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0 Introducción

Las horas dedicadas a la docencia por un profesor universitario son menos que las que
imparte un profesor de enseñanza media o primaria. ¿Por qué? No debemos olvidar que el
profesor de universidad es además de personal docente, investigador. La investigación debe
ser uno de los pilares básicos en los que se base la universidad española, entre otros motivos
para asegurar una docencia de calidad y un desarrollo del páıs en donde vivimos.

Un proyecto de investigación, es ante todo, un proyecto y como tal, una parte importante
son las cuestiones abiertas. Estas preguntas sin respuesta son vitales para el buen desarrollo
de las matemáticas; pues hacen avanzar a éstas de manera progresiva. En cada caṕıtulo de
este proyecto de investigación aparece una sección de problemas abiertos, en donde se puede
observar que los temas propuestos de investigación tienen continuidad natural y se prestan a
ser investigados con más profundidad.

Aunque el rigor matemático es, desde luego, una parte fundamental de toda investigación
matemática, se ha intentado en este proyecto explicar de manera intuitiva e informal los
distintos aspectos que aparecen, pues de este modo es posible que se puedan resolver de
manera más cómoda los problemas que aqúı se plantean. Como es bien sabido, Gauss dijo que
“cuando se finaliza un noble edificio no deben quedar visibles los andamios”; pero, continuando
con esta metáfora, Gauss no solamente retiró los andamios sino que destruyó los planos.
Jacobi dijo que “sus demostraciones son ŕıgidas, heladas... lo primero que hay que hacer es
descongelarlas”; mientras que Abel se refirió a Gauss como “un zorro que borra con la cola
sus huellas de la arena”.

Un aspecto que merece ser destacado es la diversidad de los temas propuestos como se
puede observar rápidamente en el ı́ndice. La formación de un matemático debe ser completa,
pues a veces de manera insospechada puede haber v́ınculos entre varias ramas de las ma-
temática que aparentemente estás desconectadas. Como un ejemplo, varias investigaciones
del caṕıtulo dedicado al análisis matricial han surgido de cuestiones de la estad́ıstica.

Asimismo, no parece oportuno en este proyecto diferenciar entre matemática aplicada y
pura; pues a menudo resultados teóricos tienen gran aplicabilidad. Podemos ver que en este
proyecto se estudia el plano proyectivo real y su topoloǵıa como espacio cociente que resulta
ser de interés en el diseño geométrico asistido por ordenador. Un ejemplo clásico es la teoŕıa
de números, sin ninguna aplicación práctica hasta que en 1977, Rivet, Shamir y Adleman,
cient́ıficos del M.I.T., idearon un sistema de cifrado público (llamado RSA) basado en la teoŕıa
de números primos.

Quiero expresar mi agradecimiento a mis compañeros de la unidad docente del Departa-
mento de Matemática Aplicada de la E.T.S.I.T. de la Universidad Politécnica de Valencia por
su constante apoyo moral.
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1 Diferenciabilidad en espacios de Banach

1.1 Introducción

El estudio de la diferenciabilidad de las funciones definidas sobre espacios de dimensión
infinita ha estado presente desde el principio de la construcción de la teoŕıa de operadores a
comienzos del siglo XX. Uno de los primeros esfuerzos importantes para elaborar una teoŕıa
abstracta de espacios de funciones y de funcionales fue realizado por Fréchet en su tesis doc-
toral de 1906. En lo que Fréchet llamó cálculo funcional, intentó unificar en términos
abstractos las ideas contenidas en los trabajos de Cantor, Volterra, Arzelà, Hadamard y otros
matemáticos del siglo XIX. En su tesis, Fréchet introdujo los espacios métricos y proporcionó
las nociones de continuidad y diferenciabilidad que extienden las correspondientes a funciones
reales en el marco de estos espacios generales. Merece la pena recordar su definición de dife-
rencial, pues es el modelo de definiciones posteriores realizadas en situaciones más generales.
Si y ≡ y(x) es una función continua definida en [a, b] con valores reales, Fréchet supone la
existencia de un funcional lineal L tal que

F [y + η]− F [y]− L[η] = εM(η),

donde η ≡ η(x) es una es una “variación sobre y(x)”, M(η) es el máximo del valor absoluto de
η sobre [a, b] y ε tiende a 0 cuando M tiende a 0. Entonces L es, por definición, la diferencial
de F en y.

En los años 20, Banach introdujo los espacios normados completos con el propósito de
generalizar la teoŕıa de las ecuaciones integrales. A partir de este momento se comienzan
a estudiar las propiedades de la diferenciabilidad de las funciones convexas y más concre-
tamente de la norma en el marco de estos espacios. Resultados iniciales en la teoŕıa son, sólo
por mencionar algunos, el Teorema de Mazur (1933) sobre la diferenciabilidad de las funciones
convexas en espacios separables, y la caracterización de Šmulyan (1940) de la diferenciabilidad
de la norma en términos del comportamiento de los funcionales soporte de la bola cerrada
unidad del dual.

Comienza aśı el estudio de la estructura de un espacio de Banach que es consecuencia de
la existencia de una norma equivalente con ciertas propiedades. El pricipal atractivo de este
tipo de resultados radica en la posibilidad de deducir propiedades topológicas a partir de la
forma de su bola unidad. Como ejemplo podemos citar los teoremas de Milman-Pettis: Todo
espacio de Banach uniformemente convexo es reflexivo, y de Fan-Glicksberg: Todo espacio de
Banach dual con norma Fréchet diferenciable es reflexivo.

Nuestro principal objetivo en la parte del proyecto de investigación dedicada a la teoŕıa de
los espacios de Banach es el estudio de las diferentes formas de diferenciabilidad de funciones
convexas en un espacio de Banach. Por otra parte dedicamos atención al impacto que tienen
estos diferentes tipos de diferenciabilidad sobre la estructura topológica de los espacios de
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1. Diferenciabilidad en espacios de Banach

Banach, y en especial, a los espacios de Asplund.

1.2 Conceptos y resultados básicos

Antes de comenzar, establecemos una notación estándar que usaremos en lo sucesivo. Los
espacios de Banach que aparecen son espacios sobre los números reales. La letra mayúscula
X denota, siempre que no haya confusión, un espacio de Banach. Denotaremos por BX la
bola unidad cerrada de X, esto es BX = {x ∈ X : ‖x‖ ≤ 1}. La esfera unidad SX es
{x ∈ X : ‖x‖ = 1}. Una función bump en X es una función real definida en X con soporte
acotado no vaćıo. El dual topológico de X, esto es {x∗ : X → IR : x∗ es lineal y continua}
será denotado por X∗ y el dual topológico de X∗ será denotado por X∗∗. Si x ∈ X, x∗ ∈ X∗

y x∗∗ ∈ X∗∗ entonces se denoraán 〈x, x∗〉 = x∗(x) y 〈x∗∗, x∗〉 = x∗∗(x∗).
Una función f : X → IR∪{+∞} es inferiormente τ-semicontinua, donde τ es cualquier

topoloǵıa en X, si {x ∈ X : f(x) ≤ r} es τ -cerrado para todo r ∈ IR. Se puede probar que
f es τ -inferiormente semicontinua si y sólamente si para todo x ∈ X y toda red (xd)d∈D

que τ -converge a x, entonces f(x) ≤ ĺım infd∈D f(xd). El dominio efectivo de f es el
subconjunto de X dado por dom(f) := {x ∈ X : f(x) < +∞}. La función f se dice propia
si dom(f) 6= ∅. Se puede demostrar muy fácilmente que si I es un conjunto arbitrario de
ı́ndices y si fi : X → IR son τ -continuas para todo i ∈ I, entonces supi∈I fi es inferiormente
τ -semicontinua. En particular, toda norma equivalente en un espacio X es inferiormente
w-semicontinua y que toda norma dual en X∗ es inferiormente w∗-semicontinua.

El epigrafo de f : D → IR, donde D ⊂ X, es el subconjunto de X × IR dado por
epi(f) = {(x, λ) : x ∈ D, f(x) ≤ λ}. Si D es convexo, entonces f es una función convexa si y
sólo si epi(f) es un conjunto convexo.

1.1 Definición. Sea f : D → IR, donde D es un abierto no vaćıo del espacio de Banach X
y sea x0 ∈ D. Se dice que

(a) f es Gâteaux diferenciable en x0 si

dfx0(u) = ĺım
t→0

f(x0 + tu)− f(x0)
t

existe para todo u ∈ BX y si, al mismo tiempo, dfx0 ∈ X∗. El funcional lineal dfx0 se
llama la diferencial Gâteaux de f en x0.

(b) f es Fréchet diferenciable en x0 si

f ′(x0)(u) = ĺım
t→0

f(x0 + tu)− f(x0)
t

existe para todo u ∈ BX , es uniforme para u ∈ BX y si, al mismo tiempo, f ′(x0) ∈ X∗.
El funcional lineal f ′(x0) se llama la diferencial Fréchet1 de f en x0.

(c) Si el ĺımite

d+fx0(u) = ĺım
t→0+

f(x0 + tu)− f(x0)
t

, u ∈ BX

1La razón de que la diferencial Gâteaux y la diferencial Fréchet se denoten de distinta manera es únicamente
por motivos históricos.
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1.2. Conceptos y resultados básicos

existe, este ĺımite se llama derivada direccional de f por la derecha en la dirección
u.

Las funciones convexas, y en particular la norma, tienen unas propiedades adicionales
que hacen que su estudio merezca especial atención. La siguiente proposición, (véase, por
ejemplo, [27]), caracteriza la Gâteaux diferenciabilidad de las funciones convexas.

1.2 Proposición. Sea f : D → IR una función convexa definida en un abierto convexo no
vaćıo D del espacio de Banach X y sea x0 ∈ D. Entonces

(a) existe d+fx0(u) para todo u ∈ BX y es un funcional sublineal.

(b) f es Gâteaux diferenciable en x0 si y sólo si −d+fx0(−u) = d+fx0(u) para todo u ∈ X y
también si y sólo si existe un único funcional lineal x∗ ∈ X∗ satisfaciendo

〈x− x0, x
∗〉 ≤ f(x)− f(x0), ∀x ∈ D. (1.1)

La parte (b) de la proposición anterior es importante pues caracteriza una propiedad
topológica (la diferencial Gâteaux) en téminos de la desigualdad (1.1). Véase la figura 1.1.

c
©©©©©©©©©

x0 x X

IR

〈x− x0, x
∗〉

f(x)− f(x0)

Figura 1.1:

Los funcionales lineales que satisfacen (1.1) juegan un papel importante en el estudio de
las funciones convexas.

1.3 Definición. Sea f : X → IR∪{+∞} una función convexa, propia e inferiormente ‖ ·‖-
semicontinua. Si x ∈ dom(f), se define la subdiferencial de f en x como el subconjunto
de X∗

∂f(x) = {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x), ∀y ∈ X},
mientras que ∂f(x) = ∅ si x /∈ dom(f).

Si particularizamos la definición 1.3 al caso f = ‖ · ‖ obtenemos la función dualidad de
X. En este caso se puede probar sin ninguna dificultad que para x ∈ SX se tiene

∂‖ · ‖(x) = {x∗ ∈ SX∗ : 〈x, x∗〉 = 1} = {x∗ ∈ X∗ : 〈x, x∗〉 = 1, 〈y, x∗〉 ≤ 1 ∀y ∈ BX},

que significa, desde el punto de vista geométrico, que el hiperplano de ecuación 〈·, x∗〉 = 1;
donde x∗ ∈ ∂‖·‖(x), pasa por el punto x y deja la bola unidad a un lado. O, equivalentemente,
manejando el espacio dual, que todos los elementos de ∂‖ · ‖(x) forman la cara de BX∗

determinada por el hiperplano de ecuación 〈x, ·〉 = 1.
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1. Diferenciabilidad en espacios de Banach

Notemos que una función continua convexa es Gâteaux diferenciable en x si y sólo si
∂f(x) consta de un sólo elemento. Por tanto, si f no es Gâteaux diferenciable en x, entonces
diam (∂f(x)) 6= 0. La siguiente proposición (véase [4]) muestra la relación entre diam (∂f(x))
y la aplicación y 7→ d+fx(y) + d+fx(−y).

1.4 Proposición. Si f : D → IR es una función convexa definida en D, subconjunto abierto
convexo no vaćıo de un espacio de Banach X, y si es continua en x ∈ D, entonces

diam (∂f(x)) = sup{d+fx(y) + d+fx(−y) : y ∈ SX}.

Como una consecuencia inmediata se tiene que, bajo las condiciones de la proposición
anterior, las siguientes afirmaciones son equivalentes:

(a) f es Gâteaux diferenciable en x.

(b) ∂f(x) consta de un sólo elemento.

(c) diam ∂f(x) = 0.

(d) d+fx(y) = d−fx(y) para todo y ∈ SX .

La siguiente definición es importante en la teoŕıa de diferenciabilidad de los espacios de
Banach.

1.5 Definición. Sea f : X → IR ∪ {+∞} una función convexa, propia e inferiormente
‖ · ‖-semicontinua. Si x ∈ dom(f), ε > 0, definimos la ε-subdiferencial de la función f en
x como

∂εf(x) = {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x) + ε, ∀y ∈ X}.

Es claro que si 0 < ε1 < ε2, entonces ∂ε1f(x) ⊂ ∂ε2f(x). Además, se puede demostrar
(véase [27]) que, bajo las condiciones de la definición 1.5, ∂εf(x) es siempre un subconjunto
w∗-cerrado no vaćıo de X∗ para cualquier ε > 0.

Cuando f = ‖ · ‖, la definición 1.5 posee un significado geométrico aún más claro. Es fácil
comprobar que si x ∈ SX , entonces

∂ε‖ · ‖(x) = {y∗ ∈ BX∗ : 〈x, y∗〉 ≤ 1− ε},
lo cual significa que ∂ε‖ · ‖(x) es el subconjunto de los puntos de BX∗ que están entre los
hiperplanos de ecuaciones 〈x, ·〉 = 1 − ε, 〈x, ·〉 = 1. Éste último es el hiperplano en el cual
está contenido ∂‖ · ‖(x). Es decir, ∂ε‖ · ‖(x) es una sección determinada por x en BX∗ .

Las funciones convexas en la recta real poseen muchos puntos de diferenciabilidad, más
concretamente, si f es una función convexa definida en un intervalo abierto no vaćıo D de
IR, entonces f ′(x) (o dfx, ya que en espacios de dimensión finita la Gâteaux diferenciabilidad
coincide con la Fréchet diferenciabilidad) existe para todo punto de D \ N , donde N es un
subconjunto numerable de D. El siguiente teorema se debe a Mazur y generaliza al resultado
anterior.

1.6 Teorema (Mazur). Si X es un espacio de Banach separable y si f es una función
convexa continua definida en un abierto convexo no vaćıo D de X, entonces el conjunto de
puntos donde f es Gâteaux diferenciable es un subconjunto Gδ denso de D.
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1.2. Conceptos y resultados básicos

Observemos que hay espacios no separables en los cuales la condición del teorema de Mazur
sigue siendo válida. Los intentos por caracterizar aquellos espacios en los cuales las funcio-
nes convexas y continuas son siempre genéricamente diferenciables ha motivado la siguiente
terminoloǵıa:

1.7 Definición. Un espacio de Banach X se dice que es un espacio de Asplund si
cualquier función continua convexa definida en un abierto convexo no vaćıo D de X es Fréchet
diferenciable en un subconjunto Gδ denso de D.

Se ha realizado un esfuerzo para encontrar condiciones geométricas suficientes para que
un espacio sea de Asplund. El propio Asplund probó en [2] que un espacio de Banach cuyo
dual es estrictamente convexo es de Asplund. Posteriormente, I. Ekeland y G. Lebourg, [11],
probaron que todo espacio con norma Fréchet diferenciable es de Asplund. En 1978, C. Stegall,
[29], consigue dar una forma definitiva a una larga serie de trabajos previos demostrando el
siguiente resultado:

1.8 Teorema. Sea X un espacio de Banach. Las siguientes afirmaciones equivalen:

(i) X es un espacio de Asplund.

(ii) X∗ posee la propiedad de Radon-Nykodým2.

(iii) Todo subespacio separable de X tiene dual separable.

Durante años se conjeturó que todo espacio de Asplund admite una norma equivalente
Fréchet diferenciable, conjetura errónea como ha demostrado R. Haydon, [18], encontrando
un espacio C(K) de Asplund que ni siquiera tiene una norma Gâteaux diferenciable. A la vista
de este ejemplo interesa encontrar condiciones geométricas que no necesariamente impliquen
la Gâteaux diferenciabilidad de la norma para que el espacio sea de Asplund. En la búsqueda
de propiedades de este tipo, se estudió la relación entre la diferenciabilidad de la norma y la
aplicación dualidad de un espacio de Banach.

Dada una función continua y convexa f definida en un abierto convexo no vaćıo A de
un espacio de Banach X podemos extender f a una función con dominio X, que seguimos
denotando del mismo modo, definiendo

f(x) =

{
ĺım inf

y→x
f(y) x ∈ A,

+∞ x /∈ A.

Se puede demostrar fácilmente que la función resultante es inferiormente semicontinua y
convexa.

El siguiente concepto ha encontrado diversas aplicaciones en la teoŕıa de los espacios de
Banach.

1.9 Definición. Sean X un espacio de Banach y f : X → IR ∪ {+∞} una función propia,
convexa e inferiormente ‖ · ‖-semicontinua 3. La conjugada de Fenchel de f es la función
definida en X∗ dada por

f∗(x∗) = sup{〈x, x∗〉 − f(x) : x ∈ X}.
2Un espacio de Banach X tiene la propiedad de Radon-Nykodým si cualquier K acotado no vaćıo de X

cumple que para cada ε > 0 existen x∗ ∈ X∗ y α > 0 tales que diam ({x ∈ K : 〈x, x∗〉 > supK(x∗)−α}) < ε.
3Esta definición se puede hacer para una función propia y convexa arbitraria, véase, por ejemplo, [27].
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1. Diferenciabilidad en espacios de Banach

Es trivial demostrar que f∗ es convexa. Es inferiormente w∗-semicontinua por ser el supremo
de funciones w∗-continuas. Además f∗ es propia, ya que si tomamos ε > 0, x ∈ dom(f) y
x∗ ∈ ∂εf(x), entonces

〈y − x, x∗〉 ≤ f(y)− f(x) + ε, ∀y ∈ X.

Es decir, f∗(x∗) ≤ 〈x, x∗〉 − f(x) + ε < +∞.
Es trivial demostrar que bajo las condiciones de la definición 1.9 entonces

〈x, x∗〉 ≤ f(x) + f∗(x∗). (1.2)

para cualquier (x, x∗) ∈ X ×X∗. Además si ε ≥ 0, entonces ∂εf(x) se puede caracterizar de
la manera siguiente: x∗ ∈ ∂εf(x) si y sólo si f(x) + f∗(x∗) ≤ 〈x, x∗〉+ ε (aqúı, hemos tomado
∂0f = ∂f). En particular, se tiene x∗ ∈ ∂f(x) si y sólo si f(x) + f∗(x∗) = 〈x, x∗〉.

Es sencillo probar que la conjugada de Fenchel de la norma viene dada por

‖x∗‖∗ =
{

0 x∗ ∈ BX∗ ,
+∞ x∗ /∈ BX∗ .

(1.3)

Nótese que por (1.3), si particularizamos (1.2) para x∗ ∈ SX∗ se tiene 〈x, x∗〉 ≤ ‖x‖ para
cualquier x ∈ X. Ésto obviamente implica 〈x, x∗〉 ≤ ‖x‖‖x∗‖ para cuaquier (x, x∗) ∈ X×X∗.
Por eso, cuando se intenta generalizar propiedades de la norma al caso de las funciones
convexas e inferiormente semicontinuas, una idea útil es substituir 〈x, x∗〉 ≤ ‖x‖‖x∗‖ por la
desigualdad (1.2).

Obsérvese que si f : X → IR ∪ {+∞} es una función convexa, propia e inferiormente
semicontinua, entonces f∗ también es convexa, propia e inferiormente semicontinua (de he-
cho es inferiormente w∗-semicontinua), por lo que a f∗ se le puede aplicar la definición 1.9
obteniendo la función biconjugada de Fenchel.

f∗∗ = (f∗)∗ : X∗∗ → IR ∪ {+∞}.

El siguiente resultado, conocido como teorema de Fenchel-Moreau, muestra que esta fun-
ción extiende la función original (váse [6] para una demostración sencilla que usa el teorema
de Hahn-Banach en X × IR).

1.10 Teorema. Sea f : X → IR una función inferiormente semicontinua y convexa. Si
x ∈ dom(f), entonces f(x) = f∗∗(x).

1.3 La subdiferencial como operador monótono

Una propiedad que se deduce fácilmente de la definición de la subdiferencial de una función
convexa es la siguiente: Si f es una función continua convexa definida en el abierto convexo
no vaćıo D, entonces

〈x− y, x∗ − y∗〉 ≥ 0, ∀x, y ∈ D, x∗ ∈ ∂f(x), y∗ ∈ ∂f(y).

Las aplicaciones multivaluadas que cumplen esta condición son muy importantes y han sido
extensamente estudiadas desde los años sesenta en conexión con el análisis no lineal. Las
siguientes definiciones son clásicas y pueden encontrarse, por ejemplo, en [27]:
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1.4. Continuidad de la subdiferencial

1.11 Definición. Una aplicación multivaluada Φ : A → P(X∗), donde A es un subconjunto
de un espacio de Banach X, se dice que es un operador monótono si

〈x− y, x∗ − y∗〉 ≥ 0, ∀x, y ∈ A, x∗ ∈ Φ(x), y∗ ∈ Φ(y).

Un subconjunto G de X×X∗ es monótono si 〈x−y, x∗−y∗〉 ≥ 0 siempre que (x, x∗), (y, y∗) ∈
G. Si Φ : A → P(X∗) es un operador monótono, entonces su grafo es un subconjunto
monótono. Un subconjunto monótono se dice maximal monótono si es maximal en la fa-
milia de subconjuntos monótonos de X×X∗ ordenada por inclusión. Decimos que un operador
monótono es maximal monótono si su grafo es un subconjunto maximal monótono.

Es fácil ver, a partir de la definición, que un operador monótono Φ : A → P(X∗) es
maximal monótono si y sólo si la siguiente condición es cierta: Dados cualesquiera y ∈ X, y∗ ∈
X∗ tales que

〈y − x, y∗ − x∗〉 ≥ 0, ∀x ∈ X, x∗ ∈ Φ(x),

entonces se sigue necesariamente que y∗ ∈ Φ(y). El siguiente teorema se debe a Rockafellar
(véase [28]).

1.12 Teorema. Sea X un espacio de Banach y f : X → IR ∪ {+∞} una función convexa
e inferiormente semicontinua. Entonces ∂f es maximal monótona.

1.13 Definición. Un punto y de un subconjunto A de un espacio de Banach Y se dice un
punto soporte de A si existe y∗ ∈ Y ∗, y∗ 6= 0 tal que y∗ alxanza el supremo sobre A en y.
Cualquier y∗ que cumpla esta definición se dice que es un funcional soporte de A en y, o
que y∗ soporta a A en y.

La terminoloǵıa geométrica surge del hecho de que un hiperplano cerrado se dice que
soporta a A si uno de los dos semiespacios cerrados que define el hiperplano contiene a A, el
otro semiespacio abierto no corta a A y este hiperplano corta a A. Si y∗ soporta a A en y,
entonces H = {z ∈ Y : 〈z, y∗〉 = supA〈·, y∗〉} es tal hiperplano.

La siguiente proposición (véase [4]) relaciona los funcionales soporte de un epigrafo de una
función convexa con la subdiferencial; y es una consecuencia del teorema de maximalidad de
Rockafellar:

1.14 Proposición. Sean X un espacio de Banach, f una función continua y convexa
definida en un abierto convexo no vaćıo y x un punto de dicho abierto. Entonces, los fun-
cionales soporte de epi(f) en (x, f(x)) son los múltiplos positivos de los funcionales lineales
φ ∈ (X × IR)∗ de la forma

φ(y, λ) = 〈y, x∗〉 − λ, x∗ ∈ ∂f(x). (1.4)

1.4 Continuidad de la subdiferencial

La aplicación subdiferencial es un ejemplo de una aplicación multivaluada. La siguiente
definición establece nociones de continuidad para este tipo de aplicaciones:
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Figura 1.2: Obsérvese que la “normal apunta hacia abajo”. Éste es el significado geométrico
del signo negativo de λ en (1.4).

1.15 Definición. Sean (A, τ) y (B, τ ′) dos espacios topológicos y sea una aplicación mul-
tivaluada Φ : A → P(B). Se dice que

(a) Φ es superiormente τ − τ ′−semicontinua en x ∈ A si para cada τ ′-abierto U que
verifique Φ(x) ⊂ U , existe un τ -entorno V de x tal que Φ(y) ⊂ U para todo y ∈ V .

(b) Φ es inferiormente τ − τ ′−semicontinua en x ∈ A si para cada τ ′-abierto U que
verifique Φ(x)∩U 6= ∅, existe un τ -entorno V de x tal que Φ(y)∩U 6= ∅ para todo y ∈ V .

Nos interesa el caso en que Φ sea la subdiferencial de una función convexa y continua
definida en un conjunto D abierto, convexo y no vaćıo de un espacio de Banach X. Siempre
consideraremos al espacio de Banach X dotado de la topoloǵıa de la norma, mientras que en
X∗ consideraremos alternativamente las topoloǵıas de la norma, la w o la w∗. Usaremos la
nomenclatura superiormente (inferiormente) τ−semicontinua cuando τ sea una de las
topoloǵıas mencionadas anteriormente sobre X∗. En la siguiente proposición se considera el
caso en que τ es la topoloǵıa w∗.

1.16 Proposición. Si f es una función continua convexa definida en el abierto convexo no
vaćıo D de un espacio de Banach X, entonces la subdiferencial x 7→ ∂f(x) es superiormente
w∗-semicontinua.

La demostración puede encontrarse, por ejemplo, en [27]. El caso particular en el que
f = ‖ · ‖ fue demostrado en 1964 por Cudia en [9]. La siguiente proposición (véase [4]) fue
demostrada en [9] para el caso particular cuando f es la norma.

1.17 Proposición. Sea f una función convexa y continua definida en un abierto convexo
no vaćıo D del espacio de Banach X. Dado x ∈ D, entonces

(a) f es Gâteaux diferenciable en x si y sólamente si ∂f es inferiormente w∗-semicontinua
en x.

(b) f es Fréchet diferenciable en x si y sólamente si ∂f es inferiormente ‖ · ‖-semicontinua
en x.

Como se mencionó previamente, si la aplicación dualidad es univaluada en un punto x del
espacio de Banach X, entonces la norma de X es Gâteux diferenciable en x. Como interesa
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encontrar condiciones geométricas más débiles que la diferenciabilidad Gâteux que impliquen
que X sea de Asplund, no hay más remedio que substituir la semicontinuidad inferior por
otra noción más débil. La semicontinuidad superior ha sido poco estudiada. La razón de
este desinterés se debe en, nuestra opininión, a tres razones fundamentales: No se conoce
una caracterización mediante cocientes diferenciales, no es estable frente a sumas directas, y
sobre todo, existe una noción parecida a la semicontinuidad superior que ha resultado ser la
más adecuada a la hora de trabajar con la función dualidad. Este tipo de continuidad fue
introducida en [13] y ha encontrado interesantes aplicaciones.

1.18 Definición. Si (A, τ) es un espacio topológico, (B, τ ′) es un espacio vectorial to-
pológico y Φ : A → P(B) \ ∅. Diremos que Φ es restringida superiormente τ − τ ′−semi-
continua en x ∈ A si para cada U , τ ′-entorno de 0 en B, existe V , τ -entorno de x en A, tal
que Φ(y) ⊂ Φ(x) + U para todo y ∈ V .

Es claro que la semicontinuidad superior implica la semicontinuidad restringida superior,
y si Φ(x) es τ ′-compacto ambas nociones coinciden. Igual que en la definición 1.15, estaremos
interesados sólamente en el caso en que se considera la topoloǵıa de la norma en A ⊂ X y a
B = X∗ le dotamos de las topoloǵıas de la norma y w. El caso en que a X∗ se le dota de la
topoloǵıa w∗ es trivial por la Proposición 1.16 y por ser ∂f(x) siempre w∗-compacto (si f es
continua en x).

El caso particular en donde la aplicación dualidad es restringida ‖ · ‖-semicontinua su-
periormente fue estudiado en primer lugar en [17], probando que la aplicación dualidad es
restringida ‖ · ‖-semicontinua superiormente en x ∈ X si y sólo si el ĺımite

d+‖ · ‖x(u) = ĺım
t→0+

‖x + tu‖ − ‖x‖
t

(que existe para todo u ∈ X) es uniforme para ‖u‖ ≤ 1. La siguiente definición fue introducida
en [12].

1.19 Definición. Sean f : D → IR, D un abierto no vaćıo de un espacio de Banach X y
x ∈ D. Decimos que la función f es fuertemente subdiferenciable en x si el ĺımite

d+fx(u) = ĺım
t→0+

f(x + tu)− f(x)
t

es uniforme para u ∈ X.

Son bastantes los trabajos dedicados a este tipo de extensión de la diferenciabilidad
Fréchet. Merecen destacarse [1, 8, 12, 13, 15, 16, 17].

Para la aplicación subdiferencial de funciones convexas y continuas definidas en un abierto
convexo no vaćıo de un espacio de Banach X este último concepto tiene una apropiada
caracterización geométrica, demostrada por primera vez en [17].

1.20 Proposición. Si f es una función convexa y continua en el abierto convexo no vaćıo
D de un espacio de Banach X, entonces f es fuertemente subdiferenciable en x ∈ D si y sólo
si ∂f es restringida superiormente ‖ · ‖-semicontinua en x.

11



1. Diferenciabilidad en espacios de Banach

De la monotonicidad de los cocientes diferenciales y del teorema clásico de Dini se deduce
que cualquier norma en un espacio normado de dimensión finita es fuertemente subdiferen-
ciable. Una especie de rećıproco también es cierto, como probaron Contreras y Payá en [8]:
En todo espacio de dimensión infinita existe una norma equivalente que no es fuertemente
subdiferenciable.

1.5 Aplicaciones bastantes suaves

La siguiente nomenclatura se debe a Contreras y Payá. Apareció por vez primera en [8]
con el objetivo de dar una condición geométrica suficiente para que un espacio de Banach sea
de Asplund.

1.21 Definición. Decimos que una función continua y convexa f definida en un abierto
convexo no vaćıo D de un espacio de Banach X es bastante suave en x ∈ D si la apli-
cación ∂f : D → P(X∗) es restringida superiormente w-semicontinua en x. Análogamente
decimos que Φ : A → P(X∗), donde A ⊂ X, es bastante suave en x ∈ A, si es restringida
superiormente w-semicontinua en x.

Se pueden generalizar algunos resultados de [8, 13] en la siguiente proposición (véase [5]),
que se puede considerar como el análogo del test de Šmulyan4 para este tipo de diferenciabi-
lidad.

1.22 Teorema. Sean f una función convexa y continua definida en un abierto convexo no
vaćıo D de X, x ∈ D y τ alguna de las siguientes topoloǵıas de X∗: la de la norma, la w o
la w∗. Las siguientes afirmaciones son equivalentes:

(a) ∂f es restringida τ -semicontinua superiormente en x.

(b) Para todo N , τ -entorno de 0 en X∗, existe ε > 0 tal que ∂εf(x) ⊂ ∂f(x) + N .

El caso particular cuando la función f es la norma de un espacio de Banach fue obtenido
por Giles, Gregory y Sims en [13], en donde se utiliza el teorema de Bishop-Phelps-Bollobás.
Para la demostración del teorema 1.22 se utiliza lo que se puede considerar la generalización del
teorema Bishop-Phelps-Bollobás para funciones convexas e inferiormente ‖ · ‖-semicontinuas:
El teorema de Brønsdted-Rockafellar: Sea f una función convexa continua definida en D, un
abierto convexo no vaćıo de un espacio de Banach X. Entonces dados cualesquiera x0 ∈ D,
ε > 0, x∗0 ∈ ∂εf(x0), existen xε ∈ D y x∗ε ∈ X∗ tales que x∗ε ∈ ∂f(xε), ‖xε − x0‖ ≤

√
ε,

‖x∗ε − x∗0‖ ≤
√

ε.
Cuando la aplicación dualidad es restringida superiormente w-semicontinua, el espacio de

Banach X disfruta de numerosas propiedades. En la siguiente proposición (véase [13]) se
caracteriza esta clase de continuidad.

1.23 Proposición. Sea X un espacio de Banach y sea x ∈ SX . Las siguientes afirmaciones
son equivalentes:

4La norma es Fréchet (Gâteux) diferenciable en x ∈ X si y sólamente para cualquier x∗n, y∗n ∈ SX∗ , 〈x, x∗n〉 → 1,
〈x, y∗n〉 → 1, entonces x∗n − y∗n tiende a 0 en la topoloǵıa de la norma (en la topoloǵıa débil). Véase [10].
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1.5. Aplicaciones bastantes suaves

(a) ‖ · ‖ es bastante suave en x.

(b) Para cada w-entorno de 0, N , en X∗, existe δ > 0 tal que

y∗ ∈ BX∗ , 〈x, y∗〉 > 1− δ ⇒ y∗ ∈ ∂‖ · ‖(x) + N,

(c) ∂‖ · ‖(x) es denso en ∂‖ · ‖∗∗(x) para la topoloǵıa σ(X∗∗∗, X∗∗) de X∗∗∗.

Se hace patente, observando las proposiciones 1.17, 1.20 y 1.23, que se echa de menos
una caraterización mediante cocientes diferenciales de la propiedad “ser bastante suave”.
Observemos que en la proposición anterior aparece de forma bastante natural la extensión
de la norma de X a X∗∗. En la teoŕıa de los espacios de Banach existe una generalización
de tal extensión: la biconjugada de Fenchel. Este tipo de operación, como hemos visto en el
teorema 1.10, se aplica a la clase de funciones convexas e inferiormente semicontinuas.

El resultado fundamental sobre funciones bastante suaves es el teorema 1.25 aparecido
en [5]. El siguiente resultado, que generaliza al teorema de Goldstine5, es necesario para la
demostración del teorema 1.25.

1.24 Teorema. Sea f : X → IR ∪ {+∞} una función convexa, propia e inferiormente
semicontinua, entonces epi(f∗∗) = epi(f)

w∗
.

Es posible que lo siguiente ayude a comprender los problemas planteados más adelante:
En la demostración estándar del teorema de Golstine se usa el teorema de Hahn-Banach,
mientras que en la prueba del teorema 1.24 se usa el teorema de Hahn-Banach en X × IR.
Esto es intuitivo si se piensa que la forma más adecuada de manejar simultáneamente puntos
x de X y escalares f(x) de IR es usar elementos (x, f(x)) de X × IR.

Presentamos a continuación la extensión de los resultados de Giles, Gregory y Sims (pro-
posición 1.23) al caso de las funciones convexas y continuas.

1.25 Teorema. Sean f : D → IR una función continua y convexa, siendo D un abierto
convexo no vaćıo de un espacio de Banach X y x ∈ D. Entonces las siguientes afirmaciones
son equivalentes:

(a) f es bastante suave en x.

(b) Para todo N , w-entorno de 0 en X∗, existe ε > 0 tal que ∂εf(x) ⊂ ∂f(x) + N .

(c) ∂f(x) es σ(X∗∗∗, X∗∗)-denso en ∂f∗∗(x).

(d) d+f∗∗x = sup{〈·, x∗〉 : x∗ ∈ ∂f(x)}.

(e) Dados ε > 0 y u∗∗ ∈ SX∗∗, existe δ > 0 tal que

f∗∗(x + tu∗∗)− f∗∗(x)
t

− sup{〈u∗∗, x∗〉 : x∗ ∈ ∂f(x)} < ε,

para cualquier 0 < t < δ.

5Si X es un espacio de Banach, entonces BX es w∗-densa en BX∗∗ .

13



1. Diferenciabilidad en espacios de Banach

Si X es un espacio de Banach, se tiene ‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ BX∗} para todo x ∈ X.
La siguiente definición tiene nexos con la anterior igualdad y ha demostrado tener aplicaciones
en la topoloǵıa de los espacios de Banach.

1.26 Definición. Sea X un espacio de Banach y N un subespacio de X∗. Se dice que N
es un subespacio normante, si es cerrado (en la topoloǵıa de la norma) y satisface

‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ BN}, ∀ x ∈ X.

Se puede demostrar de manera sencilla, aplicando el teorema de Hahn-Banach, que un subes-
pacio cerrado N de X∗ es normante si y solamente si BN es w∗-denso en BX∗ . Denotaremos
por NX la intersección de todos los subespacios cerrados normantes de X∗, que en general es
un subespacio cerrado pero no siempre normante. Los subespacios normantes de X∗ juegan
un papel importante en cuestiones de dualidad, ya que cualquier predual isométrico de X es
un subespacio de X∗ normante.

Además, los subespacios normantes de X∗ guardan una relación directa con la diferencia-
bilidad de la norma, como se puede observar en el siguiente hecho: Si la norma es bastante
suave en todo SX y es Gâteaux diferenciable en x ∈ SX , entonces x∗ = d‖ · ‖x ∈ NX . En
efecto: si N es un subespacio cerrado normante de X∗, como

1 = sup{〈x, y∗〉 : y∗ ∈ BN},

existe (yn)∞n=1 ⊂ BN tal que 〈x, y∗n〉 → 1. Aplicando la proposición 1.23 se puede comprobar
que y∗n → x∗ en la topoloǵıa w, por lo que x∗ ∈ BN

w = BN .
Si X admite un predual N , entonces N es un subespacio normante de X∗. Si además X∗

no posee subespacios propios normantes, entonces N = X∗; por lo que X∗∗ = N∗ = X, es
decir X es reflexivo. Como Godefroy demostró, la hipótesis de que X sea un espacio dual se
puede debilitar, exigiendo únicamente la siguiente propiedad:

1.27 Definición. Se dice que un espacio de Banach X tiene la propiedad de la inter-
sección finita-infinita (para abreviar escribiremos IPf,∞) si toda familia de bolas cerradas
en X, con intersección vaćıa, contiene una subfamilia finita con intersección vaćıa.

Es fácil ver que si X es un espacio de Banach dual, entonces X posee la propiedad IPf,∞.
En efecto: sean N el predual de X y (Bα)α∈I una colección de bolas cerradas tal que para todo
subconjunto finito F de I se tiene ∩α∈F Bα 6= ∅. Ya que las bolas cerradas, por el teorema de
Alaoglu-Bourbaki, son σ(X, N) compactas, se tiene ∩α∈IBα 6= ∅. En particular todo espacio
reflexivo posee la propiedad IPf,∞. El siguiente resultado se debe a G. Godefroy, si bien no
aparece expĺıcitamente en ninguno de sus trabajos.

1.28 Lema. Sea X un espacio de Banach que posee la propiedad IPf,∞ y tal que X∗ no
posee subespacios propios normantes. Entonces X es reflexivo.

Como se comentó previamente hay una larga serie de trabajos donde se proporcionan
condiciones geométricas que implican que el espacio es de Asplund. En 1994, Contreras y
Payá (véase [8]) lograron generalizar varios resultados previos estableciendo que todo espacio
de Banach donde la norma sea bastante suave es de Asplund. En [14], Giles y Moors probaron
un resultado similar bajo una condición (formalmente) más débil, el teorema 1.29.
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1.6. Normas ásperas y funciones bump

En el art́ıculo mencionado de Contreras y Payá también se demostró que Si X es un espacio
de Banach con norma bastante suave, entonces X∗ no tiene subespacios propios normantes.
En [4] se ha usado la condición de Giles y Moors sobre un espacio de Banach para probar que
su dual no posee subespacios cerrados propios normantes. Obsérvese que la propiedad de que
para alguna norma equivalente, el dual no contiene ningún subespacio propio normante y la
propiedad de ser un espacio de Asplund son independientes, como se muestra en [22].

1.29 Teorema. Un espacio de Banach es de Asplund si tiene una norma equivalente cuya
aplicación dualidad tiene un grafo que contiene el grafo de una aplicación bastante suave.

La prueba del siguiente resultado puede encontrarse en [3].

1.30 Teorema. Sea X un espacio de Banach de modo que existe Φ : SX → P(X∗) \
∅ bastante suave cumpliendo Φ(x) ⊂ ∂‖ · ‖(x) para todo x ∈ SX . Entonces X∗ no tiene
subespacios propios cerrados normantes.

El siguiente resultado muestra una aplicación directa del teorema 1.30 a la geometŕıa de
los espacios de Banach y es una generalización de un resultado de Godefroy aparecido en [15].

1.31 Corolario. Sea X un espacio de Banach tal que exista Φ : SX → P(X∗) \ ∅ bastante
suave cumpliendo Φ(x) ⊂ ∂‖ · ‖(x) para todo x ∈ SX . Entonces cualquier subconjunto de X
acotado y w-cerrado es una intersección de uniones finitas de bolas de X.

Utilizando los resultados previos se proporcionan [3] dos caracterizaciones de la reflexivi-
dad más generales que las ya comentadas previamente.

1.32 Teorema. El espacio de Banach X es reflexivo si y solamente si X tiene la propiedad
IPf,∞ y existe Φ : SX → P(X∗) \ ∅ bastante suave y tal que Φ(x) ⊂ ∂‖ · ‖(x) ∀x ∈ SX .

El siguiente corolario es obvio:

1.33 Corolario. Sea X un espacio de Banach que cumple la propiedad IPf,∞. Entonces,
las afirmaciones siguientes son equivalentes:

(a) X es reflexivo

(b) X tiene una norma equivalente bastante suave.

(c) Existe una norma equivalente, ‖ · ‖, y una aplicación Φ : SX → P(X∗) \ ∅ bastante suave
tal que Φ(x) ⊂ ∂‖ · ‖(x), para cualquier x ∈ SX .

1.6 Normas ásperas y funciones bump

Las normas ásperas fueron introducidas por Leach y Whitfield en [25], Por otra parte, la
existencia de funciones bump definidas en un espacio de Banach X cumpliendo propiedades
de diferenciabilidad tiene un fuerte impacto en la estructura topológica de X. Baste recordar
el siguiente resultado (véase [25]): Si X es un espacio de Banach que admite un bump Fréchet
diferenciable, entonces X es un espacio de Asplund. Obsérvese que de este resultado se sigue
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1. Diferenciabilidad en espacios de Banach

en particular que si X posee una norma Fréchet diferenciable, entonces X es de Asplund,
ya que es muy fácil demostrar (véase [10], pág. 10) que a partir de una norma Fréchet
diferenciable se puede construir un bump Fréchet diferenciable.

1.34 Definición. Una norma ‖ · ‖ en un espacio de Banach X se dice que es áspera si
existe ε > 0 tal que tal que para todo x ∈ SX se cumple

lim sup
‖h‖→0

‖x + h‖+ ‖x− h‖ − 2
‖h‖ ≥ ε.

La siguiente proposición (véase [4]) generaliza a la anterior definición al caso de las fun-
ciones convexas e inferiormente semicontinuas:

1.35 Proposición. Sea X un espacio de Banach, f : X → IR∪{+∞} una función convexa,
propia e inferiormente semicontinua, x0 ∈ int(dom(f)) y ε > 0. Entonces las siguientes
afirmaciones son equivalentes:

(i) lim sup
‖h‖→0

f(x0 + h) + f(x0 − h)− 2f(x0)
‖h‖ ≥ ε.

(ii) Para todo α > 0, se tiene diam (∂αf(x0)) ≥ ε.

El siguiente resultado (véase [4]) cuantifica el “grado de aspereza” de una norma en
relación con la existencia de un bump que también posea un cierto grado de “aspereza”. Esto
precisa lo cerca que un espacio está de ser Asplund cuando existe un bump con determinadas
propiedades de “cuasi-suavidad”. Obsérvese que este resultado implica en particular que si
existe una función f : X → IR que sea un bump Fréchet diferenciable, entonces X es un
espacio de Asplund.

1.36 Teorema. Sea C un subconjunto cerrado y acotado del espacio de Banach X. Si
existe f : C → IR, continua y acotada inferiormente cumpliendo

(a) Existe δ ≥ 0 tal que, para todo x ∈ int(C),

lim sup
‖h‖→0

f(x + h) + f(x− h)− 2f(x)
‖h‖ ≤ δ.

(b) Existe x0 ∈ int(C) tal que f(x0) < inf∂C f y

(c) f acotada inferiormente.

Entonces X no puede tener una norma ε-áspera para ε > γδ/α, siendo α = inf∂C f − f(x0),
γ = sup{‖x0 − x‖ : x ∈ C}.

1.7 Problemas Abiertos

El corolario 1.33 responde de manera muy parcial a un problema que aparece impĺıcito en
el trabajo [14] de Giles y Moors.
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1.37 Problema. ¿Existe un espacio X con una norma no bastante suave y en el que existe
Φ : SX → P(X∗) \ ∅ bastante suave tal que Φ(x) ⊂ ∂‖ · ‖(x), ∀x ∈ SX?

Es claro, por el corolario 1.33, que si tal contraejemplo existe, éste no debe cumplir la
propiedad IPf,∞.

Como ya se comentó, si en un espacio de Banach X existe un bump Fréchet diferenciable,
entonces X es de Asplund. ¿Existe la posibilidad de debilitar la Fréchet diferenciabilidad?

1.38 Problema. Sea X un espacio de Banach tal que existe un bump fuertemente subdife-
renciable. ¿Es X de Asplund?

Con el fin de demostrar la validez de esta conjetura se obtuvo una respuesta parcial dada
en el teorema 1.36.

Por otra parte, en la definición de Fréchet y Gâteaux diferenciabilidad (definición 1.1)
y en la definición de fuertemente subdiferenciabilidad (definición 1.19) no se exige que las
funciones sean convexas; sin embargo una hipótesis esencial en el teorema 1.25 es que la
función sea convexa (entre otras cosas para definir la biconjugada de Fenchel y para asegurar
que la biconjugada restringida a X coincide con la función original). ¿Se puede mejorar el
teorema 1.25? Más precisamente:

1.39 Problema. Sea f : D → IR, en donde D es un abierto convexo de un espacio de
Banach X. ¿Existe una caraterización mediante cocientes diferenciales para f (y sólo para
f) de modo que si f es convexa, se obtenga el teorema 1.25?

Una posible utilidad de este problema es tratar aún más de rebajar el problema 1.38,
substituyendo la subdiferenciabilidad fuerte por la bastante suavidad. Sin el problema 1.39
resuelto, esto no es posible, pues un bump no puede ser convexo.

Por todo lo comentado, conviene extender la teoŕıa comentada lo máximo posible para
tratar el caso de las funciones no convexas. Primero de todo, comentaremos muy brevemente
algunos aspectos del art́ıculo [23]. En este art́ıculo, se define la Fréchet ε-subdiferencial
de una función f : X → IR ∪ {+∞} para ε ≥ 0 en x ∈ dom(f) por medio de

∂F
ε (x) =

{
x∗ ∈ X∗; ĺım inf

‖h‖→0

f(x + h)− f(x)− 〈h, x∗〉
‖h‖ ≥ −ε

}
.

Cuando f es convexa, se puede probar fácilmente que

∂F
ε (x) = {x∗ ∈ X∗ : f(x + h)− f(x) ≥ 〈h, x∗〉 − ε‖h‖ ∀h ∈ X}.

1.40 Problema. ¿Qué relación hay entre ∂F
ε (x) y la definición 1.5?

Más adelante, sin salirnos de [23], se definen los siguientes conceptos para una función
f : X → IR ∪ {+∞} no necesariamente convexa:

(a) La Fréchet ε-subdiferencial limitante de f en x ∈ dom(f) al conjunto dado por

∂̂εf(x) = {x∗ ∈ X∗ : ∃(xn, x∗n) ∈ X ×X∗, x∗n ∈ ∂f(xn), f(xn) → f(x), x∗n
w∗→ x∗}.
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(b) La función fes ε-convexa si para ε ≥ 0 se cumple la siguiente desigualdad para x, y ∈ X
y λ ∈ [0, 1]

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ελ(1− λ)‖x− y‖.

Y por último, para ε ≥ 0, la función multivaluada Φ : X → P(X∗) es ε-monótona si
para x, y ∈ X con Φ(x), Φ(y) 6= ∅ se cumple que si (x∗, y∗) ∈ Φ(x)× Φ(y) entonces

〈x− y, x∗ − y∗〉 ≥ −2ε‖x− y‖.

Además se dice maximal ε-monótona si no existe otra función multivaluada ε-monótona
cuyo grafo inclye estrictamente el grafo de Φ.

En [23] se analizan estas definiciones y se prueban extensiones naturales a algunos teoremas
comentados en las secciones previas. Entre otras podemos citar las siguientes.

(i) Sean ε ≥ 0 y f : X → IR∪{+∞} una función ε-convexa . Entonces ∂̂εf es 2ε-monótona.

(ii) Sean ε ≥ 0 y f : X → IR ∪ {+∞} una función ε-convexa e inferiormente semicontinua.
Entonces ∂̂εf es maximal ε-monótona.

Parece natural extender algunos resultados mencionados previamente en las secciones
anteriores al caso de las funciones ε-convexas. En los tres problemas siguientes consideraremos
f : X → IR ∪ {+∞} una función ε-convexa, siendo ε ≥ 0.

1.41 Problema. Si además f es continua en x ∈ X, ¿cuánto vale diam (∂̂εf)?, en el
esṕıritu de la proposición 1.4?

Este problema está relacionado con el siguiente

1.42 Problema. Si además f es continua en x ∈ X y si existe K > 0 tal que diam (∂̂εf) ≥
K para todo ε > 0, ¿qué le ocurre al cociente

f(x + h) + f(x− h)− 2f(x)
‖h‖

cuando h → 0? (obsérvese la proposición 1.35).

La herramienta fundamental para la demostración de la proposición 1.14 es el teorema de
maximalidad de Rockafellar. Obsérvese que cuando f es 2ε-convexa e inferiormente semicon-
tinua, la aplicación ∂̂εf es maximal ε-monótona. ¿Se puede generalizar la proposición 1.14?,
¿podemos intuir la situación como en la figura 1.2?

1.43 Problema. Si f es inferiormente semicontinua y continua en x ∈ X, ¿qué forma
tienen los funcionales soporte de epi(f) en (x, f(x))?

Por otra parte, dos de los resultados más importantes de [5] son los teoremas 1.24 y 1.25,
¿Se pueden generalizar al caso de las funciones ε-convexas? Un resultado central en la teoŕıa
de las funciones conjugadas (y usado en la demostración de los teoremas 1.24 y 1.25) es el

18



1.7. Problemas Abiertos

teorema de Fenchel-Moreau (teorema 1.10). Con el fin de extender el teorema de Fenchel-
Moreau, en [26] se definen el siguiente concepto. Sea f : X → IR ∪ {+∞} una función
ε-convexa. Sea y ∈ X fijo. Definimos la función ε-conjugada f∗y (ε, ·) : X∗ → IR∪{+∞} por

f∗y (ε, x∗) = sup
x∈X

{〈x, x∗〉 − f(x)− ε‖x− y‖}.

Obviamente, f∗y (ε, ·) es una función convexa y su conjugada de Fenchel se denota por f∗∗y (ε, ·).
En [26] se prueba el siguiente resultado que extiende al teorema de Fenchel-Moreau: Sea
ε ≥ 0 y sea f : X → IR∪{+∞} una función propia, inferiormente semicontinua y ε-convexa.
Entonces para todos x, y ∈ X se tiene

|f(x)− f∗∗y (ε, x)| ≤ ε‖x− y‖. (1.5)

1.44 Problema. ¿Es posible extender de alguna manera los teoremas 1.24 y 1.25 para las
funciones ε-convexas?

Una posible ĺınea de ataque de este problema puede ser el siguiente. Ya que en la demos-
tración estándar del teorema de Fenchel-Moreau (véase [6]) y en la prueba del teorema 1.24
(véase [5]) se usa el teorema de Hahn-Banach en X × IR y para demostrar el teorema exten-
dido de Fenchel-Moreau en [26] se usa un teorema de valor medio probado por Zagrodny [30],
¿es posible usar este último resultado con el fin de probar una versión extendida del teorema
1.24?

Por otra parte, en el teorema 1.25 aparece la expresión

f∗∗(x + tu∗∗)− f(x)
t

− sup{〈u∗∗, x∗〉 : x∗ ∈ ∂f(x)} < ε, (1.6)

donde t ∈ IR, x ∈ X y u∗∗ ∈ SX∗∗ . ¿Cómo influiŕıa el término ε‖x − y‖ que aparece en la
desigualdad (1.5), en un cociente similar al de (1.6) en la posible extensión del teorema 1.25
al caso de las funciones ε-convexas?

Para un estudio más adelantado, se propone relacionar los resultados mencionados en este
proyecto con varias extensiones de la subdiferencial, como la subdiferencial de Clarke ([7]), la
subdiferencial aproximada de Ioffe ([19, 20, 21]) o la subdiferencial de Kruger-Mordukhovich
([24]). Véanse [23] y las referencias alĺı mencionadas para relacionar estos tipos de subdife-
renciales.
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2 Análisis matricial

2.1 Notación, conceptos y resultados básicos

Por Cm×n se denotará el conjunto de las matrices de orden m×n con coeficientes complejos.
Para una matriz dada A ∈ Cm×n, los śımbolos AT, A∗ y A significarán la transpuesta,
conjugada transpuesta y la conjugada de A, respectivamente. Si A es cuadrada, el espectro
de A y el radio espectral se denotarán por σ(A) y ρ(A), respectivamente. Se denotará por
A⊕B la suma directa de las dos matrices cuadradas A y B.

Una matriz cuadrada A se llama normal si AA∗ = A∗A. Estas matrices han sido exten-
sivamente estudiadas y hay muchas caracterizaciones (por ejemplo, véanse [46, 49, 64]). La
más importante, sin duda, es la siguiente:

2.1 Teorema Una matriz A es normal si y sólo si existe una matriz unitaria U y una
matriz diagonal D tales que A = UDU∗.

Una matriz cuadrada A se llama proyector (también idempotente) si A2 = A. La
principal importancia de los proyectores radica en el famoso teorema espectral para matrices
diagonalizables. La matriz A se llama projector ortogonal si A2 = A y A = A∗. Es bien
conocido que los proyectores y sus generalizaciones se usan frecuentemente en diversas áreas
de las matemáticas (véanse, por ejemplo, [44, 55, 61]). Una matriz A se llama k-potente si
Ak = A.

Una caracterización útil de las matrices k-potentes fue dada en [41].

2.2 Teorema. Sea A una matriz cuadrada. Entonces

Ak = I ⇐⇒ A es diagonalizable y σ(A) ⊂ k
√

1,

Ak+1 = A ⇐⇒ A es diagonalizable y σ(A) ⊂ {0} ∪ k
√

1.

Como un corolario, sorprendente a priori, podemos enunciar el siguiente resultado: Sea
A una matriz hermı́tica que cumple Ak+1 = A; si k es par, entonces A3 = A y si k es impar
entonces A2 = I. Lo que simplifica de manera notable el estudio de las matrices k-potentes
hermı́ticas.

Las siguientes condiciones permiten definir diferentes inversas generalizadas para una ma-
triz A ∈ Cn×m:

(a) AGA = A.

(b) GAG = G.

(c) GA = AG (si m = n).
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(d) (AG)∗ = AG.

(e) (GA)∗ = GA.

Las siguientes definiciones son clásicas: Si A ∈ Cn×m, se definen

A{1} = {G ∈ Cm×n : G cumple (a)}, A{1, 2} = {G ∈ Cm×n : G cumple (a) y (b)}

Las matrices en A{1} se llaman {1}-inversas de A y las de A{1, 2} se llaman {1, 2}-
inversas de A . Una matriz que cumple (a), (b) y (c) se llama inversa de grupo de A
(véase [38]). Es conocido que la inversa de grupo existe si y sólo si A y A2 tienen el mismo
rango, y si existe, entonces es única, siendo usual denotarla por A#. La única matriz (que
existe siempre) que cumple (a), (b), (d) y (e) se llama la pseudoinversa de Moore-Penrose
de A y se denota por A+.

Cuando A ∈ Cn×n y Rango(A) = Rango(A∗), la matriz A se llama EP-matriz (o rango-
hermı́tica) y en este caso se tiene A+ = A# (véase [38]). En [51] se probó el siguiente
resultado:

2.3 Teorema. Para una matriz cuadrada A, las siguientes afirmaciones equivalen:

(a) A es EP.

(b) AA+ = A+A.

(c) Existe una matriz unitaria U tal que A = U(K ⊕ 0)U∗ para una matriz invertible K.

Bajo las hipótesis de este teorema, se tiene A+ = U(K−1⊕O)U∗. Obviamente, cualquier
matriz normal es EP por el teorema 2.1. También es obvio que cualquier matriz invertible es
EP.

Una familia finita conmutativa es un conjunto finito de matrices en la que cada par de
la familia counmuta bajo la multiplicación. Un conjunto finito de proyectores {Ai}n

i=1 se dice
disjunto si AiAj = 0 para todos 1 ≤ i, j ≤ n e i 6= j. El siguiente resultado es bien conocido
y muestra ser sorprendentemente útil en la teoŕıa de las ecuaciones matriciales (véase [52]).

2.4 Teorema. Sea F ⊂ Cn×n un conjunto finito de matrices.

(a) Si todas las matrices de F son diagonalizables, entonces F es una familia conmutativa
si y sólo si existe una matriz invertible S ∈ Cn×n tal que S−1AS es diagonal para cada
A ∈ F.

(b) Si todas las matrices de F son normales, entonces F es una familia conmutativa si y
solamente si existe una matriz unitaria U ∈ Cn×n tal que U∗AU es diagonal para cada
A ∈ F.

2.2 Propiedades de matrices heredadas por combinaciones
lineales

Un problema general que ha sido estudiado recientemente es el siguiente: Dadas dos
matrices del mismo tamaño A y B que cumplen las propiedades PA y PB respectivamente
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y si a, b son dos números complejos no nulos, ¿qué deben cumplir las matrices A y B y los
escalares a y b para que la combinación lineal aA + bB cumpla otra determinada propiedad?
Parece ser que el primer problema de este tipo fue planteado en [31], en donde se resolvió el
siguiente problema.

2.5 Problema resuelto. Sean A y B dos proyectores distintos y no nulos. Encuéntrense
los números complejos no nulos a y b y las condiciones que deben verificar A y B para que
aA + bB sea otro proyector.

El siguiente problema (véase [32]) en ser resuelto fue el siguiente:

2.6 Problema resuelto. Sea A un proyector no nulo y B una matriz tripotente no nula
del mismo orden. Encuéntrense los números complejos no nulos a y b y las condiciones que
deben verificar A y B para que aA + bB sea otro proyector.

En [45] fue resuelto de manera incompleta el siguiente problema, que fue resuelto correc-
tamente en [36].

2.7 Problema resuelto. Sean A y B dos proyectores distintos y no nulos del mismo
orden. Encuéntrense los números complejos no nulos a y b y las condiciones que deben
verificar A y B para que aA + bB sea tripotente.

En los tres art́ıculos en donde se resuelven los problemas 2.5, 2.6 y 2.7 se distinguen
claramente las situaciones en las que AB = BA y AB 6= BA. Además, no hab́ıa una
forma general de demostración. ¿La hay? En los problemas 2.5 y 2.6 la técnica consistió en
desarrollar (aA + bB)2 = a2A2 + b2B2 + ab(AB + BA). En el problema 2.7 se desarrolló la
expresión

(aA + bB)3 = a3A3 + a2b(A2B + ABA + BA2) + ab2(AB2 + BAB + B2A) + b3B3.

Esto es demasiado tedioso y claramente imposible de generalizar para estudiar cuándo se
cumple (aA + bB)k+1 = aA + bB. Afortunadamente, el uso del teorema 2.4 facilita el caso
conmutativo. Para aplicar este último teorema se debe aplicar el teorema 2.1.

Podemos citar el siguiente problema (véase [39]) resuelto gracias al teorema 2.4 y a las
caracterizaciones del teorema 2.2:

2.8 Problema resuelto. Sea A un proyector no nulo y B una matriz k+1-potente no nula
tales que AB = BA. Encuéntrense los números complejos no nulos a y b y las condiciones
que deben verificar A y B para que aA + bB sea otro proyector.

Comentamos muy brevemente la resolución, pues ayudará a entender el resto del caṕıtulo.
La idea es trabajar con la expresión aA + bB en su forma más simple posible, es decir, en
forma diagonal. Esto es posible pues A y B son diagonalizables y AB = BA. Por medio de
una diagonalización simultánea, podemos suponer que A = A1⊕A2 y B = B1⊕B2, en donde
A1, A2, B1 y B2 son matrices diagonales y cumplen A2

i = Ai y Bk+1
i = Bi. Como las matrices

Ai son proyectores, por el teorema 2.2 se tiene σ(Ai) ⊂ {0, 1} y por tanto, reordenado los
valores propios de A podemos suponer A = I ⊕ 0. Ahora es fácil estudiar cuándo aA + bB es
un proyector, ya que aA + bB es una matriz diagonal: en efecto basta estudiar expresiones
escalares del tipo aαi + bβi ∈ {0, 1} siendo αi ∈ σ(A) ⊂ {0, 1} y βi ∈ σ(B) ⊂ {0} ∪ k

√
1.
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La misma técnica permitió resolver el siguiente problema planteado en [41]:

2.9 Problema resuelto Sean A y B dos proyectores no nulos y distintos tales que AB =
BA. Encuéntrense los números complejos no nulos a y b y las condiciones que deben verificar
A y B para que aA + bB sea una matriz k + 1-potente.

La diagonalización simultánea permite afirmar que si α1, . . . , αn son los valores propios
de A y que si β1, . . . , βn son los valores propios de B, entonces aαi + bβi ∈ {0} ∪ k

√
1 para

1 ≤ i ≤ n. El estudio de estas ecuaciones es simple, pues como A y B son proyectores,
entonces αi, βi ∈ {0, 1} para 1 ≤ i ≤ n. Aśı pues, el teorema 2.4 permite reducir el problema
2.9 a un problema de sistemas de ecuaciones lineales.

En [50] se introdujo el siguiente concepto: Una matriz cuadrada A se dice que es un
proyector generalizado si A∗ = A2. En [33] se resolvió un problema análogo al problema
2.5, si se substituye “proyector” por “proyector generalizado”; sin embargo, la prueba dada en
[33] es muy computacional. En el caso conmutativo, el uso del teorema 2.4 permite simplificar
la prueba y extender el resultado. Siguiendo a [40], una matriz A se llama k-proyector
generalizado si Ak = A∗. El concepto de proyector hipergeneralizado también fue
introducido por Gross y Trenkler en [50], en donde se muestran varias propiedades de este
tipo de matrices. Un proyector hipergeneralizado K es una matriz cuadrada que cumple
K2 = K+. En [40] se resuelve el siguiente problema:

2.10 Problema resuelto. Sean A y B dos k + 1-proyectores generalizados tales que
AB = BA. Encuéntrense los números complejos no nulos a y b y las condiciones que deben
verificar A y B para que aA + bB sea un k + 1-proyector generalizado.

La diferencia fundamental con lo ya comentado, es que hay que usar el teorema 2.4; pero
para matrices normales (es trivial ver que si Ak = A∗, entonces A es normal). De hecho, en
[40] se prueba que una matriz cuadrada A cumple Ak = A∗ si y sólamente si A es normal y
σ(A) ⊂ {0} ∪ k+1

√
1.

La dificultad de esta serie de problemas se hace patente si observamos que en [35] sólo se
resolvió el problema siguiente:

2.11 Problema resuelto. Sean A y B dos proyectores hipergeneralizados no nulos tales
que existen dos escalares α y β de modo que

AB = BA = αA2 + βB2. (2.1)

Encuéntrense los números complejos no nulos a y b y las condiciones sobre A y B tales que
aA + bB es un proyector hipergeneralizado.

¿Y qué ocurre para el caso no conmutativo? En [41] se resolvió el siguiente problema

2.12 Problema resuelto. Sean A y B dos proyectores tales que AB 6= BA. Encuéntrense
los números complejos no nulos a y b y las condiciones que deben verificar A y B para que
aA + bB sea una matriz k + 1-potente.

Comentemos brevemente el formalismo de la solución. Las matrices A, B y aA + bB son
diagonalizables (pero no simultáneamente, pues no conmutan). Para simplificar la ecuación
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C = aA+bB, podemos diagonalizar o bien A, o bien B, o bien C. ¿Cuál interesa diagonalizar?
Desde luego, la más complicada, que es C (pues las otras dos matrices cumplen una ecuación
simple, a saber, X2 = X). Ahora se tiene que aA+ bB = S(λ1I ⊕ · · ·⊕λmI)S−1 para alguna
matriz invertible S. Por tanto, el problema se reduce a encontrar los escalares a, b ∈ C y las
condiciones sobre A,B tales que

a(S−1AS) + b(S−1BS) = λ1I ⊕ · · · ⊕ λmI,

siendo λ1, . . . , λm ∈ {0}∪ k
√

1. Obsérvese que de esta manera se evita desarrollar la expresión
(aA + bB)k+1, siendo este cálculo extremadamente engorroso puesto puesto que A y B no
conmutan. Desde luego, todo lo “interesante” que le ocurre a A y a B, le ocurre a S−1AS y
a S−1BS (por ejemplo, si A es un proyector, entonces S−1AS lo es, o si AB 6= BA, entonces
(S−1AS)(S−1BS) 6= (S−1BS)(S−1AS), etc...). Partiendo las matrices S−1AS y S−1BS por
bloques como λ1I ⊕ · · · ⊕ λmI y tras bastantes cálculos y lemas previos se llega a la solución
del problema 2.12.

Desde luego, el significado de la palabra “interesante” depende del enunciado de cada
problema. Las condiciones que aparecen en el problema 2.12 son invariantes por la transfor-
mación X 7→ SXS−1. Los problemas relativos a las matrices normales, matrices hermı́ticas,
perpendicularidad, pseudoinversas de Moore-Penrose, ... son invariantes por una transforma-
ción X 7→ UXU∗, donde U es unitaria, y por tanto habŕıa que usar el teorema 2.4, pero en
la versión de matrices normales.

Se demuestra aśı que la teoŕıa espectral juega un papel importante en la teoŕıa de las
ecuaciones matriciales relacionadas con la conmutatividad1. Asimismo, la técnica de las
matrices por bloques se torna una herramienta indispensable para tratar estas cuestiones.
Uno de los lemas necesarios para resolver el problema 2.12 es el siguiente:

2.13 Lema. Si A y B son dos proyectores del mismo orden y si a, b son dos números
complejos tales que AB 6= BA y aA + bB es k + 1-potente, entonces existen α, β ∈ {0} ∪ k

√
1

tales que a + b = α + β y α 6= β.

Obsérvese que si se particulariza este lema para el caso no conmutativo del problema 2.5 se
obtiene que a+ b = 1. Comentemos muy brevemente la demostración del lema 2.13, sólo para
k = 1 para comprender el uso de las matrices por bloques. Si A,B, aA + bB son proyectores
entonces

(a2 − a)A + (b2 − b)B + ab(AB + BA) = 0. (2.2)

Como existe una matriz S invertible de modo que A = S(I ⊕ 0)S−1, de (2.2) se sigue

(a2 − a)
(

I 0
0 0

)
+ (b2 − b)

(
X Y
Z T

)
+ ab

(
2X Y
Z 0

)
= 0. (2.3)

Obsérvese que como AB 6= BA entonces A 6= I y A 6= 0, por lo que en (2.3) están todos los
bloques. Además por tener AB 6= BA entonces Y 6= 0 ó Z 6= 0. Fijándonos en (2.3) se tiene
(b2 − b + ab)Y = 0 y (b2 − b + ab)Z = 0; de donde se deduce que a + b = 1.

En [34] se resolvió el siguiente problema que generaliza al problema 2.6:

1Recuérdese el teorema 2.4 o el siguiente resultado clásico: Si A y B son dos matrices cuadradas del mismo
orden, entonces existe X 6= 0 tal que AX = XB si y sólo si σ(A) ∩ σ(B) 6= ∅.
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2.14 Problema resuelto. Sean A, B y C tres proyectores distintos y no nulos tales que
AB = BA = 0. Encuéntrense los números complejos no nulos a, b y las condiciones sobre A,
B y C tales que aA + bB + cC sea un proyector.

La generalización es clara, puesto que bajo las condiciones y la notación del problema 2.14
y si a = 1, b = −1, entonces la matriz aA + bB es claramente tripotente.

En [37] fue resuelto el siguiente problema que generaliza a los problemas planteados en
[34, 59]

2.15 Problema resuelto. Sean A,B,C tres proyectores no nulos tales que alguna de las
tres caracteŕısticas siguientes se cumple:

(a) AB = BA, AC = CA, BC = CB.

(b) AB = BA, AC = CA, BC 6= CB.

(c) AB = BA, AC 6= CA, BC 6= CB.

Encuéntrense todos los números complejos no nulos a, b, c y las condiciones sobre A,B, C
tales que aA + bB + cC sea un proyectos.

2.3 Aspectos topológicos de la teoŕıa de matrices

La introducción de métodos anaĺıticos o topológicos en la teoŕıa de matrices ha sido muy
provechosa y estudiada, en particular cuando se estudian problemas perturbados (véase, por
ejemplo, [48, 63]). Pero estos métodos no sólo han sido útiles en estimaciones cuantitativas;
sino también en la teoŕıa general. Un resultado clásico es el siguiente (véase, por ejemplo, [52]):
el conjunto de las matrices diagonalizables de orden n es denso en Cn×n. Este resultado de
tipo topológico, permite dar una demostración muy breve del todav́ıa más clásico teorema de
Cayley-Hamilton. O también, podemos afirmar que dada una sucesión de matrices unitarias,
existe una subsucesión suya convergente (puesto que el conjunto de matrices unitarias de
orden n es compacto en Cn×n). Otro resultado clásico, el teorema de Bauer-Fike, (véase, por
ejemplo, [48, 52]) es bastante útil cuando se estudian perturbaciones de valores propios:

2.16 Teorema. Sea A ∈ Cn×n diagonalizable con A = SDS−1 y D = diag(λ1, . . . , λn).
Sea E ∈ Cn×n. Si λ̂ es un valor propio de A + E, entonces hay algún valor propio λi de A
para el cual |λ̂ − λi| ≤ k∞(S)‖E‖∞, donde k∞ denota el número de condición respecto a la
norma matricial ‖ · ‖∞.

En [41] se estudiaron las propiedades topológicas de las matrices k + 1-potentes. Deno-
temos Gn(k) = {A ∈ Cn×n : Ak+1 = A}. El siguiente resultado extiende algunos resultados
conocidos sobre matrices tripotentes y cuadripotentes aparecidos en [50].

2.17 Teorema. Sean r, s, k ∈ IN. Entonces

(a) r|k si y sólo si Gn(r) ⊂ Gn(k).

(b) Gn(r) ∩ Gn(s) = Gn(mcd(r, s)).
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(c) Si r|k, entonces Gn(r) es cerrado y abierto en Gn(k).

Los dos primeros apartados son fáciles de desmostrar usando el teorema 2.2. Para hacernos
una idea de los métodos topológicos, comentemos brevemente la idea intuitiva de la prueba
del tercer apartado. Sea A ∈ Gn(r). Si se perturba ligeramente la matriz A, gracias al
teorema 2.16, los valores propios perturbados vaŕıan muy poco. Pero si forzamos que las
perturbaciones de A estén en Gn(k), los valores propios han de estar en {0} ∪ k

√
1. Como

además σ(A) ⊂ {0} ∪ r
√

1, la única posibilidad admisible es que los valores propios de las
matrices perturbaciones de A estén en {0} ∪ r

√
1; en otras palabras, estas perturbaciones han

de estar en Gn(r).
Para entender la utilidad de este tipo de resultados, observemos que si queremos describir

el conjunto S(k) = {(a, b) ∈ C2 : (aA + bB)k+1 = aA + bB} para dos matrices dadas A y B
(no necesariamente proyectores), se tiene que si r|k, entonces S(r) es unión de componentes
conexas de S(k). De hecho, basta definir f : S(k) → Gn(k) dada por f(z, w) = zA + wB,
entonces, ya que Gn(r) es un cerrado y abierto de Gn(k), la continuidad de f implica que
S(r) = f−1(Gn(r)) es cerrado y abierto en S(k).

Por otra parte, dada una matriz A ∈ Cn×n, la sucesión (Ak)∞k=1 ha sido usada muchas
veces en las matemáticas aplicadas, por ejemplo, en las cadenas lineales de Márkov o la serie
de Neuman. Los siguientes hechos útiles son bien conocidos (véase, entre otros, [57, Cap. 7]):

• ĺımk→∞Ak = 0 si y sólo si ρ(A) < 1.

• ĺımk→∞Ak existe si y sólo si ρ(A) < 1 o si no, ρ(A) = 1, siendo λ = 1 el único valor
propio en la circunferencia unidad y la multiplicidad algebraica de λ = 1 coincide con
su multiplicidad geométrica.

Podemos rebajar las condiciones Ak = I y Ak+1 = A del modo siguiente:

Para cada ε > 0 existe k ∈ IN tal que ‖Ak − I‖ < ε. (2.4)

Para cada ε > 0 existe k ∈ IN tal que ‖Ak+1 −A‖ < ε. (2.5)

Ya que en un espacio normado de dimensión finita, todas las normas son equivalentes,
se tiene que si A satisface las propiedades (2.4) o (2.5) para una cierta norma, entonces A
satisface (2.4) o (2.5), respectivamente, para cualquier norma. En términos topológicos, la
propiedad (2.4) equivale a decir que I ∈ cl({Ak : k ≥ 1}), donde cl(X) es la clausura de X.

El conjunto de matrices cumpliendo (2.4) es estrictamente más amplio que el conjunto
de matrices cumpliendo Ak = I. En efecto, sea φ ∈ IR tal que φ/2π /∈ Q, es fácil ver que
X = {ei φ, e2i φ, . . . } no es un subconjunto finito de C, ahora, el clásico teorema de Kronecker2

asegura que X es denso en {z ∈ C : |z| = 1}, luego 1 ∈ cl(X), por tanto I ∈ cl({Ak : k ≥ 1}),
donde A = (ei φ) ∈ C1×1. Además, es trivial ver que no existe k ∈ IN de modo que Ak = I.

El teorema 2.18 (véase [42]) caracteriza las matrices cumpliendo las propiedades (2.4) y
(2.5) por medio de la teoŕıa espectral. La idea intuitiva es la siguiente: Si una matriz A
cumple Ak = I, se tiene que A es diagonalizable y su espectro está contenido en k

√
1. A

medida que k crece, el conjunto k
√

1 va “llenando la circunferencia unidad de C” hasta que
“cuando k →∞”, se tiene que de una forma absolutamente informal

ĺım
k→∞

k
√

1 = {z ∈ C : |z| = 1}.
2Si φ ∈ IR, entonces {ei φ, e2i φ, · · · } es o bien finito o bien denso en {z ∈ C : |z| = 1}.
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2.18 Teorema. Sea A ∈ Cn×n. Entonces A satisface la propiedad (2.4) si y sólo si A
es diagonalizable y todo valor propio de A tiene módulo 1. Además, la matriz A cumple la
propiedad (2.5) si y sólo si A es diagonalizable y todo valor propio de A tiene módulo 1 o
bien es nulo.

Puede probarse fácilmente de la definición que si una matriz A ∈ Cn×n cumple (2.4)
entonces A es invertible. De hecho, si A no fuera invertible, entonces {A, A2, . . . } ⊂ S, where
S denota el subconjunto de Cn×n de las matrices no invertibles. Nótese que S es la imagen
inversa del cerrado {0} bajo la función continua det, por lo que el conjunto S es cerrado.
Luego si A cumple (2.4) entonces I ∈ cl(A,A2, . . . ) ⊂ cl(S) = S, que es claramente una
contradicción. Pero no es evidente que A−1 también cumple (2.4). El teorema 2.18 permite
probar de forma cómoda el siguiente resultado (véase [42]):

2.19 Corolario. Si A ∈ Cn×n cumple (2.4) entonces A es invertible y A−1 cumple (2.4).

Asimismo, en [42] se prueban varios resultados relativos a las matrices que cumplen las
propiedades (2.4) y (2.5) que muestran lo provechoso que es manejar simultáneamente con-
ceptos topológicos y algebraicos.

2.4 Problemas abiertos

El problema resuelto 2.15 induce al siguiente problema:

2.20 Problema. Sean A,B, C tres proyectores no nulos tales que AB 6= BA, AC 6= CA,
BC 6= CB. Encuéntrense todos los números complejos no nulos a, b, c y las condiciones sobre
A,B, C tales que aA + bB + cC sea un proyector.

Por otra parte, en vista de los resultados obtenidos, parece muy dif́ıcil la generalización de
los problemas 2.5 y 2.15 a un número arbitrario de proyectores A1, . . . , Am. Se puede suponer
sin ninguna pérdida de generalidad que los proyectores son linealmente independientes, ya
que si no, en la combinación lineal a1A1 + · · · + amAm, donde ai ∈ C, se puede disminuir el
número de sumandos. Además si la familia {A1, . . . , Am} fuese conmutativa, se puede aplicar
el teorema 2.4.

El caso no conmutativo del problema 2.8 está aún por resolver:

2.21 Problema. Sea A un proyector no nulo y B una matriz k + 1-potente tales que
AB 6= BA. Encuéntrense los números complejos no nulos a y b y las condiciones que deben
verificar A y B para que aA + bB sea otro proyector.

Con el fin de resolver este problema, podemos asegurar que existe una matriz invertible
S tal que S−1BS es diagonal, digamos D = diag(λ1, . . . , λn), en donde λk+1

i = λi. Ahora po-
demos simplificar este problema substituyendo B por D y A por S−1AS. Si particularizamos
para el caso de las matrices de orden 2 y hacemos

A =
(

a11 a12

a21 a22

)
, B =

(
λ 0
0 µ

)
,
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en donde λ 6= µ (si fueran iguales, entonces AB = BA). Como aA + bB y A son proyectores
se tiene

a2A + b2B2 + ab(AB + BA) = aA + bB,

de donde se puede obtener
a + b(λ + µ) = 1. (2.6)

Podemos observar que esta relación es muy parecida al resultado del lema 2.13.

2.22 Problema. ¿Se puede generalizar el argumento que demuestra (2.6) para matrices de
orden n? ¿Puede servir la relación (2.6) para resolver el problema 2.21, al igual que el lema
2.13 sirvió para resolver el problema 2.12?

Para la deducción de (2.6) no se supone que Bk+1 = B, de hecho, por una transformación
de similaridad, sólo se supone que B es diagonalizable.

2.23 Problema. Sea A un proyector y B una matriz diagonalizable del mismo orden que
A. Encuéntrense los números complejos a y b y las condiciones sobre A y B tales que aA+bB
sea un proyector.

Es claro que si AB = BA, entonces se puede aplicar el teorema 2.4, puesto que como A
y aA + bB son diagonalizables y conmutan entre ellas, entonces B es diagonalizable.

Obsérvese que el problema 2.23 generaliza de golpe los problemas 2.5, 2.6, 2.8 y 2.21.
Asimismo tiene relación con los problemas 2.14 y 2.15, puesto que, bajo las condiciones de
estos dos problemas, se tiene que aA + bB es diagonalizable (puesto que es una combinación
lineal de dos matrices diagonalizables que conmutan).

El último paso es eliminar la hipótesis de la diagonalizabilidad sobre B. De forma más
precisa:

2.24 Problema. Sea A un proyector y B una matriz del mismo orden que A. Encuéntrense
los números complejos a y b y las condiciones sobre A y B tales que aA+bB sea un proyector.

A nuestro juicio, hay dos maneras posibles de atacar este último problema.

(i) Si en los problemas previos se hace B = SDS−1, siendo D diagonal, ahora hay que
hacer B = SJS−1, en donde J es la forma canónica de Jordan de B.

(ii) Como el conjunto de matrices diagonalizables de orden n es denso en Cn×n, dada la
ecuación aA + bB = (aA + bB)2, se plantea la ecuación perturbada aεAε + bεBε =
(aεAε + bεBε)2 para Bε diagonalizable y ‖Bε−B‖ < ε. ¿Es posible que ĺımε→0(aε, bε) =
(a, b)?

Podemos definir Φ : Cn×n × Cn×n → P(C2) dada por

Φ(X,Y ) = {(x, y) ∈ C2 : (xX + yY )2 = xX + yY }.

Y puesto que en los problemas previos se copnsidera la combinación lineal aA+ bB, en donde
A es un proyector, podemos restringir la aplicación Φ a un conjunto menor. Denotemos por
Cn×n

P el conjunto de los proyectores de orden n.
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2.25 Problema. Estúdiense las propiedades topológicas de Φ. ¿Qué ocurre si se restringe
Φ a Cn×n

P × Cn×n?

En vista de la ecuación (2.6) podemos preguntarnos si se cumple la siguiente conjuetura:

2.26 Conjetura. Sea A un proyector y B una matriz del mismo orden que A tales que
AB 6= BA. Si aA + bB es un proyector, entonces existen dos valores propios de B, sean λ y
µ, tales que

1 = a + b(λ + µ). (2.7)

La idea intuitiva de este resultado es la siguiente. Si la ecuación (2.6) fuese cierta pa-
ra matrices diagonalizables de orden n, por la continuidad de los valores propios frente a
perturbaciones de la matriz, entonces la Conjetura 2.26 tiene toda la apariencia de ser ver-
dadera. Aunque no podremos afirmar que λ 6= µ, puesto que si (λ)n≥1 y (µ)n≥1 son dos
sucesiones convergentes tales que λn 6= µn para todo n ∈ IN, en general no es cierto que
ĺımn→∞ λn 6= ĺımn→∞ µn.

Desde luego, el problema 2.24 es fácil si A y B conmutan, ya que, como A y aA +
bB son diagonalizables, por el teorema 2.4, la familia {A,B, aA + bB} es simultáneamente
diagonalizable.

Supóngase ahora que la conjetura 2.26 ha sido resuelta en sentido afirmativo. Si llamamos
C = aA + bB, entonces B = αA + γC, en donde α = −a/b, γ = 1/b y las matrices A y C son
proyectores tales que AC 6= CA (puesto que AB 6= BA). Substituyendo en (2.7) obtenemos
que existen dos valores propios de αA + γC, digamos λ y µ, tales que α + γ = λ + µ.

Este tipo de resultados es importante, puesto que en ocasiones es deseable encontrar los
valores propios de combinaciones lineales de dos matrices dadas. Por ejemplo, recientemente
se ha estudiado mucho la matriz de Google (el famoso buscador de internet) por su creciente
utilidad. Esta matriz se define como una combinación convexa de una matriz estocástica S y
una matriz de rango 1. Más concretamente

G = (1− α)1vT + αS,

en donde α ∈ [0, 1[, el vector 1 es la columna formada por unos, y el vector fila v tiene sus
componentes no negativas y ‖v‖1 = 1 (véase, por ejemplo, [62]). Observemos que (1vT)2 =
1(vT1)vT = 1vT, puesto que vT1 = ‖v‖1 = 1. En otras palabras, la matriz 1vT es un
proyector.

Para finalizar este tipo de problemas, es evidente que podemos intentar eliminar en el
problema 2.11 la condición (2.1) planteando el siguiente problema:

2.27 Problema. Sean A y B dos proyectores hipergeneralizados no nulos tales que AB =
BA. Encuéntrense los números complejos no nulos a y b y las condiciones sobre A y B tales
que aA + bB es un proyector hipergeneralizado.

Supongamos que X es un proyector hipergeneralizado. Como X2 = X+, entonces XX+ =
X+X, y por tanto X es una matriz EP. Por el teorema 2.3, existe una matriz unitaria U y
una matriz invertible K de modo que X = U(K ⊕ 0)U∗. Usando ahora que

X2 = U(K2 ⊕ 0)U∗, X+ = U(K−1 ⊕ 0)U∗, X2 = X+,
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se obtiene K3 = I. Luego existe una matriz invertible S tal que K = SDS−1, en donde D es
una matriz diagonal cuyas entradas están en 3

√
1. Podemos factorizar X como sigue:

X = U

(
K 0
0 0

)
U∗ = U

(
SDS−1 0

0 0

)
U∗ = U

(
S 0
0 I

)(
D 0
0 0

)(
S−1 0
0 I

)
U∗.

Si llamamos

L = U

(
S 0
0 I

)
,

tenemos X = L(D ⊕ 0)L−1, en donde D es una diagonal cuyas entradas están en 3
√

1.
Sin embargo, esta factorización no caracteriza a los proyectores hipergeneralizados. Un

ejemplo simple es el siguiente: Sean las matrices L,X ∈ C2×2 dadas por

L =
(

1 1
1 0

)
, X = L

(
1 0
0 0

)
L−1.

Fácilmente se obtiene que

X2 =
(

0 1
0 1

)
, X+ =

(
0 0

1/2 1/2

)
.

Vemos que ahora, no podemos usar la diagonalización simultánea para resolver el problema
2.27. Si queremos resolver este problema por medio de la diagonalización simultánea, podemos
intentar resolver antes el siguiente problema.

2.28 Problema. Sean A1 y A2 dos EP-matrices. Sabemos que existen dos matrices unita-
rias Ui y dos matrices invertibles Ki tales que Ai = Ui(Ki⊕0)U∗

i para i = 1, 2. Obsérvese que
las matrices K1 y K2 en general no tienen el mismo tamaño. ¿Qué condición sobre U1, U2,K1

y K2 es necesaria y suficiente para que A1A2 = A2A1?

Dos problemas parecidos a este último fueron estudiados en [53, Cap. 3] y en [56], en
donde se estudiaron la descomposición en valores singulares simultánea y la descomposición
polar simultánea, respectivamente.

Por último, debido a algunos art́ıculos recientes, podemos plantearnos algunos problemas
más.

En [43], se estudió la ecuación matricial XA−AX = Xp, para un natural p dado, aunque
en este art́ıculo se menciona que a partir de la teoŕıa de las álgebras de Lie, surgen las
ecuaciones matrices

XiAj −AjXi = XjXi (2.8)

para 1 ≤ i, j ≤ n, en particular se obtiene la ecuación XA − AX = X2. Sin embargo, las
ecuaciones (2.8) se dejan sin estudiar. Aśı tenemos el siguiente problema:

2.29 Problema. Sean A1, . . . , An matrices cuadradas. Hállense las matrices X1, . . . , Xn

tales que se cumple (2.8).

También, en el esṕıritu de [42], se puede plantear el siguiente problema

2.30 Problema. Sea A una matriz cuadrada. Hállese la matriz X tal que alguna de las
dos condiciones de debajo se cumple:
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(i) ‖XA−XA−Xp‖ < ε para un p ∈ IN y ε > 0 dados.

(ii) Para cada ε > 0, existe p ∈ IN de modo que ‖XA−AX −Xp‖ < ε.

Otro art́ıculo que nos llamó la atención fue [47]. En este art́ıculo, se establece una fórmula
del tipo de Sherman-Morrison para (A + B)+. En este art́ıculo se estableció el siguiente
resultado:

2.31 Teorema. Sean A y B dos matrices cuadradas tales que rango(A) + rango(B) =
rango(A + B). Entonces

(A + B)+ = (I − S)A+(I − T ) + SB+T, (2.9)

donde
S = (PR(B∗)PR(A∗)⊥)+, T = (PR(A∗)⊥PR(B∗))

+. (2.10)

Para un subsepacio Y, se denota PY la proyección ortogonal sobre Y. Asimismo, en [47], se
demuestra que la hipótesis rango(A) + rango(B) = rango(A + B) es esencial para el teorema
2.31. Sin embargo, en el art́ıculo no se menciona las otras pseudoinversas. En particular se
puede plantear el siguiente problema:

2.32 Problema. ¿Hay alguna fórmula parecida a (2.9) cuando se intenta desarrollar la
expresión (A + B)#?

A nuestro juicio, este problema tiene dos dificultades:

(i) Es dif́ıcil usar métodos topológicos, puesto que la aplicación X 7→ X# no es continua
(Tómese, por ejemplo, la sucesión xn = 1/n. Se tiene que (ĺımn→∞ xn)# = 0, y sin
embargo, ĺımn→∞(x#

n ) no existe).

(ii) Es improbable que en el análogo a (2.10) aparezcan las proyecciones ortogonales, puesto
que la pseudoinversa de Moore-Penrose está intimamente ligada al cálculo de aproxima-
ciones mediante proyecciones ortogonales.

Respecto a la continuidad de la pseudoinversa de Moore-Penrose, podemos citar el si-
guiente resultado clásico.

2.33 Teorema. Si A ∈ Cm×n, (Ak)∞k=1 ∈ Cm×n y ĺımk→∞Ak = A, entonces las siguientes
afirmaciones equivalen:

a) ĺımk→∞A+
k = A+.

b) Existe k0 ∈ IN tal que el rango de Ak coincide con el rango de A para todo k ≥ k0.

c) sup{‖A+
k ‖ : k ∈ IN} < ∞.

La equivalencia entre (a) y (b) ya fue probada por el propio Penrose en [58]. La equi-
valencia entre (a) y (c) fue probada en [54] en el ambiente más general del conjunto de los
operadores continuos en un espacio de Hilbert. En [60] se proporciona un resumen de la
continuidad de las pseudoinversas de Moore-Penrose y de Drazin.

El siguiente problema está, según nuestro conocimiento de la teoŕıa actual, por resolver.
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2.34 Problema. ¿Existe una caracterización similar al teorema 2.33 para la continuidad
de la inversa de grupo?

En este tipo de problemas es obligatorio observar que si X ∈ Cn×m en donde n 6= m,
entonces X+ ∈ Cm×n, asimismo, merece la pena darse cuenta que Cn×m y Cm×n son distintos
conjuntos. Por tanto, aunque se tenga X ∈ Cn×n, se debe considerar que X+ no está en el
mismo conjunto que X. Esta situación es análoga a cuando se considera el dual topológico de
IRn. Se cumple que (IRn)∗ y IRn son algebraicamente isomorfos; pero hoy en d́ıa nadie escribe
IRn ≡ (IRn)∗. Sin embargo, śı se escribe IRn ≡ (IRn)∗∗; esta situación tiene su contrapartida
matricial: para una matriz dada X se cumple X = (X+)+.

La situación descrita en el párrafo anterior no ocurre con la inversa de grupo puesto
que una de las condiciones es XX# = X#X. Esto implica que tanto X como X# deben
pertenecer al mismo conjunto.
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3 Diseño geométrico asistido por ordenador

3.1 Introducción

La representación de curvas más usada en el diseño por ordenador fue descubierta de
manera independiente por Bézier y por de Casteljau (quienes trabajaron para las empresas
automoviĺısticas Rénault y Citröen respectivamente). En 1959 de Casteljau redactó un infor-
me secreto en donde apareció un algoritmo con el fin de generar por ordenador curvas sencillas
e intuitivas de manipular. Bézier en el principio de la década de los 60 derivó de forma di-
ferente el mismo tipo de curvas. Los trabajos de Bézier y de Casteljau estaban orientados a
la industria automoviĺıstica. Ahora estas curvas (en su versión plana) son la base de muchos
programas informáticos de diseño gráfico (como Adobe Illustrator o Corel Draw) y de varios
tipos de fuentes de letras (como PostScript o TrueType).

Por Ek se denotará el espacio af́ın eucĺıdeo k-dimensional, siendo k = 2 o k = 3 los valores
usuales en el diseño asistido por ordenador. Fijado un sistema de referencia af́ın en Ek, un
punto p ∈ Ek puede identificarse de manera uńıvoca por un vector de IRk (las coordenadas de
p en este sistema de referencia); pero es conveniente diferenciar el espacio af́ın eucĺıdeo Ek y
el espacio vectorial eucĺıdeo IRk. De una manera informal: los elementos de Ek responden a la
pregunta ¿dónde?, mientras que los elementos de IRk responden a la pregunta ¿hacia dónde?
(véase [71] para una mayor información). Recuérdense las siguientes operaciones válidas para
puntos y vectores:

• Si p ∈ Ek y v ∈ IRk, entonces p + v ∈ Ek.

• Si p,q ∈ Ek, entonces p− q ∈ IRk.

• Si p1, . . . ,pn ∈ Ek y λ1, . . . , λn ∈ IR con
∑n

i=1 λi = 1, entonces
∑n

i=1 λipi ∈ Ek.

3.2 El agoritmo de de Casteljau y las curvas de Bézier

El siguiente algoritmo ideado por de Casteljau permite dibujar una curva a partir de n+1
puntos (véase [70] para un estudio más profundo).

3.1 Algoritmo de de Casteljau. Dados los puntos b0,b1, . . . ,bn ∈ Ek y t ∈ [0, 1].
Sean b0

i (t) = bi para i = 0, 1, . . . , n.
Supongamos que los puntos bk

i (t) han sido construidos para k = 0, . . . , j e i = 0, . . . , n−k.
Ahora, para cada i = 0, . . . , n− j − 1:

Sean
bj+1

i (t) = (1− t)bj
i (t) + tbj

i+1(t) (3.1)
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3. Diseño geométrico asistido por ordenador

para j = 0, . . . , n− 1.
El punto bn

0 (t) es el punto con parámetro t en la curva B[b0, . . . ,bn] : [0, 1] → Ek.

Los puntos b0, . . . ,bn se llaman puntos de control y la curva final se llama curva de
Bézier asociada a los puntos b0, . . . ,bn. Véase la parte izquierda de la figura 3.1 en la que
se ha aplicado el algoritmo de de Casteljau con tres puntos iniciales. A medida que t vaŕıa
entre 0 y 1, el punto b2

0(t) describe una curva, como se puede ver en la parte derecha de la
figura 3.1.
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Figura 3.1: El algoritmo de de Casteljau.

En la figura 3.2 se ha dibujado una curva creada por el algoritmo de de Casteljau con
cuatro puntos iniciales.
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Figura 3.2: Una cúbica de Bézier.

Las curvas de Bézier se calculan de forma recursiva mediante el algoritmo de de Casteljau;
sin embargo es conveniente tener una forma expĺıcita para estudiar las propiedades de estas
curvas. Esta forma no recursiva fue descubierta por Bézier independientemente.

3.2 Teorema. Sean b0, . . . ,bn ∈ Ek y t ∈ [0, 1]. Se tiene

B[b0, . . . ,bn](t) =
n∑

i=0

Bn
i (t)bi, (3.2)

en donde Bn
i (t) =

(
n
i

)
ti(1− t)n−i para 0 ≤ i ≤ n son los polinomios de Bernstein1.

1Estos polinomios fueron introducidos por Bernstein (1880-1968) en 1913 al demostrar el Teorema de apro-
ximación de Weierstrass.
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3.2. El agoritmo de de Casteljau y las curvas de Bézier

Una propiedad importante de los polinomios de Bernstein es
∑n

i=0 Bn
i (t) = 1, pues-

to que 1 = (t + (1 − t))n. Esta propiedad implica que en la expresión (3.2) se tiene que
B[b0, . . . ,bn](t) ∈ Ek para todo t debido a las operaciones válidas entre puntos y vectores
vistas en la introducción.

Las curvas de Bézier son importantes desde el punto de vista del diseño por ordenador
por las siguientes razones:

Invarianza af́ın. Las aplicaciones afines juegan un papel importante en el diseño de objetos,
pues a menudo, éstos deben ser trasladados, girados, escalados, ... Supóngase que
se ha dibujado la curva de Bézier B[b0, . . . ,bn] y a continuación se ha de dibujar la
transformada de esta curva mediante una aplicación af́ın T : E2 → E2; es decir, se tiene
que dibujar la curva T (B[b0, . . . ,bn]). La invarianza af́ın permite resolver este problema
de dos modos:

T (B[b0, . . . ,bn]) = B[T (b0), . . . , T (bn)].

La propiedad de la envoltura convexa. La curva de Bézier siempre está contenida en el
poĺıgono cuyos vértices son los puntos de control (como se ve en las figuras 3.1 y 3.2).

Interpolación inicial y final. La curva de Bézier pasa por el primer y último punto de control.

Pseudocontrol local. ¿Qué se tiene que hacer para modificar una curva de Bézier? ¿Qué
ocurre si se mueve un punto de control? Sean las curvas

α(t) = B[p0, . . . ,pk−1,p,pk+1, . . . ,pn](t), β(t) = B[p0, . . . ,pk−1,q,pk+1, . . . ,pn](t).

Es muy fácil probar que α(t)− β(t) = Bn
k (t)(p− q).

Vectores tangentes. En el diseño gráfico es importante calcular tangentes a las curvas de
Bézier. Se observa en la figura 3.1 que el segmento que une b1

0(t) con b1
1(t) es tangente

a la parábola en B[b0,b1,b2](t). Algo similar ocurre para cúbicas (véase la figura 3.2).
Por esta razón, el algoritmo de de Casteljau calcula la tangente sin coste adicional.

A continuación se muestran algunas desventajas de las curvas de Bézier y cómo han sido
resueltas.

• Si una curva tiene un trozo recto, por el teorema fundamental del álgebra, toda la curva
debe ser recta. Por tanto, es imposible diseñar una curva que contenga partes rectas y
no rectas. La solución es sencilla: diseñar por separado trozos de curvas que se unen.

• Si se desea generar curvas complicadas, el grado del polinomio debe ser elevado y por
tanto los cálculos se ralentizan. La solución es la misma que la del punto previo: diseñar
curvas de grado bajo que se ensamblan de forma adecuada.

• Es imposible usar curvas de Bézier para dibujar circunferencias o hipérbolas (véase [72]).
Hay dos posibles soluciones: una es aproximar un trozo de circunferencia mediante una
cúbica y la otra solución es usar las curvas racionales de Bézier.

• El algoritmo de de Casteljau es af́ınmente invariante; pero no es proyectivamente inva-
riante. La solución es usar las curvas racionales de Bézier.
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3. Diseño geométrico asistido por ordenador

3.3 Curvas racionales de Bézier

3.3 Definición. Una curva racional de Bézier con puntos de control b0, . . . ,bn ∈ Ek

y pesos w0, . . . , wn ∈ IR está dada por

r(t) =
∑n

i=0 wiB
n
i (t)∑n

i=0 wiBn
i (t)

bi, t ∈ [0, 1]. (3.3)

Es decir, la curva r(t) es la projección central de la curva de Bézier en Ek+1 con puntos de
control (w0b0, w0), . . . , (wnbn, wn). Véase [69, 70, 72] para un estudio más profundo.

En [65] se presentó una construcción geométrica para derivar esta clase de curvas usando
conceptos únicamente de la geometŕıa proyectiva. Esta construcción extiende al algoritmo de
de Casteljau

Ahora, en aras de una mayor legibilidad, se establecerán las ideas básicas de la geometŕıa
proyectiva plana y la notación usada (se pueden consultar [67, 68, 73] para estudiar las
propiedades del plano proyectivo real y sus usos en los gráficos por ordenador). En IR3 \ {0}
se establece la siguiente relación de equivalencia:

v ∼ w ⇐⇒ ∃λ ∈ IR \ {0} : v = λw.

El plano proyectivo real, denotado por IP2, es el conjunto cociente IR3 \ {0}/ ∼. Los
elementos de IP2 se llaman puntos proyectivos. La proyección canónica de IR3 \ {0} sobre
IP2 se denotará por π. Nótese que π(v1) = π(v2)) si y sólo si existe λ ∈ IR \ {0} tal que
v1 = λv2.

Una recta proyectiva en IP2 es un plano en IR3 que pasa por el origen. El conjunto de
todas las rectas proyectivas será denotado por Λ(IP2). Se define π∗ : IR3 \ {0} → Λ(IP2) como
sigue: π∗(w) es la recta proyectiva en IP2 de ecuación wTx = 0. Nótese que π∗(w1) = π∗(w2)
si y sólo si existe λ ∈ IR \ {0} tal que w1 = λw2. Se dice que el punto proyectivo π(v) está
en la recta π∗(w) si v está en el plano π∗(w), o escrito de otro modo, wTv = 0 y se denota
π(v) ∈ π∗(w). También se dice que la recta π∗(w) pasa por π(v).

Si P y Q son dos puntos proyectivos distintos, existe una única recta proyectiva pasando
por P y Q, tal recta será denotada como L(P, Q). Es fácil ver que el punto proyectivo R está
sobre L(P, Q) si y sólo si existen α, β ∈ IR no todos ceros de modo que u = αv + βw, donde
π(u) = R, π(v) = P y π(w) = Q. Si r y s son dos rectas proyectiva distintas, existe un único
punto proyectivo P tal que {P} = r ∩ s.

La razón doble se conserva bajo cualquier transformación proyectiva. Esta cantidad se
define como sigue: Sean los puntos proyectivos P1, P2, P3, P4 colineales, luego podemos escribir
v3 = αv1 + βv2 y v4 = γv1 + δv2 para algunos vectores no nulos v1, . . . ,v4 con π(vi) = Pi

para i = 1, . . . , 4. La razón doble de P1, P2, P3, P4 es

rd(P, Q,R, S) =
βγ

αδ
.

Puede probarse (véase por ejemplo [68]) que esta definición está bien hecha, es decir, no
depende del representante de Pi.

La recta del infinito es la recta proyectiva de ecuación z = 0. Un punto af́ın es un
punto proyectivo que no pertenece a la recta del infinito. Si A(IP2) denota el conjunto de
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3.3. Curvas racionales de Bézier

todos los puntos afines, se pueden establecer las siguientes biyecciones:

E2 i→ A(IP2)
(x, y)T 7→ π(x, y, 1)T

A(IP2)
j→ E2

π(x, y, z)T 7→ (
x
z , y

z

)T

Es trivial observar que j ◦ i = IE2 e i ◦ j = IA(IP2), donde I denota la aplicación identidad.
En [65] se describió el siguiente algoritmo.

3.4 Algoritmo. Sean los puntos proyectivos P0, . . . , Pn ∈ IP2, la recta proyectiva r ∈
Λ(IP2) tal que Pi /∈ r para todo i = 0, . . . , n y sea u ∈ IR \ {1}.

Sean P 0
i (u) = Pi para i = 0, . . . , n.

Supóngase que los puntos P k
i (u) han sido construidos para k = 0, . . . , j e i = 0, . . . , n− k.

Ahora, para cada i = 0, . . . , n− j − 1:

a) Si P j
i (u) = P j

i+1(u), entonces sea P j+1
i (u) = P j

i (u).

b) Si P j
i (u) 6= P j

i+1(u), entonces def́ınase Qj
i (u) como la intersección de las rectas proyectivas

L(P j
i (u), P j

i+1(u)) y r. Sea P j+1
i (u) en la recta L(P j

i (u), P j
i+1(u)) tal que

rd(P j
i (u), P j

i+1(u), P j+1
i (u), Qj

i (u)) = u,

para j = 0, . . . , n− 1.

El punto proyectivo Pn
0 (u) es el punto de la curva α(P0, . . . , Pn; r) : I → IP2 cuyo

parámetro es u, donde I es un intervalo de IR con 1 /∈ I.

En la figura 3.3 se muestra el algoritmo 3.4. En la parte de la izquierda se ha empezado
con tres puntos iniciales y en la de la derecha con cuatro, en donde los puntos marcados con
‘◦’ son los Pij y los puntos marcados con ‘∗’ son los Qij .

Se puede probar que todos los puntos P j
i (u) no están en la recta r siempre que u 6= 1.

Haciendo el cambio u = t/(t−1) se puede reformular el algoritmo previo de forma algebraica:

3.5 Algoritmo. Sean los puntos proyectivos P0, . . . , Pn ∈ IP2, la recta proyectiva r ∈
Λ(IP2) tales que Pi /∈ r para todo i = 0, . . . , n y sea t ∈ IR.

Sean w ∈ IR3 con π∗(w) = r y vi ∈ IR3 con π(vi) = Pi.
Hágase v0

i (t) = vi/wTvi para i = 0, . . . , n.
Supóngase que los vectores vk

i (t) han sido construidos para k = 0, . . . , j e i = 0, . . . , n−k.
Ahora, para cada i = 0, . . . , n− j − 1, sea

vj+1
i (t) = (1− t)vj

i (t) + tvj
i+1(t), (3.4)

para j = 0, . . . , n− 1 e i = 0, . . . , n− j − 1.
Entonces π(vn

0 (t)) es el punto dado por el Algoritmo 3.4.

Veamos la razón de que el algoritmo 3.4 es la generalización natural del algoritmo de de
Casteljau a la geometŕıa proyectiva. Es bien conocido que la geometŕıa af́ın se obtiene a partir
de la geometŕıa proyectiva fijando una recta espećıfica llamada recta del infinito (véase [68]).
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Figura 3.3: El algoritmo 3.4.

Hay que pensar que el algoritmo de de Casteljau es un “algoritmo af́ın” (de hecho, el paso más
importante de este algoritmo, la ecuación (3.1) es una razón simple que se conserva mediante
afinidades). Sin embargo, la razón simple no se transforma mediante proyectividades. ¿Cómo
se puede generalizar la ecuación (3.1) a la geometŕıa proyectiva? Se sabe que la razón doble
se transforma mediante proyectividades y que si un punto de los cuatro involucrados en la
razón doble “tiende al infinito”, entonces la razón doble “tiende” a la razón simple. Ahora
es claro que debemos modificar (3.1) de modo que aparezca la razón doble. Pero en (3.1)
aparecen tres puntos y en la razón doble cuatro puntos, de aqúı la necesidad de introducir la
recta auxiliar r en el algoritmo 3.4. Ahora, de un modo informal, si esta recta r se aproxima
a la recta del infinito, entonces el algoritmo 3.4 se aproxima al algoritmo de de Casteljau.

El algoritmo 3.4 permite deducir dos consecuencias geométricas:

Invarianza proyectiva: Debido a que el algoritmo se basa sólo en conceptos proyectivos, es
evidente que este algoritmo es invariante bajo cualquier transformación proyectiva.

Dualidad: Es conocido el principio de dualidad de la geometŕıa proyectiva: para cualquier
teorema proyectivo, es cierto otro resultado simétrico reemplazando los papeles de rectas
y puntos. Podemos dualizar el algoritmo 3.4 observando que la salida del dual del
algoritmo 3.4 es un conjuto de rectas.

Se puede comprobar que el algoritmo 3.4 generaliza al de de Casteljau: Sean b0, . . . ,bn

puntos de E2. Si aplicamos el algoritmo 3.4 a lo puntos proyectivos P0 = i(b0), . . . , Pn = i(bn)
y a la recta del infinito r, obtenemos que P j

i (t) ∈ A(IP2) para todos i, j, t ∈ IR. Luego existen
bj

i (t) ∈ E2 tales que bj
i (t) = j(P j

i (t)). Además se puede probar fácilmente que

bj+1
i (t) = (1− t)bj

i (t) + tbj
i+1(t).

Esta última ecuación es el paso principal en el algoritmo de de Casteljau.
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3.3. Curvas racionales de Bézier

En la figura 3.4 se pueden ver tres curvas creadas con el algoritmo 3.4. Los puntos de
control son i(−1, 1), i(0,−1) y i(1, 1). La curva con ‘+’ está creada con el algoritmo de de
Casteljau. Las curvas con ‘∗’ y ‘◦’ han sido dibujadas usando las rectas afines y = 4 e y = 2
respectivamente. Obsérvese que si la recta r se aproxima a la recta del infinito, entonces la
curva se acerca a la parábola dibujada con el algoritmo de de Casteljau.
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Figura 3.4: Tres curvas dibujadas con el algoritmo 3.4.

Se puede probar el siguiente resultado:

3.6 Teorema. Sean P0, . . . , Pn ∈ IP2 y r ∈ Λ(IP2) tales que Pi /∈ r para i = 0, . . . , n.
Entonces

α(P0, . . . , Pn; r)(t) = π

(
n∑

i=0

Bn
i (t)

wTvi
vi

)
,

donde Bn
i (t) =

(
n
i

)
(1− t)n−iti, π(vi) = Pi y π∗(w) = r. Si se denota (xi, yi, zi)T = vi y

w(t) =
n∑

i=0

Bn
i (t)zi

wTvi

y si se supone que w(t) 6= 0, es decir, que α(P0, . . . , Pn; r)(t) es un punto af́ın, entonces se
cumple

j(α(P0, . . . , P1; r)(t)) =
1

w(t)

(
n∑

i=0

Bn
i (t)xi

wTvi
,

n∑

i=0

Bn
i (t)yi

wTvi

)T

. (3.5)

3.7 Nota. Como una consecuencia fácil de este teorema se obtiene que los vectores v1−v0,
vn − vn−1 son tangentes a la curva en P0, Pn respectivamente.

Nótese que si zi = 1, entonces (3.5) proporciona una curva racional de Bézier (3.3) cuyos
pesos son (wTvi)−1 y sus puntos de control son (xi, yi)T.
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Recuérdese que una cónica proyectiva puede ser escrita como

C = {π(x) ∈ IP2 : xTBx = 0},

donde x ∈ IR3 y B es una matriz simétrica 3× 3 (véase, por ejemplo, [68]).

3.8 Teorema. La curva parametrizada por α(P0, P1, P2; r) forma parte de la cónica de
ecuación xT(ATJA)x = 0, donde

J =




0 0 2
0 −1 0
2 0 0


 ,

A = [v0,v1,v2]−1, π(vi) = Pi y r = π∗(w) con wTvi = 1.

Nótese que ATJA es una matriz invertible, lo que significa que la cónica es no degenerada.
El siguiente resultado proporciona un significado geométrico para la recta auxiliar r.

3.9 Teorema. Bajo las hipótesis del Teorema 3.8, la recta r es tangente a la cónica.
Además, sea r(t) = j(α(P0, P1, P2; r)(t)) para los t tales que α(P0, P1, P2; r)(t) sea af́ın2. Si
existe ĺımt→±∞ r(t) = x0, entonces r es tangente en x0.

Desde ahora, se denotará r(∞) = ĺımt→±∞ r(t) cuando este ĺımite exista.
Ejemplo 1: Dados c,p0,p1 ∈ E2 con ‖p0−c‖ = ‖p1−c‖ = ρ, siendo p0−c perpendicular

a p1 − c, dibújese el cuadrante p0p1 de la circunferencia centrada en c y radio ρ (véase la
figura 3.5).

dp0d

dp1

@
@

@@

@
@

@@

r
c

dr(∞)

dr(1/2)

Figura 3.5: Construcción del primer cuadrante de la circunferencia unidad.

Por la invarianza eucĺıdea de las curvas racionales de Bézier3, podemos suponer p0 =
(1, 0)T, p1 = (0, 1)T y c = (0, 0)T. Para aplicar el algoritmo 3.4, sea v0 = (1, 0, 1)T y
v2 = (0, 1, 1)T. Por la nota 3.7, debemos definir v1 = (1, 1, 1)T o cualquier múltiplo no nulo
de (1, 1, 1)T (lo importante es que π(v1) = (1, 1)T). Por el teorema 3.9 la recta r es tangente

2Debido a que el denominador en (3.5) es un polinomio de grado 2, como mucho hay dos valores de t tales
que α(P0, P1, P2; r)(t) no es af́ın.

3En realidad las curvas racionales de Bézier tienen invarianza proyectiva.
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a la circunferencia. Por simetŕıa y debido a que se quiere dibujar el primer cuadrante, sea r
la recta de ecuación x + y = −√2 (véase la figura 3.5). Luego, sea w = (1, 1,

√
2)T. Por el

teorema 3.6 se obtiene

w(t) =
(1− t)2

1 +
√

2
+

2t(1− t)
2 +

√
2

+
t2

1 +
√

2
y

r(t) =
1

w(t)

(
(1− t)2

1 +
√

2
+

2t(1− t)
2 +

√
2

,
2t(1− t)
2 +

√
2

+
t2

1 +
√

2

)T

.

Podemos observar que r(1/2) = (cosπ/4, sinπ/4)T y r(∞) = (− cosπ/4,− sinπ/4)T como
se ve en la figura 3.5.

Ejemplo 2: Para dibujar el arco complementario del ejemplo previo, es suficiente definir
v0 = (1, 0, 1)T, v = (1, 1, 1)T y v2 = (0, 1, 1)T (como antes) y considerar la recta r de ecuación
x + y =

√
2 (véase la figura 3.6). Luego, sea w = (1, 1,−√2)T.

d
p0

dp1

@
@

@@

@
@

@@

r

dr(1/2)

dr(∞)

Figura 3.6: Construcción de un arco de circunferencia de amplitud igual a 3π/2.

Ejemplo 3: Dibújese un arco de amplitud θ ∈]0, π[ (en el ejemplo 4 se mostrará cómo
construir una semicircunferencia y en el ejemplo 2 se mostró cómo dibujar un arco de amplitud
mayor que π).

Se usará la notación c para cos θ y s para sen θ. Como en los ejemplos anteriores, se
supondrá que el radio de la circunferencia es 1 y el centro es el origen. Sea p0 = (1, 0)T y
p1 = (c, s)T. Sea q el punto tal que q− pi es tangente a la circunferencia en pi para i = 1, 2
(véase la figura 3.7). Un cálculo fácil proporciona q = (1, 1− c/s)T. Usando que una cónica
está uńıvocamente determinada si conocemos dos puntos con sus tangentes junto con una
tercera tangente, es suficiente elegir la recta r de ecuación y = 1 (una elección más simétrica
hubiera sido la recta tangente en el punto x de la figura 3.7).

Si se definen

v0 =




1
0
1


 , v1 =




s
1− c

s


 , v2 =




c
s
1


 , w =




0
1
−1


 ,

entonces por el teorema 3.6 se obtiene

w(t) = −(1− t)2 +
2t(1− t)s
1− c− s

+
t2

s− 1
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d
p0

¡
¡

¡¡
p1

@@
d

dq

dx

r

Figura 3.7: Construcción de un arco de circunferencia.

y

r(t) =
1

w(t)

(
−(1− t)2 +

2t(1− t)s
1− c− s

+
ct2

s− 1
,
2t(1− t)(1− c)

1− c− s
+

t2

s− 1
,

)T

.

En [74], se describe una parametrización cuadrática a trozos y se prueba que no es posible
representar toda la circunferencia por un B-spline cuadrático C1. En [72] se afirma que “The
construction of a general NURBS circular arc is more complicated than first expected, and
there are many ways to do it.”. El algoritmo 3.4 es simple y proporciona un método intuitivo
para dibujar un arco de circunferencia arbitrario de amplitud θ ∈]0, 2π[.

Ejemplo 4: Dados b0,b1 ∈ E2, dibujar una elipse de modo que un eje sea b0b1 y la
longitud del otro semieje sea b (nótese que una circunferencia es un caso particular).

Sea v ∈ IR2 perpendicular a b1−b0 con ‖v‖ = 1 y siendo {b1−b0,v} una base orientada
positivamente. También sean p = b0 − bv ∈ E2 y la recta af́ın r de ecuación (x − p)Tv = 0
(véase la figura 3.8). La ecuación de esta recta es

0 = (x− (b0 − bv))Tv = xTv − bT
0 v + b = [xT 1]

[
v

b− bT
0 v

]
.

6

?

d
r(1/2)

d
r(∞)

d b1db0

b

r

6

v

d
p

Figura 3.8: Construcción de una elipse.
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3.3. Curvas racionales de Bézier

Para aplicar el algoritmo 3.4, sean

v0 =
[

b0

1

]
, v1 =

[
v
0

]
, v2 =

[
b1

1

]
.

y la recta proyectiva π∗(w) con wT = [vT, b−bT
0 v]. Por el teorema 3.6 se obtiene que si r(t)

es la parametrización de la cónica, entonces

r(t) =
1

(1− t)2 + t2
(
(1− t)2b0 + 2bt(1− t)v + t2b1

)
.

Nótese que

r(1/2) =
1
2
(b0 + b1) + bv, r(∞) =

1
2
(b0 + b1)− bv

como se puede apreciar en la figura 3.8.
Ejemplo 5: Constrúyase una hipérbola cuyas aśıntotas son dos rectas no paralelas r1 y

r2.
Sean x(λ) = b + λu1 y x(λ) = b + λu2 las ecuaciones de r1 y r2 respectivamente (se

supondrá que ‖u1‖ = ‖u2‖ = 1) con b = (x0, y0)T = r1 ∩ r2 y sea r otra recta af́ın de
ecuación ax + by + c = 0 (véase la figura 3.9).
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Figura 3.9: Construcción de una hipérbola.

Con el fin de aplicar el algoritmo 3.4, sean

v0 =
[

u1

0

]
, v1 =

[
b
1

]
, v2 =

[
u2

0

]
, w =




a
b
c


 .

Además, se requerirá que wTvi 6= 0 para i = 0, 1, 2. Estas condiciones equivalen a decir que:
a) El punto b no está en la recta r (se supondrá que ax0 + by0 + c > 0) y b) Las rectas ri y
r no son paralelas para i = 1, 2. Si se aplica el teorema 3.6, se consigue

w(t) =
2t(1− t)

ax0 + by0 + c
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3. Diseño geométrico asistido por ordenador

y si se definen k = ax0 + by0 + c, k1 = wTv0 y k2 = wTv2, entonces, tras algunas sencillas
manipulaciones, la parametrización de la cónica obtenida mediante el algoritmo 3.4 es

r(t) = d(c1,b)
1− t

2t
u1 + b + d(c2,b)

t

2(1− t)
u2,

donde ci es la intersección de r y ri. Obsérvese que

r(∞) = −1
2

(d(c1,b)u1 + d(c2,b)u2) + b

y teniendo en cuenta que b− ci = d(ci,b)ui, se logra

r(∞) =
c1 + c2

2
,

como la figura 3.9 muestra. También, se ha de notar que

r(1/2) =
1
2

(d(c1,b)u1 + d(c2,b)u2) + b.

La interpretación geométrica de r(1/2) es la siguiente: Sea qi un punto tal que b es el punto
medio de qici (véase la figura 3.9). Se tiene que

r(1/2) =
q1 + q2

2
.

Además, si r′ es la recta simétrica a r respecto de b, se tiene que r′ es tangente a la hipérbola
en r(1/2). Este hecho muestra la importancia de la elección de la recta auxiliar r en el
algoritmo 3.4.

3.4 Superficies de Bézier

Ya en su informe confidencial, de Casteljau observó la necesidad de considerar superficies
para el diseño industrial de carrocerias de veh́ıculos. Antes de presentar el algoritmo idea-
do por de Casteljau para representar superficies, se repasará un concepto importante de la
geometŕıa af́ın.

3.10 Definición. Sean a,b, c tres puntos de En af́ınmentes independientes (es decir, los
vectores b − a y c − b de IRn son linealmente independientes, o dicho de otro modo, abc
es un triángulo) y sea x ∈ En tal que x está en la envoltura af́ın de a,b, c (véase la figura
3.10). Entonces x− a ∈ lin{b− a, c− a} y por tanto existen β, γ ∈ IR tales que

x− a = β(b− a) + γ(c− a). (3.6)

Una forma más simétrica de escribir (3.6) es

x = αa + βb + γc, α + β + γ = 1.

Se dice que (α, β, γ) son las coordenadas baricéntricas de x respecto al triángulo abc.
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3.4. Superficies de Bézier
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Figura 3.10: Coordenadas baricéntricas.

Para escribir de forma cómoda el algoritmo de de Casteljau, se establecen las siguientes
notaciones. Para m ∈ IN, sean

∆m = {(i, j, k) ∈ IN3 : i + j + k = m}, T = {(x, y, z) ∈ IR3 : x, y, z ≥ 0, x + y + z = 1}.
Para (i, j, k) ∈ ∆m y (x, y, z) ∈ T , sean

Bm
ijk(x, y, z) =

m!
i!j!k!

xiyjzk,

los polinomios bivariados de Bernstein de grado m.

3.11 Definición. Sea {bijk ∈ En : (i, j, k) ∈ ∆m} un conjunto de (m + 1)(m + 2)/2 puntos
de En (llamados red triangular de control). La superficie r : T → En dada por

r(x, y, z) =
∑

(i,j,k)∈∆m

Bm
ijk(x, y, z)bijk (3.7)

se llama parche triangular de Bézier.

Obsérvese que si (x, y, z) ∈ T , entonces

1 = (x + y + z)m =
∑

(i,j,k)∈∆m

Bm
ijk(x, y, z)

para todo m ∈ IN. De donde se deduce de (3.7) que r(x, y, z) ∈ En, puesto que bijk ∈ En.
En [70] se proporciona una visión más profunda de estas superficies y su importancia en

el diseño asistido por ordenador. Una forma recursiva de calcular (3.7) fue proporcionada por
de Casteljau:

3.12 Algoritmo. Sea una red triangular de control {bijk : (i, j, k) ∈ ∆m} y (x, y, z) ∈ T .
Sean b0

ijk = bijk para (i, j, k) ∈ ∆m.

Supóngase construidos bl
ijk ∈ Ek para l = 0, . . . , n e (i, j, k) ∈ ∆n−l. Sean

bl+1
ijk (x, y, z) = xbl

i+1,j,k(x, y, z) + ybl
i,j+1,k(x, y, z) + zbl

i,j,k+1(x, y, z).

El punto bm
000(x, y, z) es el punto r(x, y, z) de (3.7).
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3. Diseño geométrico asistido por ordenador

La solución adoptada por Bézier fue distinta. Se denota In,m = {0, . . . , n} × {0, . . . , m}
para n,m ∈ IN. Dados {bij : (i, j) ∈ In,m} puntos de Ek, se define la superficie r : [0, 1] ×
[0, 1] → Ek dada por

r(t, s) =
∑

(i,j)∈In,m

Bn
i (t)Bm

j (s)bij . (3.8)

En [70, 72] se puede encontrar un estudio detallado de estas superficies. Una propiedad ya
observada por Bézier es que si denotamos para i = 0, . . . , n

pi(s) =
m∑

j=0

Bm
j (s)bij = B[bi0, . . . ,bim](s),

se tiene de (3.8)

r(t, s) =
n∑

i=0

Bn
i (t)pi(s) = B[p0(s), . . . ,pn(s)](t).

Análogamente, si se denota qj(t) = B[b0j , . . . ,bnj ](t) para j = 0, . . . ,m, entonces

r(t, s) = B[q0(t), . . . ,qm(t)](s).

De donde se deduce que (3.8) puede evaluarse de forma recursiva aplicando dos veces el
algoritmo estándar de de Casteljau para curvas.

Las superfcies racionales de Bézier tienen una definición parecida a (3.3):

3.13 Definición. Dados los puntos {bij : i = 0, . . . , n, j = 0, . . . , m} de Ek y {wij : i =
0, . . . , n, j = 0, . . . , m} números positivos, si se denota

w(t, s) =
∑

(i,j)∈In,m

Bn
i (t)Bm

j (s)wij ,

entonces la superficie r : [0, 1]× [0, 1] → Ek dada por

r(t, s) =
1

w(t, s)

∑

(i,j)∈In,m

Bn
i (t)Bm

j (s)bij .

se llama superficie racional de Bézier asociada a los puntos de control bij y a los pesos
wij.

3.5 Problemas abiertos

En la figura 3.4 se observa que fijados los puntos proyectivos P0, P1, P2, si se mueve la recta
auxiliar r, entonces la curva α(P0, P1, P2; r) cambia. ¿Es este cambio continuo? Además se
observa que si la recta r se “aleja al infinito”, entonces la curva α(P0, P1, P2; r) se aproxima a
la parábola B[i(P0), i(P1), i(P2)], supuesto que P0, P1, P2 ∈ A(IP2). ¿Es esto cierto? Antes de
nada se ha de precisar lo que intuitivamente es un movimiento continuo de la recta r ∈ Λ(IP2),
esto es, se ha de dotar de una topoloǵıa a Λ(IP2). Pero esto es fácil, pues por el principio
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Figura 3.11: El principio de dualidad.

de dualidad, Λ(IP2) y IP2 son equivalentes como conjuntos, más concretamente, la aplicación
f : IP2 → Λ(IP2) dada por f(π(v)) = π∗(v) es biyectiva y cumple

r = L(P, Q) ⇐⇒ f(r) = f(P ) ∩ f(Q).

para cualquier r ∈ Λ(IP2) y P, Q ∈ IP2 (véase la figura 3.11). Ahora se puede definir en Λ(IP2)
la topoloǵıa inducida por f y por la topoloǵıa de IP2 como espacio cociente.

En lo sucesivo, dado P ∈ IP2, se denotará P ∗ = {r ∈ Λ(IP2) : P ∈ r}.

3.14 Problema. Sean P0, . . . , Pn ∈ IP2 y t ∈ [0, 1]. Considérese la aplicación

Ψ : Λ(IP2) \ {P ∗
0 , . . . , P ∗

n} → IP2, Ψ(r) = α(P0, . . . , Pn)(r)(t), (3.9)

donde α es la curva definida en el Algoritmo 3.4. ¿Es Ψ continua?

Una utilidad teórica, siempre que la respuesta a este problema fuera afirmativa es la
siguiente: Supongamos que t ∈ IR, P0, . . . , Pn ∈ IP2 y r ∈ Λ(IP2) son tales que Pi /∈ r y
α(P0, . . . , Pn; r)(t) es af́ın. Ya que el subconjunto de los puntos afines de IP2 es abierto en
IP2, se tiene que existe un entorno abierto de r en Λ(IP2)\{P ∗

0 , . . . , P ∗
n}, digamos U, de modo

que Ψ(s) es af́ın para toda recta de U. En palabras más sencillas: si se perturba ligeramente
la recta r, de nuevo obtenemos un punto af́ın.

El problema anterior mide perturbaciones cualitativas. Debido a que los puntos que se
dibujan deben ser afines (los puntos del infinito son de un modo informal direcciones) y a que
es natural definir la siguiente distancia en E2

d(p,q) = ‖p− q‖, p,q ∈ Ek,

resulta conveniente estudiar perturbaciones cuantitativas. Pero para esto se debe estimar de
manera cuantitativa el movimiento de una recta r ∈ Λ(IP2); es decir se ha de dotar de una
métrica a Λ(IP2). Esto no se va a poder hacer, pero casi.

La manera más fácil es observar de nuevo el principio de dualidad y en que si a IP2 se le
quita la recta del infinito, se obtiene el espacio métrico A(IP2) cuya métrica es

d(π(x1, y1, z1), π(x2, y2, z2)) =
∥∥∥∥
(

x1

z1
,
y1

z1

)
−

(
x2

z2
,
y2

z2

)∥∥∥∥ .

Si se ha comprendido esto, ahora es fácil dotar de una métrica a un conjunto muy parecido
a Λ(IP2).
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3. Diseño geométrico asistido por ordenador

Sea P = π(v) ∈ IP2. Vamos a dotar a Λ(IP2) \ P ∗ de la siguiente métrica:

d∗P (π∗(w1), π∗(w2)) =
∥∥∥∥

w1

wT
1 v

− w2

wT
2 v

∥∥∥∥ .

Según nuestro conocimiento de la literatura actual, esta métrica es nueva. Surge un
problema relacionado con esta métrica, aparentemente sin relación con el diseño de curvas.

3.15 Problema. Sean P, Q ∈ IP2. En Λ(IP2) \ {P,Q} hay dos métricas: d∗P y d∗Q. ¿Cuál
es la relación entre ambas?

El siguiente problema es la versión cuantitativa del problema 3.14

3.16 Problema. Sean P0, . . . , Pn ∈ IP2 y t ∈ [0, 1]. Si r, s ∈ Λ(IP2)\{P ∗
0 , . . . , P ∗

n} son tales
que Ψ(r) y Ψ(s) son afines, ¿cómo es una estimación de d(j(Ψ(r)), j(Ψ(s))) en términos de
d∗Pi

(r, s) para i = 0, . . . n?

Ahora se comprende la utilidad de plantearse el problema 3.15, puesto que podemos
considerar n + 1 métricas distintas en Λ(IP2) \ {P ∗

0 , . . . , P ∗
n}.

Obsérvese que en el ejemplo 3, se tiene que fijados

P0 = π(1, 0, 1), P1 = π(s, 1− c, s), P2 = π(c, s, 1),

hay infinitas elecciones de la recta auxiliar r para dibujar, mediante el algoritmo 3.4, el arco
que se pretende parametrizar. De hecho, basta tomar como r cualquier recta tangente a la
circunferencia unidad en el punto x, en donde x no está en el mencionado arco. Sean ahora
r1 y r2 dos de estas rectas tangentes. Por supuesto, las funciones

α(P0, P1, P2; r1) : [0, 1] → IP2, α(P0, P1, P2; r2) : [0, 1] → IP2

son distintas; pero los conjuntos

{α(P0, P1, P2; r1)(t) : t ∈ [0, 1]}, {α(P0, P1, P2; r2)(t) : t ∈ [0, 1]} (3.10)

son iguales. Sin embargo, lo que se dibuja en el diseño asistido por ordenador no es (3.10),
sino lo siguiente:

{α(P0, P1, P2; r1)(t) : t ∈ T}, {α(P0, P1, P2; r2)(t) : t ∈ T},
donde T = {0 < t1 < · · · < tm < 1}. Veamos un ejemplo concreto. En el ejemplo 1 se dibujó
el primer cuadrante de la circunferencia unidad lo más simétricamente posible. Si cambiamos
la recta r de modo que su nueva ecuación sea −x + y +

√
2 = 0 (véase la figura 3.12) también

se obtiene el primer cuadrante.
¿Pero que pasa si dibujamos sólo unos cuantos puntos de la curva? En la figura 3.13 se

muestran sólo los puntos correpondientes {r(t) : t ∈ {0, 0.05, 0.1, . . . , 0.95, 1}, donde r es la
parametrización de esta curva.

Como se puede apreciar, hay más puntos cerca de r(0) = (1, 0) que de r(1) = (1, 0).
Además se tiene que r(1/2) ' (0.9024, 0.4309) que está más próximo a r(0) que a r(1)
rompiendo la simetŕıa mostrada en el ejemplo 1. Este hecho se puede comprender si calculamos
la velocidad inicial y final obteniendo ‖r′(0)‖ ' 0.5859 y ‖r′(1)‖ ' 3.4142; es decir, la
trayectoria es “más lenta al principio que al final”.
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Figura 3.12: Construcción del primer cuadrante de la circunferencia unidad.

3.17 Problema. Estúdiese la variación de la recta tangente. Más en concreto: Sean
los puntos P0, P1, P2 ∈ IP2 y r ∈ Λ(IP2) tales que Pi /∈ r para i = 0, 1, 2 y que las curva
α(P0, P1, P2; r) describe una cónica proyectiva incluida en A(IP2). Sea la curva en A(IP2)
dada por r = α(P0, P1, P2; r) y los valores discretos 0 < t0 < · · · < tm < 1. Est́ımese
d(r(ti+1), r(ti)) para i = 0, . . . , m− 1 y relaciónese esta distancia con la recta auxiliar r.

Est́ımese

a) r(1/2).

b) ¿Cuándo d(r(0), r(1/2)) = d(r(1), r(1/2))?

c) ‖r′(0)‖, ‖r′(1)‖.

Además, hay que decir que r = π∗(w) es tangente a la cónica C = {π(x) : xTAx = 0}
equivale a que wTA−1w = 0. Luego podemos parametrizar la cónica C∗ = {π(x) : xTA−1x =
0} usando el algoritmo 3.4 y la afirmación de que la recta r = π∗(w) se mueve de forma
continua manteniéndose tangente a la cónica C, de manera poco precisa, es equivalente a que
π∗(w) se mueva de forma continua en C∗ por medio de la parametrización antes mencionada.

En el diseño geométrico asistido por ordenador las curvas pueden no ser planas (de hecho,
es la situación más frecuente en el diseño industrial).

3.18 Problema. Generaĺıcese el algoritmo 3.4 en E3 y estúdiense sus propiedades.

Pensemos un poco en el algoritmo 3.4. Para generar los puntos Qj
i hay que cortar las

rectas r y L(P j
i , P j+1

i ) ya que en el plano proyectivo, dos rectas distintas siempre se cortan
en un sólo punto proyectivo. Sin embargo, en el espacio proyectivo no es cierto que dos rectas
distintas se cortan en un punto (las rectas se pueden cruzar exactamente igual que en E3).
Esta situación se arregla si obervamos que en IP3 un plano y una recta no contenida en este
plano siempre se cortan en un sólo punto.

Aśı, esta generalización es fácil: basta substituir una recta auxiliar en IP2 por un plano
auxiliar en IP3. Sin embargo, las propiedades no son tan simples de generalizar: por ejemplo,
el teorema 3.8. Recuérdese que una cuádrica en IP3, que es una superficie, es el siguiente
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Figura 3.13: Una cantidad finita de puntos del primer cuadrante de la circunferencia unidad.

conjunto:
{π(x) ∈ IP3 : xTAx} = 0,

donde x ∈ IR4 y A es una matriz simétrica de orden 4. Mientras que la generalización directa
del algoritmo 3.4 describe una curva.

El propósito del algoritmo 3.4 es generalizar proyectivamente el algoritmo estándar de
de Casteljau (que es un algoritmo af́ın). Tras repasar el algorimto 3.12 surge un problema
natural:

3.19 Problema. Generaĺıcese el algoritmo 3.12 de modo que sea proyectivamente inva-
riante y que permita dibujar cuádricas en IP3.

Pensemos cómo se puede dar esta generalización. El algoritmo de de Casteljau se basa en la
razón simple (concepto af́ın), mientras que el algoritmo 3.4 se basa en la razón doble (concepto
proyectivo). Como el algoritmo 3.12 se basa en las coordenadas baricéntricas (concepto af́ın),
se ha de buscar una generalización proyectiva de las coordenadas baricéntricas. Además como
el paso de la geometŕıa proyectiva de IP3 a la geometŕıa af́ın de E3 se hace fijando un “plano
del infinito”, parece razonable que la generalización buscada se apoye en un plano auxiliar y
que cuando este plano “tienda al infinito” se obtenga el algoritmo 3.12.

En realidad, el resultado que se esconde tras las coordenadas baricéntricas es el clásico
teorema de Ceva, que aqúı se reproduce en aras de una mayor legibilidad:

3.20 Teorema (de Ceva). Sean abc un triángulo y p, q y r puntos en los lados ab, bc
y ca respectivamente. Entonces cp, br y aq son concurentes si y sólo si

−→
bq
−→qc

·
−→cr
−→ra ·

−→ap
−→
pb

= 1. (3.11)
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3.5. Problemas abiertos

Para entender mejor la relación entre las coordenadas baricéntricas y el teorema de Ceva,
supóngase la siguiente situación: Sean a,b, c,p,q, r del enunciado del teorema de Ceva tales
que cp, br y aq son concurentes en x (véase la figura 3.14).
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Figura 3.14: Demostración de una implicación en el teorema de Ceva.

Ahora se tiene que existen α, β, γ ∈ IR tales que

x = αa + βb + γc, α + β + γ = 1. (3.12)

Ahora el punto

α

α + β
a +

β

α + β
b =

1
α + β

(αa + βb + γc)− γ

α + β
c =

1
α + β

x− γ

α + β
c

está en la recta que pasa por a,b y en la recta que pasa por x, c; es decir, es el punto p. De
forma análoga se tiene que

q =
β

β + γ
b +

γ

β + γ
c, r =

α

α + γ
a +

α

α + γ
c.

Ahora es trivial probar (3.11).
Las coordenadas baricéntricas se basan en el concepto af́ın de la razón simple. La siguiente

discusión es conocida (váse, por ejemplo [68]); pero que se incluye para facilitar la lectura de
este proyecto.

Sean a,b, c,d cuatro puntos colineales de E2. Es fácil probar que4

rd(i(a), i(b), i(c), i(d)) =
−→ac/−→bc
−→
ad/

−→
bd

.

Sean ahora a,b, c tres puntos colineales de E2. Sea D la intersección de la recta del infinito
y L(i(a), i(b)). Puede probarse que

rd(i(a), i(b), i(c), D) =
−→ac
−→
bc

.

La siguiente generalización proyectiva del teorema de Ceva se dio en [66].

4De hecho, es la definición clásica de razón doble.
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3. Diseño geométrico asistido por ordenador

3.21 Teorema Sea ABC un triángulo en IP2 y r una recta proyectiva de Λ(IP2) tales que
A,B, C /∈ r. Sean A′ = L(B,C)∩ r, B′ = L(C, A)∩ r y C ′ = L(A,B)∩ r. Sean A′′, B′′ y C ′′

tres puntos proyectivos distintos de A,B,C con A′′ ∈ L(B, C), B′′ ∈ L(C, A) y C ′′ ∈ L(A,B)
(véase la figura 3.15). Entonces L(A,A′′), L(B, B′′) y L(C, C ′′) son concurrentes si y sólo si

rd(B, C, A′′, A′) · rd(C,A, B′′, B′) · rd(A, B,C ′′, C ′) = −1. (3.13)

��
��
��
��
��
��

A
A
A
A
A
A
©©©©©

A
A
A

¶
¶

¶
¶

¶
¶

PPPPPPPPP
A B′′ C

B′

A′

C ′′

B

C ′

rA′′

Figura 3.15: El teorema 3.21.

La expresión (3.13) es la versión proyectiva de (3.11). Aśı, hay que buscar una versión
proyectiva de (3.12) que permita definir una superficie x : S → IP3, en donde S ⊂ IR2 y
que x(λ, µ) sea la intersección de las cevianas AA′′, BB′′ y CC ′′ que aparecen en la figura
3.15. Los puntos A′′, B′′, C ′′ deben depender de alguna manera de λ, µ ∈ IR y además se debe
cumplir la relación (3.13).
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[4] J. Beńıtez: Diferenciabilidad en espacios de Banach. Tesis doctoral, Universidad Po-
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