Bandas de energía

    Los niveles de energía de los electrones en los átomos de un cristal no coinciden con los niveles de energía de los electrones para átomos aislados. En un gas, por ejemplo, se pueden despreciar las interacciones de unos átomos con otros y los niveles de energía no se ven modificados. Sin embargo, en un cristal el campo eléctrico producido por los electrones de los átomos vecinos modifica los niveles energéticos de los electrones de los átomos de sus alrededores.

Separación en bandas de los niveles energéticos en el carbono    De este modo el cristal se transforma en un sistema electrónico que obedece al principio de exclusión de Pauli, que imposibilita la existencia de dos electrones en el mismo estado, transformándose los niveles discretos de energía en bandas de energía donde la separación entre niveles energéticos se hace muy pequeña. La diferencia de energía máxima y mínima es variable dependiendo de la distancia entre átomos y de su configuración electrónica.

    Dependiendo de la distancia interatómica y del número de electrones de enlace entre otros factores, pueden formarse distintos conjuntos de bandas que pueden estar llenas, vacías o separaciones entre bandas por zonas prohibidas o bandas prohibidas, formándose así bandas de valencia, bandas de conducción y bandas prohibidas.

Modelo de bandas para aislantes, semiconductores y conductoresAsí en un aislante la separación entre la banda de valencia y la banda de conducción es muy grande (» 10 eV), y esto significa que un electrón en la banda de valencia necesita mucha energía para ser liberado y convertirse en un electrón libre necesario para la conducción. En un conductor las dos bandas están solapadas, no necesitándose ninguna energía para alcanzar la conducción. En un semiconductor la banda prohibida es muy estrecha, o lo que es lo mismo, es muy fácil que un electrón sea liberado y pueda contribuir a la conducción.

Principal