecto: sean N el predual de X y (Bg)qer una coleccién de bolas cerradas tal que para todo
subconjunto finito F de I se tiene Nyep By # 0. Ya que las bolas cerradas, por el teorema de
Alaoglu-Bourbaki, son (X, N) compactas, se tiene NaecyBa # 0. En particular todo espacio
reflexivo posee la propiedad I Py . El siguiente resultado se debe a G. Godefroy, si bien no
aparece explicitamente en ninguno de sus trabajos.

1.28 LEMA. Sea X un espacio de Banach que posee la propiedad 1P y tal que X* no
posee subespacios propios normantes. Entonces X es reflexivo.

Como se comenté previamente hay una larga serie de trabajos donde se proporcionan
condiciones geométricas que implican que el espacio es de Asplund. En 1994, Contreras y
Paya (véase [8]) lograron generalizar varios resultados previos estableciendo que todo espacio
de Banach donde la norma sea bastante suave es de Asplund. En [14], Giles y Moors probaron
un resultado similar bajo una condicién (formalmente) més débil, el teorema 1.29.
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1.6. Normas &speras y funciones bump

En el articulo mencionado de Contreras y Paya también se demostro que Si X es un espacio
de Banach con norma bastante suave, entonces X* no tiene subespacios propios normantes.
En [4] se ha usado la condicién de Giles y Moors sobre un espacio de Banach para probar que
su dual no posee subespacios cerrados propios normantes. Obsérvese que la propiedad de que
para alguna norma equivalente, el dual no contiene ningin subespacio propio normante y la
propiedad de ser un espacio de Asplund son independientes, como se muestra en [22].

1.29 TEOREMA. Un espacio de Banach es de Asplund si tiene una norma equivalente cuya
aplicacion dualidad tiene un grafo que contiene el grafo de una aplicacion bastante suave.

La prueba del siguiente resultado puede encontrarse en [3].

1.30 TEOREMA. Sea X un espacio de Banach de modo que existe ® : Sx — P(X*) \
0 bastante suave cumpliendo ®(x) C 9| - ||(z) para todo z € Sx. Entonces X* no tiene
subespacios propios cerrados normantes.

El siguiente resultado muestra una aplicacion directa del teorema 1.30 a la geometria de
los espacios de Banach y es una generalizacién de un resultado de Godefroy aparecido en [15].

1.31 COROLARIO. Sea X un espacio de Banach tal que exista ® : Sx — P(X*)\ 0 bastante
suave cumpliendo ®(x) C 9|| - ||(z) para todo x € Sx. Entonces cualquier subconjunto de X
acotado y w-cerrado es una interseccion de uniones finitas de bolas de X.

Utilizando los resultados previos se proporcionan [3] dos caracterizaciones de la reflexivi-
dad mas generales que las ya comentadas previamente.

1.32 TEOREMA. El espacio de Banach X es reflexivo si y solamente si X tiene la propiedad
IP; o y existe ® : Sx — P(X*)\ 0 bastante suave y tal que ®(x) C 0| - ||(z) Vo € Sx.

El siguiente corolario es obvio:

1.33 COROLARIO. Sea X un espacio de Banach que cumple la propiedad 1Py . Entonces,
las afirmaciones siguientes son equivalentes:

(a) X es reflexivo
(b) X tiene una norma equivalente bastante suave.

(¢) Eriste una norma equivalente, || - ||, y una aplicacion ® : Sx — P(X*)\ 0 bastante suave
tal que ®(x) C J| - ||(x), para cualquier x € Sx.

1.6 Normas asperas y funciones bump

Las normas asperas fueron introducidas por Leach y Whitfield en [25], Por otra parte, la
existencia de funciones bump definidas en un espacio de Banach X cumpliendo propiedades
de diferenciabilidad tiene un fuerte impacto en la estructura topoldgica de X. Baste recordar
el siguiente resultado (véase [25]): Si X es un espacio de Banach que admite un bump Fréchet
diferenciable, entonces X es un espacio de Asplund. Obsérvese que de este resultado se sigue
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1. Diferenciabilidad en espacios de Banach

en particular que si X posee una norma Fréchet diferenciable, entonces X es de Asplund,
ya que es muy facil demostrar (véase [10], pdg. 10) que a partir de una norma Fréchet
diferenciable se puede construir un bump Fréchet diferenciable.

1.34 DEFINICION. Una norma || - || en un espacio de Banach X se dice que es dspera si
existe € > 0 tal que tal que para todo x € Sx se cumple

I |z + Al + llz — Al -2
im sup
1h]|—0 [[All

La siguiente proposicién (véase [4]) generaliza a la anterior definicién al caso de las fun-
ciones convexas e inferiormente semicontinuas:

1.35 PROPOSICION. Sea X un espacio de Banach, f : X — IRU{+o00} una funcién convera,
propia e inferiormente semicontinua, ro € int(dom(f)) y € > 0. FEntonces las siguientes
afirmaciones son equivalentes:

(i) limsup f(zo + 1) + fwo — h) — 2f(x0) >
11| —0 Il =

(ii) Para todo a > 0, se tiene diam (04 f(x0)) > €.

El siguiente resultado (véase [4]) cuantifica el “grado de aspereza” de una norma en
relacion con la existencia de un bump que también posea un cierto grado de “aspereza’. Esto
precisa lo cerca que un espacio esta de ser Asplund cuando existe un bump con determinadas
propiedades de “cuasi-suavidad”. Obsérvese que este resultado implica en particular que si
existe una funcién f : X — IR que sea un bump Fréchet diferenciable, entonces X es un
espacio de Asplund.

1.36 TEOREMA. Sea C un subconjunto cerrado y acotado del espacio de Banach X. Si
existe f : C — IR, continua y acotada inferiormente cumpliendo

(a) Eziste § > 0 tal que, para todo x € int(C),

limsupf($+h)+f($—h)—2f(90) <4
[[hl|—0 Al

(b) Eziste xg € int(C) tal que f(xo) < infgc f y

(¢) f acotada inferiormente.

Entonces X no puede tener una norma e-dspera para € > vyd/a, siendo o = infye f — f(xo),
y = sup{|zo — 7| : z € CY}.

1.7 Problemas Abiertos

El corolario 1.33 responde de manera muy parcial a un problema que aparece implicito en
el trabajo [14] de Giles y Moors.
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1.7. Problemas Abiertos

1.37 PROBLEMA. ;Fuxiste un espacio X con una norma no bastante suave y en el que existe
O : Sx — P(X*)\ 0 bastante suave tal que ®(x) C 9| - ||(z), Y € Sx ?

Es claro, por el corolario 1.33, que si tal contraejemplo existe, éste no debe cumplir la
propiedad 1Py .

Como ya se comentd, si en un espacio de Banach X existe un bump Fréchet diferenciable,
entonces X es de Asplund. ;Existe la posibilidad de debilitar la Fréchet diferenciabilidad?

1.38 PROBLEMA. Sea X un espacio de Banach tal que existe un bump fuertemente subdife-
renciable. ;Es X de Asplund?

Con el fin de demostrar la validez de esta conjetura se obtuvo una respuesta parcial dada
en el teorema 1.36.

Por otra parte, en la definicién de Fréchet y Gateaux diferenciabilidad (definicién 1.1)
y en la definicién de fuertemente subdiferenciabilidad (definicién 1.19) no se exige que las
funciones sean convexas; sin embargo una hipdtesis esencial en el teorema 1.25 es que la
funcién sea convexa (entre otras cosas para definir la biconjugada de Fenchel y para asegurar
que la biconjugada restringida a X coincide con la funcién original). ;Se puede mejorar el
teorema 1.257 Ma4s precisamente:

1.39 PROBLEMA. Sea f : D — IR, en donde D es un abierto convero de un espacio de
Banach X. ;Eziste una caraterizacion mediante cocientes diferenciales para f (y solo para
f) de modo que si f es convexa, se obtenga el teorema 1.25%

Una posible utilidad de este problema es tratar atin méas de rebajar el problema 1.38,
substituyendo la subdiferenciabilidad fuerte por la bastante suavidad. Sin el problema 1.39
resuelto, esto no es posible, pues un bump no puede ser convexo.

Por todo lo comentado, conviene extender la teoria comentada lo méximo posible para
tratar el caso de las funciones no convexas. Primero de todo, comentaremos muy brevemente
algunos aspectos del articulo [23]. En este articulo, se define la Fréchet e-subdiferencial
de una funcién f: X — IRU{+oo} paraec > 0 en x € dom(f) por medio de

Py e oy e f@ ) = fl@) = (hzt)
0 (x)—{m GX’lﬁ%ﬁi%f il > z—:}.

Cuando f es convexa, se puede probar facilmente que
O (w) = {a* € X*: f(e+h) - f(x) > (h,a*) —¢||h|| Vhe X}.
1.40 PROBLEMA. ;Qué relacion hay entre OF (x) y la definicion 1.52

Miés adelante, sin salirnos de [23], se definen los siguientes conceptos para una funcién
f: X — IR U{+00} no necesariamente convexa:

(a) La Fréchet e-subdiferencial limitante de f en z € dom(f) al conjunto dado por

*

égf(w) ={z" € X" : I(zp, ;) € X x X* 2z} € Of (zp), f(xn) — f(x), N x*}.

n
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1. Diferenciabilidad en espacios de Banach

(b) La funcién fes e-convexa si para € > 0 se cumple la siguiente desigualdad para x,y € X
y A€ 0,1]

FOz+ (1 =Ny) <Af(z) + (1= A)f(y) + Al = Mz -y

Y por dltimo, para ¢ > 0, la funcién multivaluada ® : X — P(X*) es e-mondtona si
para z,y € X con ®(z), ®(y) # 0 se cumple que si (z*,y*) € ®(x) x ®(y) entonces

(x —y, 2" —y*) > =2z —y]|.

Adems3s se dice maximal s-mondtona si no existe otra funcién multivaluada e-mondtona
cuyo grafo inclye estrictamente el grafo de ®.

En [23] se analizan estas definiciones y se prueban extensiones naturales a algunos teoremas
comentados en las secciones previas. Entre otras podemos citar las siguientes.

(i) Seane >0y f: X — IRU{400} una funcién e-convexa . Entonces 9. f es 2e-monétona.

(ii) Seane >0y f: X — IRU {400} una funcién e-convexa e inferiormente semicontinua.
Entonces 0. f es maximal e-mondtona.

Parece natural extender algunos resultados mencionados previamente en las secciones
anteriores al caso de las funciones e-convexas. En los tres problemas siguientes consideraremos
f:X — RU{+o0} una funcién e-convexa, siendo ¢ > 0.

1.41 PROBLEMA. 5% ademds f es continua en v € X, scudnto vale diam (@f) ?, en el
espiritu de la proposicion 1.47

Este problema esta relacionado con el siguiente

1.42 PROBLEMA. Si ademds f es continua en x € X y si existe K > 0 tal que diam (éef) >
K para todo € > 0, squé le ocurre al cociente

fz+h)+ flz = h) = 2f(z)
7]

cuando h — 07 (obsérvese la proposicion 1.35).

La herramienta fundamental para la demostracién de la proposicién 1.14 es el teorema de
maximalidad de Rockafellar. Obsérvese que cuando f es 2e-convexa e inferiormente semicon-
tinua, la aplicacién - f es maximal e-mondétona. ;jSe puede generalizar la proposicién 1.147,
(podemos intuir la situaciéon como en la figura 1.27

1.43 PROBLEMA. Si f es inferiormente semicontinua y continua en x € X, squé forma
tienen los funcionales soporte de epi(f) en (z, f(x))?

Por otra parte, dos de los resultados més importantes de [5] son los teoremas 1.24 y 1.25,
.,Se pueden generalizar al caso de las funciones e-convexas? Un resultado central en la teoria
de las funciones conjugadas (y usado en la demostracion de los teoremas 1.24 y 1.25) es el
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teorema de Fenchel-Moreau (teorema 1.10). Con el fin de extender el teorema de Fenchel-
Moreau, en [26] se definen el siguiente concepto. Sea f : X — IR U {400} una funcién
e-convexa. Sea y € X fijo. Definimos la funcién e-conjugada f(e,-) : X* — IRU{+o0} por

fy(e:27) = sup{(z, a”) = f(x) = llz = ][}

Obviamente, f; (¢, ) es una funcién convexa y su conjugada de Fenchel se denota por f;*(e, -).
En [26] se prueba el siguiente resultado que extiende al teorema de Fenchel-Moreau: Sea
e>0ysea f: X - RU{+o0} una funcién propia, inferiormente semicontinua y -conveza.
Entonces para todos x,y € X se tiene

[f(x) = £ (e, 2)| <ellz =yl (1.5)

1.44 PROBLEMA. ;FEs posible extender de alguna manera los teoremas 1.24 y 1.25 para las
funciones e-convezras?

Una posible linea de ataque de este problema puede ser el siguiente. Ya que en la demos-
tracién estandar del teorema de Fenchel-Moreau (véase [6]) y en la prueba del teorema 1.24
(véase [5]) se usa el teorema de Hahn-Banach en X x IR y para demostrar el teorema exten-
dido de Fenchel-Moreau en [26] se usa un teorema de valor medio probado por Zagrodny [30],
jes posible usar este ultimo resultado con el fin de probar una version extendida del teorema
1.247

Por otra parte, en el teorema 1.25 aparece la expresién

[+ tu™) — f(x)
t

—sup{(u™,z*) : " € Of (x)} < e, (1.6)

donde t € R, z € X y u*™* € Sx+. ;Cémo influirfa el término ||z — y|| que aparece en la
desigualdad (1.5), en un cociente similar al de (1.6) en la posible extensién del teorema 1.25
al caso de las funciones e-convexas?

Para un estudio més adelantado, se propone relacionar los resultados mencionados en este
proyecto con varias extensiones de la subdiferencial, como la subdiferencial de Clarke ([7]), la
subdiferencial aproximada de Ioffe ([19, 20, 21]) o la subdiferencial de Kruger-Mordukhovich
([24]). Véanse [23] y las referencias alli mencionadas para relacionar estos tipos de subdife-
renciales.
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2 Analisis matricial

2.1 Notacién, conceptos y resultados basicos

Por C™*™ se denotard el conjunto de las matrices de orden m xn con coeficientes complejos.
Para una matriz dada A € C™ ", los simbolos AT, A* y A significardn la transpuesta,
conjugada transpuesta y la conjugada de A, respectivamente. Si A es cuadrada, el espectro
de Ay el radio espectral se denotaran por o(A) y p(A), respectivamente. Se denotard por
A @ B la suma directa de las dos matrices cuadradas A y B.

Una matriz cuadrada A se llama normal si AA* = A*A. Estas matrices han sido exten-
sivamente estudiadas y hay muchas caracterizaciones (por ejemplo, véanse [46, 49, 64]). La
m&s importante, sin duda, es la siguiente:

2.1 TEOREMA Una matriz A es normal si y sélo si existe una matriz unitaria U y una
matriz diagonal D tales que A = UDU*.

Una matriz cuadrada A se llama proyector (también idempotente) si A> = A. La
principal importancia de los proyectores radica en el famoso teorema espectral para matrices
diagonalizables. La matriz A se llama projector ortogonal si A> = Ay A = A*. Es bien
conocido que los proyectores y sus generalizaciones se usan frecuentemente en diversas areas
de las mateméticas (véanse, por ejemplo, [44, 55, 61]). Una matriz A se llama k-potente si
Ak = A,

Una caracterizacién ttil de las matrices k-potentes fue dada en [41].

2.2 TEOREMA. Sea A una matriz cuadrada. Entonces

A =T <= A es diagonalizable y o(A) C V1,
AMY = A A es diagonalizable y o(A) C {0} U /1.

Como un corolario, sorprendente a priori, podemos enunciar el siguiente resultado: Sea
A una matriz hermitica que cumple A**1 = A; si k es par, entonces A3 = A y si k es impar
entonces A2 = I. Lo que simplifica de manera notable el estudio de las matrices k-potentes
hermiticas.

Las siguientes condiciones permiten definir diferentes inversas generalizadas para una ma-
triz A € C"*":

(a) AGA=A.
(b) GAG =G.
(¢) GA= AG (sim =n).
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2. Anilisis matricial

(d) (AG)* = AG.
(e) (GA)* = GA.
Las siguientes definiciones son clédsicas: Si A € C"*™, se definen
A{1} ={G € C™" : G cumple (a)}, A{1,2} ={G € C™": G cumple (a) y (b)}

Las matrices en A{1} se llaman {1}-inversas de A y las de A{1,2} se llaman {1,2}-
inversas de A . Una matriz que cumple (a), (b) y (c) se llama inversa de grupo de A
(véase [38]). Es conocido que la inversa de grupo existe si y sélo si A y A2 tienen el mismo
rango, y si existe, entonces es tnica, siendo usual denotarla por A#. La tnica matriz (que
existe siempre) que cumple (a), (b), (d) y (e) se llama la pseudoinversa de Moore-Penrose
de A y se denota por A™.

Cuando A € C"*" y Rango(A) = Rango(A*), la matriz A se llama EP-matriz (o rango-
hermitica) y en este caso se tiene AT = A% (véase [38]). En [51] se probé el siguiente
resultado:

2.3 TEOREMA. Para una matriz cuadrada A, las siguientes afirmaciones equivalen:

(a) A es EP.
(b) AAT = AT A.
(c) Eziste una matriz unitaria U tal que A = U(K @ 0)U* para una matriz invertible K.

Bajo las hipétesis de este teorema, se tiene AT = U(K~! @ O)U*. Obviamente, cualquier
matriz normal es EP por el teorema 2.1. También es obvio que cualquier matriz invertible es
EP.

Una familia finita conmutativa es un conjunto finito de matrices en la que cada par de
la familia counmuta bajo la multiplicacién. Un conjunto finito de proyectores {A;} ; se dice
disjunto si A;A; = 0 para todos 1 <i,j <nei# j. El siguiente resultado es bien conocido
y muestra ser sorprendentemente util en la teorfa de las ecuaciones matriciales (véase [52]).

2.4 TEOREMA. Sea F C C™*™ un conjunto finito de matrices.

(a) Si todas las matrices de F son diagonalizables, entonces F es una familia conmutativa
si y solo si existe una matriz invertible S € C™*™ tal que ST'AS es diagonal para cada
Aed.

(b) Si todas las matrices de F son normales, entonces F es una familia conmutativa si y
solamente si existe una matriz unitaria U € C™*"™ tal que U*AU es diagonal para cada
Ae?T.

2.2 Propiedades de matrices heredadas por combinaciones
lineales

Un problema general que ha sido estudiado recientemente es el siguiente: Dadas dos
matrices del mismo tamanio A y B que cumplen las propiedades P4 y Pp respectivamente
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2.2. Propiedades de matrices heredadas por combinaciones lineales

v si a,b son dos nimeros complejos no nulos, jqué deben cumplir las matrices A y B y los
escalares a y b para que la combinacién lineal aA + bB cumpla otra determinada propiedad?
Parece ser que el primer problema de este tipo fue planteado en [31], en donde se resolvié el
siguiente problema.

2.5 PROBLEMA RESUELTO. Sean A y B dos proyectores distintos y no nulos. Encuéntrense
los nimeros complejos no nulos a y b y las condiciones que deben verificar A y B para que
aA + bB sea otro proyector.

El siguiente problema (véase [32]) en ser resuelto fue el siguiente:

2.6 PROBLEMA RESUELTO. Sea A un proyector no nulo y B una matriz tripotente no nula
del mismo orden. Encuéntrense los niumeros complejos no nulos a y b y las condiciones que
deben verificar A y B para que aA + bB sea otro proyector.

En [45] fue resuelto de manera incompleta el siguiente problema, que fue resuelto correc-
tamente en [36].

2.7 PROBLEMA RESUELTO. Sean A y B dos proyectores distintos y no nulos del mismo
orden. FEncuéntrense los numeros complejos no nulos a y b y las condiciones que deben
verificar A y B para que aA + bB sea tripotente.

En los tres articulos en donde se resuelven los problemas 2.5, 2.6 y 2.7 se distinguen
claramente las situaciones en las que AB = BA y AB # BA. Ademd&s, no habia una
forma general de demostracion. ;La hay? En los problemas 2.5 y 2.6 la técnica consistié en
desarrollar (aA + bB)? = a?A? + b2B? 4 ab(AB + BA). En el problema 2.7 se desarroll§ la
expresion

(aA+bB)? = a>A% + a*b(A*B + ABA + BA?) + ab*(AB* + BAB + B*A) +b°B>.

Esto es demasiado tedioso y claramente imposible de generalizar para estudiar cuando se
cumple (aA + bB)*! = aA + bB. Afortunadamente, el uso del teorema 2.4 facilita el caso
conmutativo. Para aplicar este ultimo teorema se debe aplicar el teorema 2.1.

Podemos citar el siguiente problema (véase [39]) resuelto gracias al teorema 2.4 y a las
caracterizaciones del teorema 2.2:

2.8 PROBLEMA RESUELTO. Sea A un proyector no nulo y B una matriz k+1-potente no nula
tales que AB = BA. FEncuéntrense los numeros complejos no nulos a y b y las condiciones
que deben verificar A y B para que aA + bB sea otro proyector.

Comentamos muy brevemente la resolucién, pues ayudara a entender el resto del capitulo.
La idea es trabajar con la expresién aA + bB en su forma maés simple posible, es decir, en
forma diagonal. Esto es posible pues A y B son diagonalizables y AB = BA. Por medio de
una diagonalizacién simultdnea, podemos suponer que A = A1 As y B = By ® B, en donde
A1, Ag, By y By son matrices diagonales y cumplen A? = A; y Bf“ = B;. Como las matrices
A; son proyectores, por el teorema 2.2 se tiene o(A4;) C {0,1} y por tanto, reordenado los
valores propios de A podemos suponer A = I & 0. Ahora es ficil estudiar cudndo aA + bB es
un proyector, ya que aA + bB es una matriz diagonal: en efecto basta estudiar expresiones
escalares del tipo ac; + b3; € {0,1} siendo oy € 0(A) € {0,1} y B; € o(B) C {0} U V/1.
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2. Anilisis matricial

La misma técnica permitié resolver el siguiente problema planteado en [41]:

2.9 PROBLEMA RESUELTO Sean A y B dos proyectores no nulos y distintos tales que AB =
BA. Encuéntrense los niumeros complejos no nulos a y b y las condiciones que deben verificar
A y B para que aA + bB sea una matriz k + 1-potente.

La diagonalizacién simultdnea permite afirmar que si ai,...,a, son los valores propios
de Ay que si B31,..., 0, son los valores propios de B, entonces ac; + b3; € {0} U ¥/1 para
1 < i < n. El estudio de estas ecuaciones es simple, pues como A y B son proyectores,
entonces «;, 3; € {0,1} para 1 <i <n. Asi pues, el teorema 2.4 permite reducir el problema
2.9 a un problema de sistemas de ecuaciones lineales.

En [50] se introdujo el siguiente concepto: Una matriz cuadrada A se dice que es un
proyector generalizado si A* = A%. En [33] se resolvi6 un problema andlogo al problema
2.5, si se substituye “proyector” por “proyector generalizado”; sin embargo, la prueba dada en
[33] es muy computacional. En el caso conmutativo, el uso del teorema 2.4 permite simplificar
la prueba y extender el resultado. Siguiendo a [40], una matriz A se llama k-proyector
generalizado si A¥ = A*. El concepto de proyector hipergeneralizado también fue
introducido por Gross y Trenkler en [50], en donde se muestran varias propiedades de este
tipo de matrices. Un proyector hipergeneralizado K es una matriz cuadrada que cumple
K? = K*. En [40] se resuelve el siguiente problema:

2.10 PROBLEMA RESUELTO. Sean A y B dos k + 1-proyectores generalizados tales que
AB = BA. Encuéntrense los nimeros complejos no nulos a y b y las condiciones que deben
verificar A y B para que aA + bB sea un k + 1-proyector generalizado.

La diferencia fundamental con lo ya comentado, es que hay que usar el teorema 2.4; pero
para matrices normales (es trivial ver que si AF = A* entonces A es normal). De hecho, en
[40] se prueba que una matriz cuadrada A cumple A¥ = A* si y sélamente si A es normal y
o(A) c {0} u "W/1.

La dificultad de esta serie de problemas se hace patente si observamos que en [35] sélo se
resolvié el problema siguiente:

2.11 PROBLEMA RESUELTO. Sean A y B dos proyectores hipergeneralizados no nulos tales
que existen dos escalares o y 3 de modo que

AB = BA = A% + 3B (2.1)

Encuéntrense los nimeros complejos no nulos a y b y las condiciones sobre A y B tales que
aA + bB es un proyector hipergeneralizado.

.Y qué ocurre para el caso no conmutativo? En [41] se resolvié el siguiente problema

2.12 PROBLEMA RESUELTO. Sean A y B dos proyectores tales que AB # BA. Encuéntrense
los nimeros complejos no nulos a y b y las condiciones que deben verificar A y B para que
aA + bB sea una matriz k + 1-potente.

Comentemos brevemente el formalismo de la solucién. Las matrices A, B y aA + bB son
diagonalizables (pero no simultdneamente, pues no conmutan). Para simplificar la ecuacién
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2.2. Propiedades de matrices heredadas por combinaciones lineales

C = aA+bB, podemos diagonalizar o bien A, o bien B, o bien C. ;Cuél interesa diagonalizar?
Desde luego, la mas complicada, que es C (pues las otras dos matrices cumplen una ecuacién
simple, a saber, X2 = X). Ahora se tiene que aA+bB = S(\MI®--- D\, 1)S~! para alguna
matriz invertible S. Por tanto, el problema se reduce a encontrar los escalares a,b € C y las
condiciones sobre A, B tales que

a(STTAS) +b(STIBS) = NI D - @ M1,

siendo A1, ..., A\ € {0} U V/1. Obsérvese que de esta manera se evita desarrollar la expresién
(aA + bB)**1, siendo este calculo extremadamente engorroso puesto puesto que A y B no
conmutan. Desde luego, todo lo “interesante” que le ocurre a A y a B, le ocurre a S™1AS y
a S~!BS (por ejemplo, si A es un proyector, entonces S~ AS lo es, o si AB # BA, entonces
(STLAS)(STIBS) # (S7IBS)(S7LAS), etc...). Partiendo las matrices ST1AS y ST!BS por
bloques como A1 & --- & A\, I y tras bastantes cdlculos y lemas previos se llega a la solucién
del problema 2.12.

Desde luego, el significado de la palabra “interesante” depende del enunciado de cada
problema. Las condiciones que aparecen en el problema 2.12 son invariantes por la transfor-
macién X +— SXS~!. Los problemas relativos a las matrices normales, matrices hermiticas,
perpendicularidad, pseudoinversas de Moore-Penrose, ... son invariantes por una transforma-
cion X — UXU*, donde U es unitaria, y por tanto habria que usar el teorema 2.4, pero en
la versiéon de matrices normales.

Se demuestra asi que la teoria espectral juega un papel importante en la teoria de las
ecuaciones matriciales relacionadas con la conmutatividad!. Asimismo, la técnica de las
matrices por bloques se torna una herramienta indispensable para tratar estas cuestiones.
Uno de los lemas necesarios para resolver el problema 2.12 es el siguiente:

2.13 LEMA. Si A y B son dos proyectores del mismo orden y si a,b son dos numeros
complejos tales que AB # BA y aA+bB es k + 1-potente, entonces existen o, 3 € {0} U v/1
tales que a+b=a+ 0 y o # 3.

Obsérvese que si se particulariza este lema para el caso no conmutativo del problema 2.5 se
obtiene que a+b = 1. Comentemos muy brevemente la demostracién del lema 2.13, sélo para
k = 1 para comprender el uso de las matrices por bloques. Si A, B,aA + bB son proyectores
entonces

(a®> —a)A+ (b —b)B + ab(AB + BA) = 0. (2.2)

Como existe una matriz S invertible de modo que A = S(I ©0)S~!, de (2.2) se sigue

(a2a)<é 8>+(b2b)<)Z( ?)mb(zg ’g):o. (2.3)

Obsérvese que como AB # BA entonces A # [ y A # 0, por lo que en (2.3) estan todos los
bloques. Ademds por tener AB # BA entonces Y # 0 6 Z # 0. Fijandonos en (2.3) se tiene
(> —b+ab)Y =0y (b* — b+ ab)Z = 0; de donde se deduce que a +b = 1.

En [34] se resolvi6 el siguiente problema que generaliza al problema 2.6:

'Recuérdese el teorema 2.4 o el siguiente resultado clasico: Si A y B son dos matrices cuadradas del mismo
orden, entonces existe X # 0 tal que AX = X B siy sélo si 0(A)No(B) # 0.
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2.14 PROBLEMA RESUELTO. Sean A, B y C tres proyectores distintos y no nulos tales que
AB = BA = 0. Encuéntrense los numeros complejos no nulos a, b y las condiciones sobre A,
B y C tales que aA+ bB + c¢C' sea un proyector.

La generalizacién es clara, puesto que bajo las condiciones y la notacién del problema 2.14
y si a =1, b= —1, entonces la matriz aA + bB es claramente tripotente.

En [37] fue resuelto el siguiente problema que generaliza a los problemas planteados en
(34, 59]

2.15 PROBLEMA RESUELTO. Sean A, B,C tres proyectores no nulos tales que alguna de las
tres caracteristicas siguientes se cumple:

(a) AB = BA, AC = CA, BC = CB.
(b) AB = BA, AC = CA, BC # CB.
(c) AB = BA, AC # CA, BC # CB.

Encuéntrense todos los niumeros complejos no nulos a,b,c y las condiciones sobre A, B,C
tales que aA + bB + ¢C' sea un proyectos.

2.3 Aspectos topoldgicos de la teoria de matrices

La introduccién de métodos analiticos o topoldgicos en la teoria de matrices ha sido muy
provechosa y estudiada, en particular cuando se estudian problemas perturbados (véase, por
ejemplo, [48, 63]). Pero estos métodos no sélo han sido utiles en estimaciones cuantitativas;
sino también en la teoria general. Un resultado cldsico es el siguiente (véase, por ejemplo, [52]):
el conjunto de las matrices diagonalizables de orden n es denso en C"*". Este resultado de
tipo topoldgico, permite dar una demostracién muy breve del todavia mas clasico teorema de
Cayley-Hamilton. O también, podemos afirmar que dada una sucesion de matrices unitarias,
existe una subsucesién suya convergente (puesto que el conjunto de matrices unitarias de
orden n es compacto en C"*™). Otro resultado clésico, el teorema de Bauer-Fike, (véase, por
ejemplo, [48, 52]) es bastante 1til cuando se estudian perturbaciones de valores propios:

2.16 TEOREMA. Sea A € C™ " diagonalizable con A = SDS™! y D = diag(\1,..., ).
Sea E € C™ ™. 8i X es un valor propio de A + E, entonces hay algin valor propio \; de A
para el cual [N — N\j| < koo(S)||E|lso, donde koo denota el nimero de condicidn respecto a la
norma matricial || - ||so-

En [41] se estudiaron las propiedades topoldgicas de las matrices k + 1-potentes. Deno-
temos G"(k) = {A € C"*" . AF*1 = A}, Fl siguiente resultado extiende algunos resultados
conocidos sobre matrices tripotentes y cuadripotentes aparecidos en [50].

2.17 TEOREMA. Sean r,s,k € IN. Entonces
(a) 7|k siy sdlo si §™(r) C §"(k).
(b) §"(r) N §"(s) = §"(med(r, s)).

26
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(c) Sir|k, entonces G™(r) es cerrado y abierto en §" (k).

Los dos primeros apartados son faciles de desmostrar usando el teorema 2.2. Para hacernos
una idea de los métodos topoldgicos, comentemos brevemente la idea intuitiva de la prueba
del tercer apartado. Sea A € G"(r). Si se perturba ligeramente la matriz A, gracias al
teorema 2.16, los valores propios perturbados varian muy poco. Pero si forzamos que las
perturbaciones de A estén en G"(k), los valores propios han de estar en {0} U /1. Como
ademds o(A) C {0} U v/1, la tnica posibilidad admisible es que los valores propios de las
matrices perturbaciones de A estén en {0} U ¥/1; en otras palabras, estas perturbaciones han
de estar en G"(r).

Para entender la utilidad de este tipo de resultados, observemos que si queremos describir
el conjunto 8(k) = {(a,b) € C?: (aA + bB)**! = aA + bB} para dos matrices dadas A y B
(no necesariamente proyectores), se tiene que si r|k, entonces §(r) es unién de componentes
conexas de 8(k). De hecho, basta definir f : (k) — §"(k) dada por f(z,w) = zA + wB,
entonces, ya que §"(r) es un cerrado y abierto de §"(k), la continuidad de f implica que
8(r) = f~1(G"(r)) es cerrado y abierto en 8(k).

Por otra parte, dada una matriz A € C™*™, la sucesién (Ak)i":1 ha sido usada muchas
veces en las matematicas aplicadas, por ejemplo, en las cadenas lineales de Markov o la serie
de Neuman. Los siguientes hechos ttiles son bien conocidos (véase, entre otros, [57, Cap. 7]):

e limy,_.o AF = 0si y sélo si p(A) < 1.

e lim;_,, A¥ existe si y sélo si p(A) < 1 o si no, p(A) = 1, siendo A = 1 el tinico valor
propio en la circunferencia unidad y la multiplicidad algebraica de A = 1 coincide con
su multiplicidad geométrica.

Podemos rebajar las condiciones A* = I y A¥*1 = A del modo siguiente:
Para cada ¢ > 0 existe k € IN tal que ||A* — I|| < e. (2.4)
Para cada ¢ > 0 existe k € IN tal que [|A* — A|| <e. (2.5)

Ya que en un espacio normado de dimensién finita, todas las normas son equivalentes,
se tiene que si A satisface las propiedades (2.4) o (2.5) para una cierta norma, entonces A
satisface (2.4) o (2.5), respectivamente, para cualquier norma. En términos topoldgicos, la
propiedad (2.4) equivale a decir que I € cl({A* : k > 1}), donde cl(X) es la clausura de X.

El conjunto de matrices cumpliendo (2.4) es estrictamente més amplio que el conjunto
de matrices cumpliendo A* = I. En efecto, sea ¢ € R tal que ¢/27 ¢ Q, es facil ver que
X = {e'?,e?? ...} no es un subconjunto finito de C, ahora, el cldsico teorema de Kronecker?
asegura que X es denso en {z € C : |z| = 1}, luego 1 € cl(X), por tanto I € cl({A*: k> 1}),
donde A = (¢'?) € C'*!. Ademds, es trivial ver que no existe k € IN de modo que A* = T.

El teorema 2.18 (véase [42]) caracteriza las matrices cumpliendo las propiedades (2.4) y
(2.5) por medio de la teoria espectral. La idea intuitiva es la siguiente: Si una matriz A
cumple A¥ = I, se tiene que A es diagonalizable y su espectro estd contenido en /1. A
medida que k crece, el conjunto v/1 va “llenando la circunferencia unidad de C” hasta que
“cuando k — 00”, se tiene que de una forma absolutamente informal

lim V1={2€C:|z| =1}.
k—oo

2Si ¢ € IR, entonces {e'?,e?? ...} es o bien finito o bien denso en {z € C: |z| = 1}.
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2.18 TEOREMA. Sea A € C™*™. Entonces A satisface la propiedad (2.4) si y solo si A
es diagonalizable y todo valor propio de A tiene mddulo 1. Ademds, la matriz A cumple la
propiedad (2.5) si y solo si A es diagonalizable y todo valor propio de A tiene mddulo 1 o
bien es nulo.

Puede probarse ficilmente de la definicién que si una matriz A € C"*" cumple (2.4)
entonces A es invertible. De hecho, si A no fuera invertible, entonces {A, A2,...} C 8, where
8 denota el subconjunto de C™*" de las matrices no invertibles. Nétese que 8 es la imagen
inversa del cerrado {0} bajo la funcién continua det, por lo que el conjunto 8 es cerrado.
Luego si A cumple (2.4) entonces I € cl(A, A%, ...) C cl(8§) = §, que es claramente una
contradiccion. Pero no es evidente que A~! también cumple (2.4). El teorema 2.18 permite
probar de forma cémoda el siguiente resultado (véase [42]):

2.19 COROLARIO. Si A € C™*" cumple (2.4) entonces A es invertible y A~ cumple (2.4).

Asimismo, en [42] se prueban varios resultados relativos a las matrices que cumplen las
propiedades (2.4) y (2.5) que muestran lo provechoso que es manejar simultdneamente con-
ceptos topoldgicos y algebraicos.

2.4 Problemas abiertos
El problema resuelto 2.15 induce al siguiente problema:

2.20 PROBLEMA. Sean A, B,C tres proyectores no nulos tales que AB # BA, AC # CA,
BC # CB. Encuéntrense todos los niimeros complejos no nulos a, b, ¢ y las condiciones sobre
A, B, C tales que aA 4+ bB + ¢C' sea un proyector.

Por otra parte, en vista de los resultados obtenidos, parece muy dificil la generalizacién de
los problemas 2.5 y 2.15 a un niimero arbitrario de proyectores A1, ..., A;,. Se puede suponer
sin ninguna pérdida de generalidad que los proyectores son linealmente independientes, ya
que si no, en la combinacién lineal a1 Ay + - - - 4+ a;mAm, donde a; € C, se puede disminuir el
nimero de sumandos. Ademas si la familia {A;, ..., A,,} fuese conmutativa, se puede aplicar
el teorema 2.4.

El caso no conmutativo del problema 2.8 estd atin por resolver:

2.21 PROBLEMA. Sea A un proyector no nulo y B una matriz k + 1-potente tales que
AB # BA. Encuéntrense los nimeros complejos no nulos a y b y las condiciones que deben
verificar A y B para que aA + bB sea otro proyector.

Con el fin de resolver este problema, podemos asegurar que existe una matriz invertible
S tal que S~'BS es diagonal, digamos D = diag(\1,. .., \,), en donde )\fH = \;. Ahora po-
demos simplificar este problema substituyendo B por D y A por S™1AS. Si particularizamos
para el caso de las matrices de orden 2 y hacemos

A:<a11 a12>7 B:(/\ 0>7
az1 a2 0 u
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en donde A # p (si fueran iguales, entonces AB = BA). Como aA + bB y A son proyectores
se tiene

a’A +b°B% + ab(AB + BA) = aA + bB,

de donde se puede obtener
a+bA+p) =1 (2.6)

Podemos observar que esta relaciéon es muy parecida al resultado del lema 2.13.

2.22 PROBLEMA. ;Se puede generalizar el argumento que demuestra (2.6) para matrices de
orden n? ;Puede servir la relacion (2.6) para resolver el problema 2.21, al igual que el lema
2.18 sirvié para resolver el problema 2.127

Para la deduccién de (2.6) no se supone que B**1 = B, de hecho, por una transformacién
de similaridad, s6lo se supone que B es diagonalizable.

2.23 PROBLEMA. Sea A un proyector y B una matriz diagonalizable del mismo orden que
A. Encuéntrense los nimeros complejos a y b y las condiciones sobre A y B tales que aA+bB
sea un proyector.

Es claro que si AB = BA, entonces se puede aplicar el teorema 2.4, puesto que como A
v aA + bB son diagonalizables y conmutan entre ellas, entonces B es diagonalizable.

Obsérvese que el problema 2.23 generaliza de golpe los problemas 2.5, 2.6, 2.8 y 2.21.
Asimismo tiene relacién con los problemas 2.14 y 2.15, puesto que, bajo las condiciones de
estos dos problemas, se tiene que aA + bB es diagonalizable (puesto que es una combinacién
lineal de dos matrices diagonalizables que conmutan).

El ultimo paso es eliminar la hipdtesis de la diagonalizabilidad sobre B. De forma mas
precisa:

2.24 PROBLEMA. Sea A un proyector y B una matriz del mismo orden que A. Encuéntrense
los nimeros complejos a y b y las condiciones sobre A y B tales que aA+bB sea un proyector.

A nuestro juicio, hay dos maneras posibles de atacar este iltimo problema.

(i) Si en los problemas previos se hace B = SDS™!, siendo D diagonal, ahora hay que
hacer B = SJS™!, en donde J es la forma canénica de Jordan de B.

(ii) Como el conjunto de matrices diagonalizables de orden n es denso en C"*", dada la
ecuacién aA + bB = (aA + bB)?, se plantea la ecuacién perturbada a.A. + b.B. =
(a:A. +b.B.)? para B. diagonalizable y || B. — B|| < €. ;Es posible que lim. o(a.,b.) =
(a,0)7

Podemos definir ® : C"*" x C"*" — P(C?) dada por
O(X,Y) ={(z,y) € C*: (zX +yY)? = 2X +yY}.
Y puesto que en los problemas previos se copnsidera la combinacién lineal aA + bB, en donde

A es un proyector, podemos restringir la aplicacién ¢ a un conjunto menor. Denotemos por
Cp*™ el conjunto de los proyectores de orden n.
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2.25 PROBLEMA. FEstudiense las propiedades topologicas de ®. ;Qué ocurre si se restringe
P o CE*" x C 2

En vista de la ecuacién (2.6) podemos preguntarnos si se cumple la siguiente conjuetura:

2.26 CONJETURA. Sea A un proyector y B una matriz del mismo orden que A tales que
AB # BA. SiaA+bB es un proyector, entonces existen dos valores propios de B, sean A\ y
u, tales que

1=a+bA+ p). (2.7)

La idea intuitiva de este resultado es la siguiente. Si la ecuacién (2.6) fuese cierta pa-
ra matrices diagonalizables de orden n, por la continuidad de los valores propios frente a
perturbaciones de la matriz, entonces la Conjetura 2.26 tiene toda la apariencia de ser ver-
dadera. Aunque no podremos afirmar que A\ # pu, puesto que si (A)p>1 y (4)n>1 son dos
sucesiones convergentes tales que A, # pu, para todo n € IN, en general no es cierto que
limy, 00 A 7 limy, o0 tin-

Desde luego, el problema 2.24 es facil si A y B conmutan, ya que, como A y aA +
bB son diagonalizables, por el teorema 2.4, la familia {A, B,aA 4 bB} es simultdneamente
diagonalizable.

Supodngase ahora que la conjetura 2.26 ha sido resuelta en sentido afirmativo. Si llamamos
C = aA+bB, entonces B = oA +~C, en donde o = —a/b, v = 1/b y las matrices A y C son
proyectores tales que AC' # C'A (puesto que AB # BA). Substituyendo en (2.7) obtenemos
que existen dos valores propios de aA + vC', digamos A\ y u, tales que a+~v = A+ pu.

Este tipo de resultados es importante, puesto que en ocasiones es deseable encontrar los
valores propios de combinaciones lineales de dos matrices dadas. Por ejemplo, recientemente
se ha estudiado mucho la matriz de Google (el famoso buscador de internet) por su creciente
utilidad. Esta matriz se define como una combinacién convexa de una matriz estocastica Sy
una matriz de rango 1. Mds concretamente

G=(1-a)vl +as,

en donde « € [0, 1], el vector 1 es la columna formada por unos, y el vector fila v tiene sus
componentes no negativas y ||v|l; = 1 (véase, por ejemplo, [62]). Observemos que (1v')? =
1(vI1)v?t = 1vT, puesto que vI'1 = ||v|; = 1. En otras palabras, la matriz 1vT es un
proyector.

Para finalizar este tipo de problemas, es evidente que podemos intentar eliminar en el
problema 2.11 la condicién (2.1) planteando el siguiente problema:

2.27 PROBLEMA. Sean A y B dos proyectores hipergeneralizados no nulos tales que AB =
BA. Encuéntrense los nimeros complejos no nulos a y b y las condiciones sobre A y B tales
que aA + bB es un proyector hipergeneralizado.

Supongamos que X es un proyector hipergeneralizado. Como X? = X+, entonces X X+ =
XTX, y por tanto X es una matriz EP. Por el teorema 2.3, existe una matriz unitaria U y
una matriz invertible K de modo que X = U(K @ 0)U*. Usando ahora que

X2=UK?*90)U*, XT=UK tooUu*, X2 =XT,
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se obtiene K3 = I. Luego existe una matriz invertible S tal que K = SDS™!, en donde D es
una matriz diagonal cuyas entradas estan en /1. Podemos factorizar X como sigue:

K 0 N SDS~1 0 . S 0 D 0 S—1 0 N
x=v(y o )u=v(F 0 e=u(g (0 o) (5% )
Si llamamos

S 0
LU(O I),

tenemos X = L(D ® 0)L~!, en donde D es una diagonal cuyas entradas estan en /1.

Sin embargo, esta factorizacion no caracteriza a los proyectores hipergeneralizados. Un
ejemplo simple es el siguiente: Sean las matrices L, X € C?>*? dadas por

A (10N,
(1 1) xer(E )

Facilmente se obtiene que

X2:<8 }> X+:<192 1(/)2>‘

Vemos que ahora, no podemos usar la diagonalizacién simultdnea para resolver el problema
2.27. Si queremos resolver este problema por medio de la diagonalizacién simultanea, podemos
intentar resolver antes el siguiente problema.

2.28 PROBLEMA. Sean A1 y Ao dos EP-matrices. Sabemos que existen dos matrices unita-
rias U; y dos matrices invertibles K; tales que A; = U;(K;®0)U; parai = 1,2. Obsérvese que
las matrices K1 y Ko en general no tienen el mismo tamano. ;Qué condicion sobre Uy, Us, K1
y Ko es necesaria y suficiente para que A1 Ay = AsA1?

Dos problemas parecidos a este ultimo fueron estudiados en [53, Cap. 3] y en [56], en
donde se estudiaron la descomposicién en valores singulares simultanea y la descomposicién
polar simultanea, respectivamente.

Por 1ltimo, debido a algunos articulos recientes, podemos plantearnos algunos problemas
maés.

En [43], se estudié la ecuacién matricial X A — AX = XP, para un natural p dado, aunque
en este articulo se menciona que a partir de la teoria de las dlgebras de Lie, surgen las

ecuaciones matrices
X,L'Aj — A]XZ = XJXl (28)

para 1 < 4,j < n, en particular se obtiene la ecuacién XA — AX = X2. Sin embargo, las
ecuaciones (2.8) se dejan sin estudiar. Asi tenemos el siguiente problema:

2.29 PROBLEMA. Sean Ai,...,A, matrices cuadradas. Hdllense las matrices Xq,..., X,
tales que se cumple (2.8).

También, en el espiritu de [42], se puede plantear el siguiente problema

2.30 PROBLEMA. Sea A una matriz cuadrada. Hdllese la matriz X tal que alguna de las
dos condiciones de debajo se cumple:

31



2. Anilisis matricial

(i) | XA—-XA—-XP|| <eparaunp €N ye >0 dados.

(ii) Para cada € > 0, existe p € IN de modo que || XA — AX — XP|| <e.

Otro articulo que nos llamé la atencion fue [47]. En este articulo, se establece una férmula
del tipo de Sherman-Morrison para (A + B)". En este articulo se establecié el siguiente
resultado:

2.31 TEOREMA. Sean A y B dos matrices cuadradas tales que rango(A) + rango(B) =
rango(A + B). Entonces

(A+B)t = (I - S)A*(I - T)+ SB*T, (2.9)

donde
S - (PR(B*)PR(A*)J-)+’ T - (PR(A*)J-PR(B*))JF' (210)

Para un subsepacio Y, se denota Py la proyeccién ortogonal sobre Y. Asimismo, en [47], se
demuestra que la hip6tesis rango(A) + rango(B) = rango(A + B) es esencial para el teorema
2.31. Sin embargo, en el articulo no se menciona las otras pseudoinversas. En particular se
puede plantear el siguiente problema:

2.32 PROBLEMA. ;Hay alguna formula parecida a (2.9) cuando se intenta desarrollar la
expresion (A + B)#?

A nuestro juicio, este problema tiene dos dificultades:

(i) Es dificil usar métodos topoldgicos, puesto que la aplicacion X +— X7 no es continua
(Témese, por ejemplo, la sucesién z,, = 1/n. Se tiene que (lim, .o z,)* = 0, y sin
embargo, limy, o (2} ) no existe).

ii) Es improbable que en el andlogo a (2.10) aparezcan las proyecciones ortogonales, puesto

i) Esi babl 1 andl 2.10 1 i t 1 t

que la pseudoinversa de Moore-Penrose esta intimamente ligada al cdlculo de aproxima-
ciones mediante proyecciones ortogonales.

Respecto a la continuidad de la pseudoinversa de Moore-Penrose, podemos citar el si-
guiente resultado clésico.

2.33 TEOREMA. Si A€ C™", (Ap)p2, € C™" ylimy_o A = A, entonces las siguientes
afirmaciones equivalen:

a) lmy_o A = AT.
b) Euxiste kg € IN tal que el rango de Ay, coincide con el rango de A para todo k > k.
c) sup{[|A{] : k € N} < oo.

La equivalencia entre (a) y (b) ya fue probada por el propio Penrose en [58]. La equi-
valencia entre (a) y (c) fue probada en [54] en el ambiente més general del conjunto de los
operadores continuos en un espacio de Hilbert. En [60] se proporciona un resumen de la
continuidad de las pseudoinversas de Moore-Penrose y de Drazin.

El siguiente problema estd, segtin nuestro conocimiento de la teoria actual, por resolver.
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2.34 PROBLEMA. ;FEziste una caracterizacion similar al teorema 2.33 para la continuidad
de la inversa de grupo?

En este tipo de problemas es obligatorio observar que si X € C"*™ en donde n # m,
entonces X € C™*" asimismo, merece la pena darse cuenta que C"*" y C™*" son distintos
conjuntos. Por tanto, aunque se tenga X € C"*", se debe considerar que X+ no estd en el
mismo conjunto que X. Esta situacion es analoga a cuando se considera el dual topoldgico de
IR™. Se cumple que (IR™)* y IR™ son algebraicamente isomorfos; pero hoy en dia nadie escribe
R™ = (IR")*. Sin embargo, si se escribe IR" = (IR™)**; esta situacién tiene su contrapartida
matricial: para una matriz dada X se cumple X = (X)*.

La situaciéon descrita en el parrafo anterior no ocurre con la inversa de grupo puesto
que una de las condiciones es X X# = X#X. Esto implica que tanto X como X# deben
pertenecer al mismo conjunto.
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3 Diseno geométrico asistido por ordenador

3.1 Introduccidn

La representacién de curvas mas usada en el diseno por ordenador fue descubierta de
manera independiente por Bézier y por de Casteljau (quienes trabajaron para las empresas
automovilisticas Rénault y Citrden respectivamente). En 1959 de Casteljau redacté un infor-
me secreto en donde aparecié un algoritmo con el fin de generar por ordenador curvas sencillas
e intuitivas de manipular. Bézier en el principio de la década de los 60 derivé de forma di-
ferente el mismo tipo de curvas. Los trabajos de Bézier y de Casteljau estaban orientados a
la industria automovilistica. Ahora estas curvas (en su versién plana) son la base de muchos
programas informéticos de disenio grafico (como Adobe Illustrator o Corel Draw) y de varios
tipos de fuentes de letras (como PostScript o TrueType).

Por €F se denotaré el espacio afin euclideo k-dimensional, siendo k = 2 o k = 3 los valores
usuales en el disefio asistido por ordenador. Fijado un sistema de referencia afin en €*, un
punto p € ¥ puede identificarse de manera univoca por un vector de IR* (las coordenadas de
p en este sistema de referencia); pero es conveniente diferenciar el espacio afin euclideo &F y
el espacio vectorial euclideo IRF. De una manera informal: los elementos de €* responden a la
pregunta ;ddnde?, mientras que los elementos de IR* responden a la pregunta shacia dénde?
(véase [71] para una mayor informacién). Recuérdense las siguientes operaciones validas para
puntos y vectores:

e Sipeé&fyvelRF entonces p+v e &k
e Sip,q € &k, entonces p — q € IR¥.

e Sipl,...,Pn€EFy A,..., Ay €Rcon Y | \; = 1, entonces > 7, \;p; € EF.

3.2 El agoritmo de de Casteljau y las curvas de Bézier

El siguiente algoritmo ideado por de Casteljau permite dibujar una curva a partir de n+1
puntos (véase [70] para un estudio mas profundo).

3.1 ALGORITMO DE DE CASTELJAU. Dados los puntos bg,by,...,b, € EF yt €[0,1].
Sean bY(t) = b; parai=0,1,...,n.
Supongamos que los puntos bf (t) han sido construidos parak =0,...,7 ei=0,...,n—k.

Ahora, para cadai=0,...,n—7j—1:

Sean
b/ (1) = (1= )b](t) + th],, (¢) (3.1)
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para j =0,...,n—1.
El punto bl(t) es el punto con pardmetro t en la curva Blbo,...,by] : [0,1] — EF.

Los puntos by, ..., b, se llaman puntos de control y la curva final se llama curva de
Bézier asociada a los puntos by, ...,b,. Véase la parte izquierda de la figura 3.1 en la que
se ha aplicado el algoritmo de de Casteljau con tres puntos iniciales. A medida que ¢ varia
entre 0 y 1, el punto b3(t) describe una curva, como se puede ver en la parte derecha de la
figura 3.1.

by

Figura 3.1: El algoritmo de de Casteljau.

En la figura 3.2 se ha dibujado una curva creada por el algoritmo de de Casteljau con
cuatro puntos iniciales.

Figura 3.2: Una cubica de Bézier.

Las curvas de Bézier se calculan de forma recursiva mediante el algoritmo de de Casteljau;
sin embargo es conveniente tener una forma explicita para estudiar las propiedades de estas
curvas. Esta forma no recursiva fue descubierta por Bézier independientemente.

3.2 TEOREMA. Sean by,...,b, € & yt € [0,1]. Se tiene
B[bo, ..., b,)(t) = Y B'(t)by, (3:2)
i=0

en donde BI'(t) = (7)t!(1 — t)"~* para 0 < i < n son los polinomios de Bernstein'.

'Estos polinomios fueron introducidos por Bernstein (1880-1968) en 1913 al demostrar el Teorema de apro-
ximacién de Weierstrass.
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Una propiedad importante de los polinomios de Bernstein es Y ;' Bl'(t) = 1, pues-
to que 1 = (t+ (1 —t))". Esta propiedad implica que en la expresién (3.2) se tiene que
B[bg,...,b,](t) € & para todo t debido a las operaciones vélidas entre puntos y vectores

vistas en la introduccién.

Las curvas de Bézier son importantes desde el punto de vista del diseno por ordenador
por las siguientes razones:

Invarianza afin. Las aplicaciones afines juegan un papel importante en el diseno de objetos,
pues a menudo, éstos deben ser trasladados, girados, escalados, ... Supdngase que
se ha dibujado la curva de Bézier B[by,...,b,] y a continuacién se ha de dibujar la
transformada de esta curva mediante una aplicacién afin T : €2 — €2; es decir, se tiene
que dibujar la curva T'(B([by, ..., by,]). La invarianza afin permite resolver este problema
de dos modos:

T(B[bo,...,by)) = B[T(by),...,T(by)].

La propiedad de la envoltura convexa. La curva de Bézier siempre estd contenida en el
poligono cuyos vértices son los puntos de control (como se ve en las figuras 3.1 y 3.2).

Interpolacion inicial y final. La curva de Bézier pasa por el primer y 1iltimo punto de control.

Pseudocontrol local. ;Qué se tiene que hacer para modificar una curva de Bézier? ;Qué
ocurre si se mueve un punto de control? Sean las curvas

O[(t) = B[poa co oy PE—1,P, Pk+1y- - -5 pn](t)’ ﬁ(t) = B[po) ey PE=1,9 Pk+15- -+ pn](t)
Es muy fécil probar que a(t) — 8(t) = Bl (t)(p — q).

Vectores tangentes. En el disefio grafico es importante calcular tangentes a las curvas de
Bézier. Se observa en la figura 3.1 que el segmento que une bj(¢) con bi(t) es tangente
a la parabola en B[bg, by, bo|(t). Algo similar ocurre para cubicas (véase la figura 3.2).
Por esta razén, el algoritmo de de Casteljau calcula la tangente sin coste adicional.

A continuacién se muestran algunas desventajas de las curvas de Bézier y cémo han sido
resueltas.

e Si una curva tiene un trozo recto, por el teorema fundamental del algebra, toda la curva
debe ser recta. Por tanto, es imposible disefiar una curva que contenga partes rectas y
no rectas. La solucién es sencilla: disefiar por separado trozos de curvas que se unen.

e Si se desea generar curvas complicadas, el grado del polinomio debe ser elevado y por
tanto los calculos se ralentizan. La solucién es la misma que la del punto previo: diseniar
curvas de grado bajo que se ensamblan de forma adecuada.

e Esimposible usar curvas de Bézier para dibujar circunferencias o hipérbolas (véase [72]).
Hay dos posibles soluciones: una es aproximar un trozo de circunferencia mediante una
cuibica y la otra solucién es usar las curvas racionales de Bézier.

e El algoritmo de de Casteljau es afinmente invariante; pero no es proyectivamente inva-
riante. La solucién es usar las curvas racionales de Bézier.
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3.3 Curvas racionales de Bézier

3.3 DEFINICION. Una curva racional de Bézier con puntos de control by, ..., b, € &F
Yy pPesos wy, - .., wy, € IR estd dada por

" BI(t
Z'L:Ow 7 ( )b“

) = S B ()

teo,1]. (3.3)

Es decir, la curva r(t) es la projeccién central de la curva de Bézier en ¥+ con puntos de
control (wobg,wp), ..., (wyby,wy). Véase [69, 70, 72] para un estudio més profundo.

En [65] se presenté una construccién geométrica para derivar esta clase de curvas usando
conceptos Unicamente de la geometria proyectiva. Esta construcciéon extiende al algoritmo de
de Casteljau

Ahora, en aras de una mayor legibilidad, se estableceran las ideas basicas de la geometria
proyectiva plana y la notacién usada (se pueden consultar [67, 68, 73] para estudiar las
propiedades del plano proyectivo real y sus usos en los graficos por ordenador). En IR?\ {0}
se establece la siguiente relacién de equivalencia:

V~wW = INe R\ {0} : v =2w.

El plano proyectivo real, denotado por IP?, es el conjunto cociente IR? \ {0}/ ~. Los
elementos de IP? se llaman puntos proyectivos. La proyeccién canénica de IR\ {0} sobre
P2 se denotars por 7. Nétese que m(vy) = 7(vp)) si y sélo si existe A € IR\ {0} tal que
V] = )\VQ.

Una recta proyectiva en IP? es un plano en IR® que pasa por el origen. El conjunto de
todas las rectas proyectivas sera denotado por A(IP?). Se define 7* : R?\ {0} — A(IP?) como
sigue: 7*(w) es la recta proyectiva en IP? de ecuaciéon wTx = 0. Nétese que 7*(wq) = m*(wa)
si y solo si existe A € IR\ {0} tal que w; = Awa. Se dice que el punto proyectivo 7(v) estd
en la recta 7*(w) si v estd en el plano 7*(w), o escrito de otro modo, w'v = 0 y se denota
7w(v) € 7*(w). También se dice que la recta 7*(w) pasa por 7(v).

Si Py @ son dos puntos proyectivos distintos, existe una tnica recta proyectiva pasando
por Py @, tal recta serd denotada como L(P, Q). Es facil ver que el punto proyectivo R estd
sobre L(P, Q) si y sélo si existen «, § € IR no todos ceros de modo que u = av + fw, donde
m(u) =R, m(v) = Py m(w) =Q. Siry sson dos rectas proyectiva distintas, existe un tinico
punto proyectivo P tal que {P} =rNs.

La razén doble se conserva bajo cualquier transformaciéon proyectiva. Esta cantidad se
define como sigue: Sean los puntos proyectivos Py, P, P3, Py colineales, luego podemos escribir
vy = avy + vy y v4 = vy + dvg para algunos vectores no nulos vy,..., vy con m(v;) = P
parai=1,...,4. La razén doble de P;, P», P;, Py es

rd(P,Q, R, S) = 072

Puede probarse (véase por ejemplo [68]) que esta definicién estd bien hecha, es decir, no
depende del representante de P;.

La recta del infinito es la recta proyectiva de ecuaciéon z = 0. Un punto afin es un
punto proyectivo que no pertenece a la recta del infinito. Si A(IP?) denota el conjunto de
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3.3. Curvas racionales de Bézier

todos los puntos afines, se pueden establecer las siguientes biyecciones:

€2 L A(IP?) AMP?) L g2
)T = w(a,y, )T m(x,y,2)T - (%,%)T

Es trivial observar que joi=1Ic2eioj=1 A(P2)> donde I denota la aplicacién identidad.

(z,y

En [65] se describi6 el siguiente algoritmo.

3.4 ALGORITMO. Sean los puntos proyectivos Py, ..., P, € P2, la recta proyectiva r €
A(IP?) tal que P; ¢ r para todo i =0,...,n y sea u € R\ {1}.

Sean P?(u) = P; parai=0,...,n.

Supdngase que los puntos Pf(u) han sido construidos para k =0,...,j ei1=0,...,n—k.
Ahora, para cada i =0,...,n—j—1:

a) Si Pf(u) = Pf;rl(u), entonces sea Pg“(u) = Pf(u)

b) Si P(u) # Pl-jﬂ(u), entonces definase Q! (u) como la interseccion de las rectas proyectivas
L(P!(u), P, (u)) yr. Sea PN (u) en la recta L(P? (u), Pl (u)) tal que

rd(P) (w), P,y (u), P/ (w), Q1 (w) = u,

para j =0,...,n—1.

El punto proyectivo Py (u) es el punto de la curva a(Py,...,Py;r) @ I — TP? cuyo
pardmetro es u, donde I es un intervalo de IR con 1 ¢ I.

En la figura 3.3 se muestra el algoritmo 3.4. En la parte de la izquierda se ha empezado
con tres puntos iniciales y en la de la derecha con cuatro, en donde los puntos marcados con
‘o’ son los P;; y los puntos marcados con ‘*’ son los Q;;.

Se puede probar que todos los puntos Pij (u) no estdn en la recta r siempre que u # 1.
Haciendo el cambio u = t/(t — 1) se puede reformular el algoritmo previo de forma algebraica:

3.5 ALGORITMO. Sean los puntos proyectivos P,,..., P, € P2, la recta proyectiva r €
A(IP?) tales que P; ¢ v para todo i =0,...,n y sea t € RR.

Sean w € R? con 7*(w) =71 y v; € R3 con 7(v;) = P;.

Hdgase v9(t) = v;/w'v; parai=0,...,n.
Supdngase que los vectores Vf(t) han sido construidos parak =0,...,7 et =0,...,n—k.
Ahora, para cada i=0,...,n—j—1, sea

Vi) = (L= )V (1) + tv]y, (1), (3.4)

(2
para j =0,....n—1ei=0,...,n—75—1.
Entonces w(v{(t)) es el punto dado por el Algoritmo 3.4.

Veamos la razén de que el algoritmo 3.4 es la generalizacién natural del algoritmo de de
Casteljau a la geometria proyectiva. Es bien conocido que la geometria afin se obtiene a partir
de la geometria proyectiva fijando una recta especifica llamada recta del infinito (véase [68]).
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3. Diseno geométrico asistido por ordenador

151

0.51 i

Figura 3.3: El algoritmo 3.4.

Hay que pensar que el algoritmo de de Casteljau es un “algoritmo afin” (de hecho, el paso més
importante de este algoritmo, la ecuacién (3.1) es una razén simple que se conserva mediante
afinidades). Sin embargo, la razén simple no se transforma mediante proyectividades. ;Cémo
se puede generalizar la ecuacién (3.1) a la geometria proyectiva? Se sabe que la razén doble
se transforma mediante proyectividades y que si un punto de los cuatro involucrados en la
razén doble “tiende al infinito”, entonces la razén doble “tiende” a la razén simple. Ahora
es claro que debemos modificar (3.1) de modo que aparezca la razén doble. Pero en (3.1)
aparecen tres puntos y en la razon doble cuatro puntos, de aqui la necesidad de introducir la
recta auxiliar  en el algoritmo 3.4. Ahora, de un modo informal, si esta recta r se aproxima
a la recta del infinito, entonces el algoritmo 3.4 se aproxima al algoritmo de de Casteljau.

El algoritmo 3.4 permite deducir dos consecuencias geométricas:

Invarianza proyectiva: Debido a que el algoritmo se basa sélo en conceptos proyectivos, es
evidente que este algoritmo es invariante bajo cualquier transformacion proyectiva.

Dualidad: Es conocido el principio de dualidad de la geometria proyectiva: para cualquier
teorema proyectivo, es cierto otro resultado simétrico reemplazando los papeles de rectas
y puntos. Podemos dualizar el algoritmo 3.4 observando que la salida del dual del
algoritmo 3.4 es un conjuto de rectas.

Se puede comprobar que el algoritmo 3.4 generaliza al de de Casteljau: Sean by,..., b,
puntos de €2. Si aplicamos el algoritmo 3.4 a lo puntos proyectivos Py = i(bg), ..., P, = i(by)
y a la recta del infinito r, obtenemos que P} (t) € A(IP?) para todos i, j,t € IR. Luego existen
bl(t) € €2 tales que b!(t) = j(P/(t)). Ademds se puede probar fcilmente que

. . .
b] (1) = (1 — )] (t) + th, (1)

Esta dltima ecuacién es el paso principal en el algoritmo de de Casteljau.
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3.3. Curvas racionales de Bézier

En la figura 3.4 se pueden ver tres curvas creadas con el algoritmo 3.4. Los puntos de
control son i(—1,1), i(0,—1) y i(1,1). La curva con ‘+’ estd creada con el algoritmo de de
Casteljau. Las curvas con ‘x’ y ‘o’ han sido dibujadas usando las rectas afines y =4 ey =2
respectivamente. Obsérvese que si la recta r se aproxima a la recta del infinito, entonces la
curva se acerca a la parabola dibujada con el algoritmo de de Casteljau.

I

0.9r 4

0.8 1

0.7 1

0.6 1

0.5 1

0.4 1

0.3 1

0.2 1

0.1F B

Figura 3.4: Tres curvas dibujadas con el algoritmo 3.4.
Se puede probar el siguiente resultado:

3.6 TEOREMA. Sean Py,...,P, € P2 y r € A(IP?) tales que P; ¢ r para i = 0,...,n.

Entonces
n

(P, ..., Poir)(t) = 7 (Z i;(i)v> 7

=0

donde B (t) = (})(1 — t)"'t", w(v;) = P, y 7*(w) = r. Si se denota (z;,yi,2)" =V, y

w(t) _ Z Bf(t)zl

—~ wTv;
1=0

y si se supone que w(t) # 0, es decir, que a(Py, ..., Py;7)(t) es un punto afin, entonces se
cumple

n () s n n ‘ T
j(a(Po,. . Pir)(t) = — (ZBi Wi 5~ B “””) . (3.5)

w(t) par wlv; — wlv;

3.7 NotA. Como una consecuencia facil de este teorema se obtiene que los vectores vi — vy,
VvV, — V1 son tangentes a la curva en Py, P, respectivamente.

Noétese que si z; = 1, entonces (3.5) proporciona una curva racional de Bézier (3.3) cuyos
pesos son (w'v;)~! y sus puntos de control son (x;, ;)T
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3. Diseno geométrico asistido por ordenador

Recuérdese que una cénica proyectiva puede ser escrita como
€ = {n(x) € P?: x"Bx =0},
donde x € IR? y B es una matriz simétrica 3 x 3 (véase, por ejemplo, [68]).

3.8 TEOREMA. La curva parametrizada por oPy, Py, Pa;r) forma parte de la cénica de
ecuacion xT (AT JA)x = 0, donde

0 0 2
J=]10 -1 0|,
2 0 0

T

A= [vo,vi,vo] Y, m(vi) = P yr = 7%(w) con wlv; = 1.

Nétese que AT JA es una matriz invertible, lo que significa que la cénica es no degenerada.

El siguiente resultado proporciona un significado geométrico para la recta auxiliar r.

3.9 TEOREMA. Bajo las hipdtesis del Teorema 3.8, la recta r es tangente a la conica.
Ademds, sea v(t) = j(a(Py, P1, Py;7)(t)) para los t tales que a(Py, Py, Po;7)(t) sea afin®. Si
existe limy_ 400 r(t) = Xq, entonces r es tangente en Xq.

Desde ahora, se denotara r(co) = lim;_, 4+ r(t) cuando este limite exista.

Ejemplo 1: Dados ¢, pg, p1 € €2 con ||po—c|| = ||p1—c¢| = p, siendo pp—c perpendicular
a p1 — ¢, dibijese el cuadrante pop; de la circunferencia centrada en ¢ y radio p (véase la
figura 3.5).

1 P1

r(1/2)

Po

Figura 3.5: Construccién del primer cuadrante de la circunferencia unidad.

Por la invarianza euclidea de las curvas racionales de Bézier?, podemos suponer pg =
(1,0)T, p1 = (0,1)T y ¢ = (0,0)T. Para aplicar el algoritmo 3.4, sea vo = (1,0,1)% y
vo = (0,1,1)T. Por la nota 3.7, debemos definir vi = (1,1,1)" o cualquier miltiplo no nulo
de (1,1,1)T (lo importante es que m(v1) = (1,1)T). Por el teorema 3.9 la recta r es tangente

2Debido a que el denominador en (3.5) es un polinomio de grado 2, como mucho hay dos valores de t tales
que a(Po, P1, P2;7)(t) no es afin.
3En realidad las curvas racionales de Bézier tienen invarianza proyectiva.
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3.3. Curvas racionales de Bézier

a la circunferencia. Por simetria y debido a que se quiere dibujar el primer cuadrante, sea r
la recta de ecuacién z +y = —v/2 (véase la figura 3.5). Luego, sea w = (1,1,v/2)". Por el
teorema 3.6 se obtiene

(1—-t)2  2t(1—1) t2

w(t) = +2+\@+1+ﬂ

142

1 ((—=t)2 21 —t) 21 —t) £2 0\
r(t)_w(t)<1+\/§+ 22 2+ﬂ+1+\/§) |

Podemos observar que r(1/2) = (cos7/4,sin7/4)T y r(o0) = (— cos /4, —sin7/4)" como
se ve en la figura 3.5.

Ejemplo 2: Para dibujar el arco complementario del ejemplo previo, es suficiente definir
vo=(1,0,1)", v =(1,1,1)" y vo = (0,1,1)T (como antes) y considerar la recta r de ecuacién
T +y =2 (véase la figura 3.6). Luego, sea w = (1,1, —/2)T.

Figura 3.6: Construccién de un arco de circunferencia de amplitud igual a 37 /2.

Ejemplo 3: Dibijese un arco de amplitud 6 €]0, [ (en el ejemplo 4 se mostrard cémo
construir una semicircunferencia y en el ejemplo 2 se mostré cémo dibujar un arco de amplitud
mayor que ).

Se usard la notacién ¢ para cosf y s para senfl. Como en los ejemplos anteriores, se
supondra que el radio de la circunferencia es 1 y el centro es el origen. Sea pg = (1,0)T y
p1 = (c, s)T. Sea q el punto tal que q — p; es tangente a la circunferencia en p; para ¢ = 1,2
(véase la figura 3.7). Un célculo fécil proporciona q = (1,1 — ¢/s)T. Usando que una cénica
estd univocamente determinada si conocemos dos puntos con sus tangentes junto con una
tercera tangente, es suficiente elegir la recta r de ecuacién y = 1 (una eleccién més simétrica
hubiera sido la recta tangente en el punto x de la figura 3.7).

Si se definen

1 s c 0
vo=1| 0], vi= l—c |, vo= s |, w= 1 ,
1 s 1 -1

entonces por el teorema 3.6 se obtiene

2t(1 — t)s 12
(L-t)s

w(t) = —(1—1t)%+ .t
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3. Diseno geométrico asistido por ordenador

P1

Po

Figura 3.7: Construccién de un arco de circunferencia.

2(1—1t)s o2 2A(1—t)(1—c) & \'
l—c—s Ts—1' 1-c—s +s—1’>

En [74], se describe una parametrizacién cuadrética a trozos y se prueba que no es posible
representar toda la circunferencia por un B-spline cuadratico C!. En [72] se afirma que “The
construction of a general NURBS circular arc is more complicated than first expected, and
there are many ways to do it.”. El algoritmo 3.4 es simple y proporciona un método intuitivo
para dibujar un arco de circunferencia arbitrario de amplitud 6 €]0, 27[.

Ejemplo 4: Dados bg,b; € &2, dibujar una elipse de modo que un eje sea bgby y la
longitud del otro semieje sea b (ndtese que una circunferencia es un caso particular).

Sea v € IR? perpendicular a by —bg con ||v|| = 1 y siendo {b; — by, v} una base orientada
positivamente. También sean p = by — bv € €2 y la recta afin r de ecuacién (x — p)Tv =0
(véase la figura 3.8). La ecuacion de esta recta es

0:(X—(bo—bv))Tv:XTv—boTv+b:[XT1][ M }

b— bOTV
r(1/2)
b
bQ ! b1
p . r(e)

Figura 3.8: Construccién de una elipse.
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3.3. Curvas racionales de Bézier

Para aplicar el algoritmo 3.4, sean

oe[3] - [3) w[3]

y la recta proyectiva 7*(w) con w! = [vT,b—blv]. Por el teorema 3.6 se obtiene que si r(t)
es la parametrizacién de la conica, entonces

1

r(t) = (e (1 —t)?bg + 2bt(1 — t)v + t?by) .

Noétese que
1 1
r(1/2) = 5(bo +b1) +bv,  r(co) = ;(bo+b1) —bv

como se puede apreciar en la figura 3.8.

Ejemplo 5: Constriiyase una hipérbola cuyas asintotas son dos rectas no paralelas r; y
.

Sean x(A) = b+ Au; y x(\) = b + Auy las ecuaciones de r; y r2 respectivamente (se
)T

supondra que |jui|| = |Juz]] = 1) con b = (zg,yo
ecuacién ax + by + ¢ = 0 (véase la figura 3.9).

= r1 Nry y sea r otra recta afin de

Figura 3.9: Construccién de una hipérbola.
Con el fin de aplicar el algoritmo 3.4, sean

a
. u; . b . U .
Vo = |: 0 :| ) Vi = |: 1 :| ; Vo = |: 0 :| ) W = b

c

Ademds, se requerird que w'v; # 0 para i = 0,1, 2. Estas condiciones equivalen a decir que:
a) El punto b no estd en la recta r (se supondra que azo + byp + ¢ > 0) y b) Las rectas r; y
r no son paralelas para ¢ = 1,2. Si se aplica el teorema 3.6, se consigue

2t(1 —t)
axg + byg + ¢
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3. Diseno geométrico asistido por ordenador

y si se definen k = axg + byg + ¢, k1 = wivy vy ko = w'vg, entonces, tras algunas sencillas

manipulaciones, la parametrizacién de la cénica obtenida mediante el algoritmo 3.4 es

t

£(t) = d(erb) b+ d(enb) s

2t uy,

donde c; es la interseccién de r y r;. Obsérvese que
1
I'(OO) = —5 (d(Cl, b)u1 + d(CQ, b)UQ) +b

y teniendo en cuenta que b — ¢; = d(¢;, b)u,, se logra

c1+cCo

(o) = 202,

como la figura 3.9 muestra. También, se ha de notar que
1
I‘(l/2) = 5 (d(Cl, b)u1 + d(CQ7 b)u2) + b.

La interpretacién geométrica de r(1/2) es la siguiente: Sea q; un punto tal que b es el punto
medio de q;c; (véase la figura 3.9). Se tiene que

q1 + d2
r(1/2) = —

Ademis, si 7’ es la recta simétrica a r respecto de b, se tiene que 7’ es tangente a la hipérbola
en r(1/2). Este hecho muestra la importancia de la eleccién de la recta auxiliar r en el
algoritmo 3.4.

3.4 Superficies de Bézier

Ya en su informe confidencial, de Casteljau observé la necesidad de considerar superficies
para el diseno industrial de carrocerias de vehiculos. Antes de presentar el algoritmo idea-
do por de Casteljau para representar superficies, se repasard un concepto importante de la
geometria afin.

3.10 DEFINICION. Sean a,b,c tres puntos de E™ afinmentes independientes (es decir, los
vectores b —a y ¢ — b de IR" son linealmente independientes, o dicho de otro modo, abc
es un triangulo) y sea x € " tal que x estd en la envoltura afin de a,b,c (véase la figura
3.10). Entonces x — a € lin{b — a,c — a} y por tanto existen 3,7 € R tales que

x—a=/f(b—-a)+vy(c—a). (3.6)
Una forma mds simétrica de escribir (3.6) es
x = aa+ b+ e, a+p+y=1.

Se dice que (a, 3,7) son las coordenadas baricéntricas de x respecto al tridngulo abc.
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3.4. Superficies de Bézier

Figura 3.10: Coordenadas baricéntricas.

Para escribir de forma cémoda el algoritmo de de Casteljau, se establecen las siguientes
notaciones. Para m € IN, sean

Ay ={(,,k) eN3:i4j+k=m}, T={(zyz2) R 2,y2>0z+y+z=1}.
Para (i,j,k) € Ay (x,y,2) € T, sean

i 7.k
Y 2",

m!
m —
los polinomios bivariados de Bernstein de grado m.

3.11 DEFINICION. Sea {bjjr € €": (i,],k) € Ay} un conjunto de (m+ 1)(m+2)/2 puntos
de €™ (llamados red triangular de control). La superficier : T — E™ dada por

(4,5,k)EAm

se llama parche triangular de Bézier.

Obsérvese que si (z,y,2) € T, entonces
I=(@4y+2m= S Bl(wy2)
(i.3,k)€EAm

para todo m € IN. De donde se deduce de (3.7) que r(z,y,2) € E", puesto que b;j, € E".

En [70] se proporciona una visién mas profunda de estas superficies y su importancia en
el disenio asistido por ordenador. Una forma recursiva de calcular (3.7) fue proporcionada por
de Casteljau:

3.12 ALGORITMO. Sea una red triangular de control {b;i : (i,7,k) € An} y (z,y,2) € T.
Sean bgjk = by, para (i,5,k) € A,.
Supdngase construidos béjk c& paral=0,...,n ¢ (i,j k) € A,_;. Sean

béjkl(% Yy, z) = xbi‘—l—l,j,k(x’ Y,2) + ybé,j-ﬁ-l,k(ﬂc, Y, %) + Zbé,j,k:—i—l(-rv Y, 2).

El punto by (z,y, 2) es el punto r(z,y, z) de (3.7).
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3. Diseno geométrico asistido por ordenador

La solucién adoptada por Bézier fue distinta. Se denota I, = {0,...,n} x {0,...,m}
para n,m € IN. Dados {b;; : (i,j) € Inm} puntos de ¥, se define la superficie r : [0,1] x
[0,1] — &* dada por

r(t,s)= Y B(t)BJ'(s)by;. (3.8)

(4,5)€In,m

En [70, 72] se puede encontrar un estudio detallado de estas superficies. Una propiedad ya
observada por Bézier es que si denotamos para ¢ =20,...,n

pi(s) =Y _ BJ'(s)bi; = B[bio, . .., bim](s),
j=0

se tiene de (3.8)

r(t,s) =Y Bi(t)pi(s) = Bpo(s),- -, Pu(s)](1)-
i=0
Anélogamente, si se denota q;(t) = B[byj, ..., bp;](t) para j = 0,...,m, entonces

I'(t, s) = B[qO(t)7 ) qm(t)](s)‘

De donde se deduce que (3.8) puede evaluarse de forma recursiva aplicando dos veces el
algoritmo estandar de de Casteljau para curvas.

Las superfcies racionales de Bézier tienen una definicién parecida a (3.3):

3.13 DEFINICION. Dados los puntos {b;; : i = 0,...,n,5 = 0,...,m} de & y {w;; : i =
0,...,n,7=0,...,m} nimeros positivos, si se denota

w(t,s) = Z B} (t) BT (s)wj,

(4,5)€In,m

entonces la superficie r : [0,1] x [0,1] — EF dada por

1

rlt,s) = w(t,s)

Y BB (s)by.

(4,9)EIn,m

se llama superficie racional de Bézier asociada a los puntos de control b;; y a los pesos
Wij -

3.5 Problemas abiertos

En la figura 3.4 se observa que fijados los puntos proyectivos Py, Py, P», si se mueve la recta
auxiliar 7, entonces la curva a(Fy, P1, Py;r) cambia. ;jEs este cambio continuo? Ademds se
observa que si la recta r se “aleja al infinito”, entonces la curva a( Py, Py, Py;r) se aproxima a
la pardbola B[i(Py),i(Py),i(P)], supuesto que Py, Py, P, € A(IP?). {Es esto cierto? Antes de
nada se ha de precisar lo que intuitivamente es un movimiento continuo de la recta r € A(IP?),
esto es, se ha de dotar de una topologfa a A(IP?). Pero esto es facil, pues por el principio
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Figura 3.11: El principio de dualidad.

de dualidad, A(IPQ) y IP? son equivalentes como conjuntos, més concretamente, la aplicacién
f: P2 — A(IP?) dada por f(m(v)) = 7*(v) es biyectiva y cumple

r=L(PQ) < [f(r)=fP)N[Q)

para cualquier 7 € A(IP?) y P, Q € IP? (véase la figura 3.11). Ahora se puede definir en A(IP?)
la topologfa inducida por f y por la topologia de IP? como espacio cociente.

En lo sucesivo, dado P € P2, se denotard P* = {r € A(IP?): P € r}.
3.14 PROBLEMA. Sean Py,...,P, € P2 yt €[0,1]. Considérese la aplicacion
U APH\{P],.... P} > TP U(r) = a(Pp,...,P)(r)(t), (3.9)
donde « es la curva definida en el Algoritmo 3.4. ;Es ¥ continua?

Una utilidad tedrica, siempre que la respuesta a este problema fuera afirmativa es la
siguiente: Supongamos que t € R, Fy,...,P, € IP? y r € A(IP?) son tales que P; ¢ r y
a(Po, ..., Pp;r)(t) es afin. Ya que el subconjunto de los puntos afines de IP?2 es abierto en
IP?, se tiene que existe un entorno abierto de r en A(IP*)\ {P}, ..., P}, digamos U, de modo
que ¥(s) es afin para toda recta de U. En palabras mas sencillas: si se perturba ligeramente
la recta r, de nuevo obtenemos un punto afin.

El problema anterior mide perturbaciones cualitativas. Debido a que los puntos que se
dibujan deben ser afines (los puntos del infinito son de un modo informal direcciones) y a que
es natural definir la siguiente distancia en €2

dip.a)=|p—al, p.geé&F,

resulta conveniente estudiar perturbaciones cuantitativas. Pero para esto se debe estimar de
manera cuantitativa el movimiento de una recta r € A(IP?); es decir se ha de dotar de una
métrica a A(IP?). Esto no se va a poder hacer, pero casi.

La manera més facil es observar de nuevo el principio de dualidad y en que si a IP? se le
quita la recta del infinito, se obtiene el espacio métrico A(IP?) cuya métrica es

A1, 1, 2), (22, 2, 2)) = H( “)- (2 y)”

21 21 29 29

Si se ha comprendido esto, ahora es facil dotar de una métrica a un conjunto muy parecido
a A(IP?).
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Sea P = m(v) € IP2. Vamos a dotar a A(IP?)\ P* de la siguiente métrica:

* * * Wi W2
dp(a ()" (wa)) = [ 3 - 2
1 2

Segun nuestro conocimiento de la literatura actual, esta métrica es nueva. Surge un
problema relacionado con esta métrica, aparentemente sin relacién con el diseno de curvas.

3.15 PROBLEMA. Sean P,Q € IP?. En A(IP?)\ {P,Q} hay dos métricas: d} y dgy. 4Cudl
es la relacion entre ambas?

El siguiente problema es la version cuantitativa del problema 3.14

3.16 PROBLEMA. Sean Py,..., P, € P? yt € [0,1]. Sir,s € A(P*)\{Pg,..., P’} son tales
que U(r) y ¥(s) son afines, s;como es una estimacion de d(j(¥(r)),j(¥(s))) en términos de
dp,(r,s) parai=0,...n?

Ahora se comprende la utilidad de plantearse el problema 3.15, puesto que podemos
considerar n + 1 métricas distintas en A(IP?)\ {Fg,..., Pi}.

Obsérvese que en el ejemplo 3, se tiene que fijados
Py =m7(1,0,1), P =mn(s,1—¢s), P, =n(e,s,1),

hay infinitas elecciones de la recta auxiliar r para dibujar, mediante el algoritmo 3.4, el arco
que se pretende parametrizar. De hecho, basta tomar como r cualquier recta tangente a la
circunferencia unidad en el punto x, en donde x no esta en el mencionado arco. Sean ahora
r1 y ro dos de estas rectas tangentes. Por supuesto, las funciones

Oé(Po,Pl,PQ;’I“l) : [0, 1] — ]P2, a(Po,Pl,PQ;TQ) : [0, 1] — IP2
son distintas; pero los conjuntos
{Oz(Po,Pl,PQ;Tl)(t) 1t e [0, 1]}, {Oé(Po,Pl,PQ;TQ)(t) 1t e [0, 1]} (310)

son iguales. Sin embargo, lo que se dibuja en el diseno asistido por ordenador no es (3.10),
sino lo siguiente:

{a(PO,Pl,PQ;Tl)(t) 1t e T}, {O[(Po,Pl,PQ;T‘Q)(t) (t e T},

donde T ={0 < t; < -+ < t;, < 1}. Veamos un ejemplo concreto. En el ejemplo 1 se dibujé
el primer cuadrante de la circunferencia unidad lo més simétricamente posible. Si cambiamos
la recta 7 de modo que su nueva ecuacién sea —z +y 4 /2 = 0 (véase la figura 3.12) también
se obtiene el primer cuadrante.

i Pero que pasa si dibujamos sélo unos cuantos puntos de la curva? En la figura 3.13 se
muestran sélo los puntos correpondientes {r(¢t) : t € {0,0.05,0.1,...,0.95,1}, donde r es la
parametrizacion de esta curva.

Como se puede apreciar, hay mds puntos cerca de r(0) = (1,0) que de r(1) = (1,0).
Ademés se tiene que r(1/2) ~ (0.9024,0.4309) que estd mas préximo a r(0) que a r(1)
rompiendo la simetria mostrada en el ejemplo 1. Este hecho se puede comprender si calculamos
la velocidad inicial y final obteniendo |[r’'(0)| ~ 0.5859 y |[r/(1)|| ~ 3.4142; es decir, la
trayectoria es “més lenta al principio que al final”.
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pu !

Figura 3.12: Construccion del primer cuadrante de la circunferencia unidad.

3.17 PROBLEMA. FEstudiese la variacion de la recta tangente. Mads en concreto: Sean
los puntos Py, Pi, Py € IP? y r € A(IP?) tales que P; ¢ r para i = 0,1,2 y que las curva
Py, Py, Py;7) describe una cénica proyectiva incluida en A(IP?). Sea la curva en A(IP?)
dada por v = «a(Py, P1, Po;7) y los valores discretos 0 < tg < --- < t,, < 1. FEstimese
d(r(tiy1),r(t;)) parai=0,...,m — 1 y relaciénese esta distancia con la recta auziliar r.

FEstimese

a) r(1/2).
b) ;Cudndo d(r(0),r(1/2)) = d(r(1),r(1/2))?

c) [l" )1, [["(D)]]-

Ademss, hay que decir que r = 7*(w) es tangente a la cénica € = {m(x) : x' Ax = 0}
equivale a que w' A~!w = 0. Luego podemos parametrizar la cénica C* = {r(x) : x' A~ 1x =
0} usando el algoritmo 3.4 y la afirmacién de que la recta r = 7%(w) se mueve de forma
continua manteniéndose tangente a la cénica C, de manera poco precisa, es equivalente a que
7 (w) se mueva de forma continua en C* por medio de la parametrizacién antes mencionada.

En el diseno geométrico asistido por ordenador las curvas pueden no ser planas (de hecho,
es la situacién mas frecuente en el diseno industrial).

3.18 PROBLEMA. Generalicese el algoritmo 3.4 en €3 y estidiense sus propiedades.

Pensemos un poco en el algoritmo 3.4. Para generar los puntos Qg hay que cortar las
rectas r y L(Pl-j , Pz-j Jrl) ya que en el plano proyectivo, dos rectas distintas siempre se cortan
en un sélo punto proyectivo. Sin embargo, en el espacio proyectivo no es cierto que dos rectas
distintas se cortan en un punto (las rectas se pueden cruzar exactamente igual que en 83).
Esta situacién se arregla si obervamos que en IP? un plano y una recta no contenida en este
plano siempre se cortan en un sélo punto.

Asi, esta generalizacién es facil: basta substituir una recta auxiliar en IP? por un plano
auxiliar en IP?. Sin embargo, las propiedades no son tan simples de generalizar: por ejemplo,
el teorema 3.8. Recuérdese que una cuadrica en IP3, que es una superficie, es el siguiente
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Figura 3.13: Una cantidad finita de puntos del primer cuadrante de la circunferencia unidad.

conjunto:
{r(x) e P? : xTAx} = 0,

donde x € IR* y A es una matriz simétrica de orden 4. Mientras que la generalizacién directa
del algoritmo 3.4 describe una curva.

El proposito del algoritmo 3.4 es generalizar proyectivamente el algoritmo estdndar de

de Casteljau (que es un algoritmo afin). Tras repasar el algorimto 3.12 surge un problema
natural:

3.19 PROBLEMA. Generalicese el algoritmo 3.12 de modo que sea proyectivamente inva-
riante y que permita dibujar cuddricas en IP3.

Pensemos como se puede dar esta generalizacién. El algoritmo de de Casteljau se basa en la
razén simple (concepto afin), mientras que el algoritmo 3.4 se basa en la razén doble (concepto
proyectivo). Como el algoritmo 3.12 se basa en las coordenadas baricéntricas (concepto afin),
se ha de buscar una generalizacién proyectiva de las coordenadas baricéntricas. Ademads como
el paso de la geometria proyectiva de IP? a la geometria afin de €% se hace fijando un “plano
del infinito”, parece razonable que la generalizacién buscada se apoye en un plano auxiliar y
que cuando este plano “tienda al infinito” se obtenga el algoritmo 3.12.

En realidad, el resultado que se esconde tras las coordenadas baricéntricas es el clasico
teorema de Ceva, que aqui se reproduce en aras de una mayor legibilidad:

3.20 TEOREMA (DE CEVA). Sean abc un tridngulo y p, q y r puntos en los lados ab, bc
y ca respectivamente. Entonces cp, br y aq son concurentes si y solo si

bq & ap
qc ra pb
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Para entender mejor la relacién entre las coordenadas baricéntricas y el teorema de Ceva,
supéngase la siguiente situacién: Sean a, b, ¢, p, q,r del enunciado del teorema de Ceva tales
que cp, br y aq son concurentes en x (véase la figura 3.14).

C

Figura 3.14: Demostraciéon de una implicacién en el teorema de Ceva.

Ahora se tiene que existen «, 3,7 € IR tales que

x = ca + b + vc, a+pB+y=1. (3.12)
Ahora el punto
@ P g 1 g
a+ b = a+ b+ c) — c= - c
a4+ a+ 0 a—|—ﬁ(a g 7e) a+ g a+BX a—+p

estd en la recta que pasa por a,b y en la recta que pasa por X, c; es decir, es el punto p. De
forma anéaloga se tiene que

= b b + 7 c, r= a a+ a C.
B+ B+ at+y  a+7y
Ahora es trivial probar (3.11).

Las coordenadas baricéntricas se basan en el concepto afin de la razén simple. La siguiente
discusion es conocida (vése, por ejemplo [68]); pero que se incluye para facilitar la lectura de
este proyecto.

q

Sean a, b, c,d cuatro puntos colineales de €2. Es facil probar que?

rd(i(a), i(b), i(c),i(d)) = :T’(;;ET:

Sean ahora a, b, ¢ tres puntos colineales de 2. Sea D la interseccién de la recta del infinito
y L(i(a),i(b)). Puede probarse que

rd(i(a),i(b),i(c), D) = %.

La siguiente generalizacién proyectiva del teorema de Ceva se dio en [66].

4De hecho, es la definicién cldsica de razén doble.
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3.21 TEOREMA Sea ABC un tridngulo en IP? y r una recta proyectiva de A(IP?) tales que
A,B,Cé¢r. Sean A" =L(B,C)Nr, B =L(C,A)nr yC"=L(A,B)Nr. Sean A", B" y C"
tres puntos proyectivos distintos de A, B,C con A" € L(B,C), B" € L(C,A) yC" € L(A, B)
(véase la figura 3.15). Entonces L(A, A”), L(B,B") y L(C,C") son concurrentes si y sélo si

rd(B,C, A", A") -1d(C, A, B", B') -1d(A, B,C",C") = —1. (3.13)
C/
B
ol A ,
B/
A B” C
A/

Figura 3.15: El teorema 3.21.

La expresién (3.13) es la versién proyectiva de (3.11). Asi, hay que buscar una versién
proyectiva de (3.12) que permita definir una superficie 2 : S — IP3, en donde S C R? y
que z(\, 1) sea la interseccién de las cevianas AA”, BB"” y CC" que aparecen en la figura
3.15. Los puntos A”, B”,C"” deben depender de alguna manera de \, u € IR y adem4s se debe
cumplir la relacién (3.13).
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