
January 6, 2011 16:4 WSPC/112-IJFCS S01290541112201

INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE

Volume 22, Number 1, January 2011

CONTENTS

Special Issue Natural Computing: Theory and Applications

Preface 1
R. Freund, M. Gheorghe, S. Marcus, V. Mitrana and M. J. Perez-Jimmenez

On Strong Reversibility in P Systems and Related Problems 7
O. H. Ibarra

On String Languages Generated by Spiking Neural P Systems with Anti-Spikes 15
K. Krithivasan, V. P. Metta and D. Garg

Computation of Ramsey Numbers by P Systems with Active Membranes 29
L. Pan, D. Dı́az-Pernil and M. J. Pérez-Jiménez

P Systems with Proteins on Membranes: A Survey 39
A. Păun, M. Păun, A. Rodŕıguez-Patón and M. Sidoroff

On a Partial Affirmative Answer for A Păun’s Conjecture 55
I. Pérez-Hurtado, M. J. Pérez-Jiménez, A. Riscos-Núñez,

M. A. Gutiérrez-Naranjo and M. Rius-Font

P Systems with Active Membranes Working in Polynomial Space 65
A. E. Porreca, A. Leporati, G. Mauri and C. Zandron

On the Power of Families of Recognizer Spiking Neural P Systems 75
P. Sośık, A. Rodŕıguez-Patón and L. Cienciala

Modeling Diffusion in a Signal Transduction Pathway: The use of Virtual Volumes
in P Systems 89

D. Besozzi, P. Cazzaniga, S. Cocolo, G. Mauri and D. Pescini

Log-Gain Stoichiometric Stepwise Regression for MP Systems 97
V. Manca and L. Marchetti

A Simulation Algorithm for Multienvironment Probabilistic P Systems:
A Formal Verification 107

M. A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. J. Pérez-Jiménez,

A. Riscos-Núñez and F. Sancho-Caparrini

An Overview on Operational Semantics in Membrane Computing 119
R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and S. Tini

Formal Verification of P Systems Using Spin 133
F. Ipate, R. Lefticaru and C. Tudose

Small Universal TVDH and Test Tube Systems 143
A. Alhazov, M. Kogler, M. Margenstern, Y. Rogozhin and S. Verlan

Filter Position in Networks of Substitution Processors Does Not Matter 155
F. A. Montoro, J. Castellanos, V. Mitrana, E. Santos and J. M. Sempere

Functions Defined by Reaction Systems 167
A. Ehrenfeucht, M. Main and G. Rozenberg

P Systems and Topology: Some Suggestions for Research 179
P. Frisco and H. J. Hoogeboom

An Observer-Based De-Quantisation of Deutsch’s Algorithm 191
C. S. Calude, M. Cavaliere and R. Mardare

PC Grammar Systems with Clusters of Components 203
E. Csuhaj-Varjú, M. Oswald and Gy. Vaszil

Orthogonal Shuffle on Trajectories 213
M. Daley, L. Kari, S. Seki and P. Sos̀ık

On the Number of Active Symbols in Lindenmayer Systems 223
J. Dassow and Gy. Vaszil

Positioned Agents in Eco-Grammar Systems 237
M. Langer and A. Kelemenová

Morphic Characterizations of Language Families in Terms of Insertion Systems
and Star Languages 247

F. Okubo and T. Yokomori

Power Sums Associated with Certain Recursive Procedures on Words 261
A. Salomaa

Erratum 273

This journal is covered in SciSearchr (also known as Science Citation Index - Expanded),

ISI Alerting Services, CompuMath Citation Indexr, Current Contents/Engineering,
Computing & Technology, MathSciNet, Mathematical Reviews,

DBLP Bibliography Server and Zentralblatt MATH.

DOI: 10.1142/S0129054111007915

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

International Journal of Foundations of Computer Science
Vol. 22, No. 1 (2011) 155–165
c© World Scientific Publishing Company

FILTER POSITION IN NETWORKS OF SUBSTITUTION

PROCESSORS DOES NOT MATTER

FERNANDO ARROYO MONTORO1, JUAN CASTELLANOS2

VICTOR MITRANA3,4, EUGENIO SANTOS3 and JOSE M. SEMPERE5

1Depto. Lenguajes, Proyectos y Sistemas Informticos,
Escuela Universitaria de Informtica
Universidad Politcnica de Madrid,

Ctra. de Valencia Km. 7, 28031 Madrid, Spain
farroyo@eui.upm.es

2Department of Artificial Intelligence
Polytechnical University of Madrid

28660 Boadilla del Monte, Madrid, Spain
jcastellanos@fi.upm.es

3Depto. Organización y Estructura de la Información
Escuela Universitaria de Informática
Universidad Politécnica de Madrid,

Crta. de Valencia km. 7 - 28031 Madrid, Spain
mitrana@fmi.unibuc.ro,esantos@eui.upm.es

4Faculty of Mathematics and Computer Science
University of Bucharest, Str. Academiei 14, 010014, Bucharest, Romania

5Department of Information Systems and Computation
Technical University of Valencia,

Camino de Vera s/n. 46022 Valencia, Spain
jsempere@dsic.upv.es

Received 10 June 2010
Accepted 5 September 2010

Communicated by Rudolf Freund

It is known ([4]) that moving the filters from the nodes to the edges in accepting hybrid
networks of evolutionary processors does not decrease the computational power of the
model which equals that of a Turing machine. A direct and time complexity preserving
simulation is presented in [1]. All three types of processors (substitution, insertion, dele-
tion) are essentially used in this simulation.
In this note we prove that such a direct simulation between networks containing substi-
tution nodes only still exists.

Keywords: Substitution processor; accepting network of substitution processors; accept-
ing network of substitution processors with filtered connections.

1991 Mathematics Subject Classification: 68Q45, 68Q50, 68Q52

155

http://dx.doi.org/10.1142/S0129054111007915

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

156 F. Arroyo Montoro et al.

1. Introduction

A basic architecture for parallel and distributed computing consists of several pro-

cessors, each of them being placed in a node of a virtual complete graph, which are

able to handle data associated with the respective node. Each node processor acts

on the local data in accordance with some predefined rules. Local data are then

sent through the network according to well-defined protocols. Only that data which

are able to pass a filtering process can be communicated. This filtering process may

require to satisfy some conditions imposed by the sending processor, by the receiv-

ing processor or by both of them. All the nodes send simultaneously their data and

the receiving nodes handle also simultaneously all the arriving messages, according

to some strategies. This general architecture may be met in several areas of Com-

puter Science like Artificial Intelligence [7, 6], Symbolic Computation [5], Grammar

Systems [10], Membrane Computing [11].

The origin of accepting hybrid networks of evolutionary processors (AHNEP for

short) is such an architecture in connection with the work [2] (see also [3] that

considers a computing model inspired by the evolution of cell populations), where

a distributed computing device called network of language processors is proposed.

Each processor placed in a node is called evolutionary processor, i.e. an abstract

processor which is able to perform very simple operations, namely point mutations

in a DNA sequence (insertion, deletion or substitution of a pair of nucleotides). More

generally, each node may be viewed as a cell having genetic information encoded

in DNA sequences which may evolve by local evolutionary events, that is point

mutations. Each node is specialized just for one of these evolutionary operations.

Furthermore, the data in each node is organized in the form of multisets of words

(each word may appear in an arbitrarily large number of copies), and all copies

are processed in parallel such that all the possible events that can take place do

actually take place. Further, all the nodes send simultaneously their data and the

receiving nodes handle also simultaneously all the arriving messages, according to

some strategies modeled as permitting and forbidding filters and filtering criteria,

see [8]. The reader interested in a more detailed discussion about the accepting

model is referred to [9].

It is clear that filters associated with each node of an AHNEP allow a strong

control of the computation. Indeed, every node has an input and output filter; two

nodes can exchange data if it passes the output filter of the sender and the input

filter of the receiver. Moreover, if some data is sent out by some node and not able

to enter any node, then it is lost. The AHNEP model considered in [8] is simpli-

fied in [4] by moving the filters from the nodes to the edges. Each edge is viewed

as a two-way channel such that the input and output filters, respectively, of the

two nodes connected by the edge coincide. Clearly, the possibility of controlling the

computation in such networks seems to be diminished. For instance, there is no

possibility to discard data during the communication steps. In spite of this fact, in

the aforementioned work one proves that these new devices, called accepting hybrid

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

Filter Position in Networks of Substitution Processors Does Not Matter 157

networks of evolutionary processors with filtered connections (AHNEPFC) are still

computationally complete. This means that moving the filters from the nodes to

the edges does not decrease the computational power of the model. Although the

two variants are equivalent from the computational power point of view, no direct

proof for this equivalence has been proposed until the work [1], where direct simula-

tions between the two variants are presented. Moreover, both simulations are time

efficient, namely each computational step in one model is simulated in a constant

number of computational steps in the other. This is particularly useful when one

wants to translate a solution from one model into the other. A translation via a

Turing machine squares the time complexity of the new solution.

These simulations essentially use all types of processors (substitution, insertion,

deletion). A natural problem regards the existence of such simulations when the

two networks that simulate each other are formed by just two types of processors

or even one type only. In this note we continue the investigation in this direction.

More precisely, we consider simulations between networks containing substitution

processors only. It turned out that even for these restricted variants a direct and

computationally efficient simulation exists.

2. Accepting Networks of Substitution Processors

We start by summarizing the notions used throughout the paper. An alphabet is a

finite and nonempty set of symbols. Any finite sequence of symbols from an alphabet

V is called word over V . The set of all words over V is denoted by V ∗, the empty

word is denoted by ε, while alph(x) denotes the minimal alphabet with respect to

inclusion W ⊆ V such that x ∈ W ∗.

We say that a rule a → b, with a, b ∈ V is a substitution rule. Given a rule σ as

above and a word w ∈ V ∗, we define the following action of σ on w:

σ(w) =

{
{ubv : ∃u, v ∈ V ∗ (w = uav)},

{w}, otherwise

Note that a rule as above is applied to all occurrences of the letter a in different

copies of the word w. An implicit assumption is that arbitrarily many copies of w

are available.

For every rule σ and L ⊆ V ∗, we define the action of σ on L by σ(L) =
⋃

w∈L

σ(w).

Given a finite set of substitution rules M , we define the action of M on the word w

and the language L by M(w) =
⋃

σ∈M

σ(w) and M(L) =
⋃

w∈L

M(w), respectively.

By convention, we state ∅(w) = {w}. For two disjoint subsets P and F of an

alphabet V and a word z over V , we define the predicates:

ϕ(s)(z;P, F) ≡ P ⊆ alph(z) ∧ F ∩ alph(z) = ∅

ϕ(w)(z;P, F) ≡ if P 6= ∅ then alph(z) ∩ P 6= ∅ ∧ F ∩ alph(z) = ∅.

The construction of these predicates is based on random-context conditions

defined by the two sets P (permitting contexts/symbols) and F (forbidding

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

158 F. Arroyo Montoro et al.

contexts/symbols). Informally, the first condition requires that all permitting sym-

bols are present in z and no forbidding symbol is present in z, while the second

one is a weaker variant of the first, requiring that at least one permitting symbol

appears in z and no forbidding symbol is present in z. For every language L ⊆ V ∗

and β ∈ {(s), (w)}, we define:

ϕβ(L, P, F) = {z ∈ L | ϕβ(z;P, F)}.

A substitution processor over V is a tuple (M,PI, FI, PO, FO), where:

• M is a set of substitution rules over the alphabet V .

• PI, FI ⊆ V are the input permitting/forbidding contexts of the processor,

while PO,FO ⊆ V are the output permitting/forbidding contexts of the

processor. Informally, the permitting input/output contexts are the set of

symbols that should be present in a word, when it enters/leaves the pro-

cessor, while the forbidding contexts are the set of symbols that should not

be present in a word in order to enter/leave the processor.

We now define two variants of accepting networks of substitution processors

as particular cases of AHNEPs. The reader interested in the definition of these

networks in the general case of where all types of processors are allowed is referred

to [8] (for AHNEP) and [4] (for AHNEPFC). Note that the word hybrid appearing

in the name of AHNEPs does not make sense anymore as substitution is applied

only at any position and not in either one end or any position of the word as it is

the case for insertion and deletion in AHNEPs.

An accepting network of substitution processors (ANSP for short) is a 7-tuple

Γ = (V, U,G,N , β, xI , xO), where:

• V and U are the input and network alphabets, respectively, V ⊆ U .

• G = (XG, EG) is an undirected graph without loops, with the set of nodes XG

and the set of edges EG. Each edge is given in the form of a binary set. G is called

the underlying graph of the network.

• N is a mapping which associates with each node x ∈ XG the substitution processor

N (x) = (Mx, PIx, FIx, POx, FOx).

• β : XG −→ {(s), (w)} defines the type of the input/output filters of a node. More

precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = ϕβ(x)(·;PIx, F Ix),

output filter: τx(·) = ϕβ(x)(·;POx, FOx).

That is, ρx(z) (resp. τx) indicates whether or not the word z can pass the input

(resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set of words of

L that can pass the input (resp. output) filter of x.

• In and Out ∈ XG are the input node, and the output node, respectively, of the

ANSP.

An accepting network of substitution processors with filtered connections

(ANSPFC for short) is a 8-tuple Γ = (V, U,G,R,N , β, In,Out), where:

� V, U,G, In, and Out have the same meaning as for ANSPs.

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

Filter Position in Networks of Substitution Processors Does Not Matter 159

� R is a mapping which associates with each node the set of substitution rules that

can be applied in that node.

� N : EG −→ 2U × 2U is a mapping which associates with each edge e ∈ EG the

disjoint sets N (e) = (Pe, Fe), Pe, Fe ⊂ U .

� β : EG −→ {(s), (w)} defines the filter type of an edge.

For the two variants we say that card(XG) is the size of Γ. When we want to

refer to any of the two variants we use the notation ANSP[FC].

A configuration of an ANSP[FC] Γ as above is a mapping C : XG −→ 2V
∗

which associates a set of words with every node of the graph. A configuration may

be understood as the sets of words which are present in any node at a given moment.

A configuration can change either by a substitution step or by a communication step.

A substitution step is common to all models. When changing by a substitution

step each component C(x) of the configuration C is changed in accordance with the

set of substitution rules Mx or R(x) associated with the node x. Formally, we say

that the configuration C′ is obtained in one substitution step from the configuration

C, written as C =⇒ C′, if and only if

C′(x) = Mx(C(x)) or C′(x) = R(x)(C(x)), for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG of an

ANSP sends one copy of each word it has (without keeping any copy of it), which

is able to pass the output filter of x, to all the node processors connected to x and

receives all the words sent by any node processor connected with x provided that

they can pass its input filter. Formally, we say that the configuration C′ is obtained

in one communication step from configuration C, written as C ` C′, if and only if

C′(x) = (C(x) − τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y)))

for all x ∈ XG. Note that words which leave a node are eliminated from that node.

If they cannot pass the input filter of any node, they are lost.

When changing by a communication step, each node processor x ∈ XG of an

ANSPFC sends one copy of each word it has to every node processor y connected

to x, provided they can pass the filter of the edge between x and y. It keeps no copy

of these words but receives all the words sent by any node processor z connected

with x providing that they can pass the filter of the edge between x and z.

Formally, we say that the configuration C′ is obtained in one communication

step from configuration C, written as C ` C′, iff

C′(x) = (C(x) \ (
⋃

{x,y}∈EG

ϕβ({x,y})(C(x), P{x,y}, F{x,y})))

∪(
⋃

{x,y}∈EG

ϕβ({x,y})(C(y), P{x,y}, F{x,y}))

for all x ∈ XG. Note that a copy of a word remains in the sending node x only if it

not able to pass the filter of any edge connected to x.

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

160 F. Arroyo Montoro et al.

Let Γ be an ANSP[FC], the computation of Γ on the input word z ∈ V ∗ is a

sequence of configurations C
(z)
0 , C

(z)
1 , C

(z)
2 , . . ., where C

(z)
0 is the initial configura-

tion of Γ defined by C
(z)
0 (In) = {z} and C

(z)
0 (x) = ∅ for all x ∈ XG, x 6= In,

C
(z)
2i =⇒ C

(z)
2i+1 and C

(z)
2i+1 ` C

(z)
2i+2, for all i ≥ 0. By the previous definitions, each

configuration C
(z)
i is uniquely determined by the configuration C

(z)
i−1. A computa-

tion as above is said to be an accepting computation if there exists a configuration in

which the set of words existing in the output node Out is non-empty. The language

accepted by Γ is

L(Γ) = {z ∈ V ∗ | the computation of Γ on z is an accepting one}.

We denote by L(ANSP) and L(ANSPFC) the class of languages accepted by

ANSPs and ANSPFCs, respectively.

3. Equivalence Between the Two Variants

In this section we prove the main result of the paper, namely L(ANSP) and

L(ANSPFC) coincide. The proof consists of direct simulations between the two

variants. Furthermore, we show that both simulations are time complexity preserv-

ing.

Proposition 1. L(ANSP) ⊆ L(ANSPFC).

Proof. Let Γ = (V, U,G,N , β, In,Out) be an ANSP with XG = {x1, x2, . . . , xn},

for some n ≥ 2 such that In = x1 and Out = xn. We construct the ANSPFC

Γ′ = (V,W,G′,R,N ′, β′, In′, Out), where

W = U ∪ {a′ | a ∈ U}
︸ ︷︷ ︸

U ′

∪{a′′ | a ∈ U}
︸ ︷︷ ︸

U ′′

∪{a | a ∈ U}
︸ ︷︷ ︸

U

,

G′ = (XG′ , EG′),

and the nodes in XG′ and their set of substitution rules are defined as follows. For

each xi ∈ XG, i 6= n, we consider the following nodes in XG′ :

x′
i : {a → b′ | a → b ∈ Mxi

},

xa
i (prepare check out), a ∈ U : {a′ → a},

xi(check out) : {a → a′′ | a ∈ U},

xi(prepare check in) : {a′′ → a | a ∈ U},

x1
i (prepare back) : {a → a | a ∈ U},

xi(back) : {a → a | a ∈ U}.

Some more nodes are in XG′ depending on the filter type of xi, namely

x2
i (prepare back), if β(xi) = (w), or all nodes xZ

i (prepare back), Z ∈ POxi
,

if β(xi) = (s). The set of substitution rules in all these nodes is the same:

{a → a | a ∈ U}.

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

Filter Position in Networks of Substitution Processors Does Not Matter 161

Table 1.

Edge P F β′

{x′i, x
a
i (prepare check out)}, a ∈ U {a′} ∅ (w)

{xai (prepare check out), xi(check out)}, POxi FOxi ∪ U ′ ∪ U ′′ β(xi)
a ∈ U

{xi(check out), xi(prepare check in)} U ′′ ∅ (w)

{xi(prepare check in), x′j}, P Ixj FIxj ∪ U ′ ∪ U ′′ β(xj)

{xi, xj} ∈ EG

{xai (prepare check out), x1i (prepare back)}, FOxi U ′ ∪ U (w)
a ∈ U

{xai (prepare check out), x2i (prepare back)}, W POxi ∪ U ′ ∪ U (w)
a ∈ U , if β(xi) = (w)

{xai (prepare check out), xZi (prepare back)}, W {Z} ∪ U ′ ∪ U (w)
a ∈ U,Z ∈ POxi , if β(xi) = (s)

{xki (prepare back), xi(back)}, U ∅ (w)
k ∈ {1, 2}, if β(xi) = (w)

{xZi (prepare back), xi(back)}, U ∅ (w)
Z ∈ POxi , if β(xi) = (s)

{xi(back), x
′
i} W U ′ ∪ U (w)

We now define the edges of EG′ and their filters.

We now show how Γ′ simulates any computation of Γ on some input word. To

this aim, let us consider that a word, say z ∈ U∗, is in the node xi of Γ before a sub-

stitution step. We analyze all possible cases. We first assume that z is transformed

by one substitution rule, say a → b, into z1 which can pass the output filter of xi.

Further z1 enters xj and a copy originated from z1 will eventually enter Out.

��
��
x′
i

�
�

�
�xc1

i (prepare check out)

�
�

�
�xcm

i (prepare check out)

�
�

�

xi(check out)

�
�

�

xi(prepare check in)

��
��

x′
j

>

~

R

I

3

+

-�

?

6

Diagram 1.

This computation is simulated in Γ′ as follows. The rule a → b′ is applied to

z in x′
i, all the obtained words go out from x′

i and enter xb
i (prepare check out)

where b′ is restored to the original b. Note that no word can return to x′
i. Among

them is also z1. As z1 is able to pass the output filter of xi in Γ, the same word

arrives in xi(check out) of Γ′. Two possible cases may appear now: (i) a symbol

of z1 is replaced by its double primed copy, or (ii) no substitution is applied to z1
(this is possible when z1 does not contain all symbols from U). In the first case,

all words go to xi(prepare check in). Again two situations may appear: (i.1) the

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

162 F. Arroyo Montoro et al.

modified symbol is restored, or (i.2) no substitution is applied. In case (i.1), z1
which has just been restored enters x′

j and the process of simulation is resumed for

the new node. In case (i.2), an infinite “ping-pong” process between xi(check out)

and xi(prepare check in) may occur and/or z1 is obtained in xi(prepare check in).

Note that the possible infinite “ping-pong” process neither prevents z1 to enter x′
j

nor produces a copy that could parasitically lead to acceptance. We return now to

the second case (ii) which may simply initiate a similar infinite “ping-pong” process

between xb
i (prepare check out) and xi(check out). This discussion is schematically

illustrated by Diagram 1, where an arrow indicates how words can move between

nodes. Note that these arrows do not mean the edges in the underlying graph which

is undirected. Furthermore, we assume that U = {c1, c2, . . . , cm}, for some m ≥ 1.

Another possible situation when z lies in xi of Γ is to get another word, say

z1, after several substitutions in succession (the word could not pass the output

filter of xi after any intermediate substitution) which is now able to go out from xi.

As above, we further assume that z1 enters xj and a copy originated from z1 will

eventually enter Out. This situation is captured in Γ′ as shown in Diagram 2 for

the case β(xi) = (w).

��
��
x′
i

�
�

�

xb

i (prepare check out)

�
 �	x1
i (prepare back)

�
�

�

x2

i (prepare back)

�
�

�

xi(back)

-
*

�

s
k

~
}

3
+ 6

6

Diagram 2.

More precisely, every word obtained in xi after an intermediate substitution step

will return to x′
i via the following itinerary: xb

i (prepare check out), for some b ∈ U ,

then xα
i (prepare back), where α is either in {1, 2}, provided that β(xi) = (w), or in

POxi
, provided that β(xi) = (s), then xi(back) and finally x′

i. Again, this process

does not lead to the acceptance of illegal words.

The last situation that may occur in xi is that no word originating from z can

either leave xi or enter some node xj . The same happens when z lies in x′
i of Γ

′.

From the above considerations, it follows that Γ′ simulates in at most 3 pro-

cessing steps and 4 communication steps a processing step of Γ, while every com-

munication step of Γ is simulated in a communication step in Γ′. Therefore, the

simulation of Γ by Γ′ is done efficiently.

Proposition 2. L(ANSPFC) ⊆ L(ANSP).

Proof. Let Γ = (V, U,G,R,N , β, In′, Out) be an ANSPFC with XG =

{x1, x2, . . . , xn}, for some n ≥ 2 such that In = x1 and Out = xn. We construct

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

Filter Position in Networks of Substitution Processors Does Not Matter 163

the ANSP Γ′ = (V,W,G′,N ′, β′, In′, Out), where

W = U ∪ {a′ | a ∈ U}
︸ ︷︷ ︸

U ′

∪{a | a ∈ U}
︸ ︷︷ ︸

U

,

G′ = (XG′ , EG′).

The nodes in XG′ and the substitution processors associated with them are defined

as follows:

Node M PI FI PO FO β′

yi, 1 ≤ i ≤ n {a → a′ | a ∈ U} U U ′ U ′ ∅ (w)

y′i, 1 ≤ i ≤ n {a′ → a | a ∈ U} U ′ ∅ U U ′ (w)

y(i,j), R(xi) U U ′ ∪ U P{xi,xj} F{xi,xj}∪ β({xi, xj})

1 ≤ i 6= j ≤ n, U ′ ∪ U

{xi, xj} ∈ EG

zj , 1 ≤ j ≤ n {a → a | a ∈ U} U ∅ U U ′ (w)

zj , 1 ≤ j ≤ n {a → a | a ∈ U} U U ′ U U (w)

Furthermore,

EG′ = {{yi, y
′
i} | 1 ≤ i ≤ n} ∪ {{zi, zi} | 1 ≤ i ≤ n} ∪ {{zi, yi} | 1 ≤ i ≤ n} ∪

{{y′i, y(i,j)} | 1 ≤ i 6= j ≤ n, {xi, xj} ∈ EG} ∪

{{y(i,j), zj} | 1 ≤ i 6= j ≤ n, {xi, xj} ∈ EG}.

Note that for each edge {xi, xj} ∈ EG, both nodes y(i,j) and y(j,i) belong to XG′ .

They differ each other by the set of substitutions: R(xi) in y(i,j) and R(xj) in y(j,i).

The simulation proposed by this construction can be followed more easily than

the previous one. Let u ∈ U∗ be a word in the node xi of Γ before a substitution

step. We assume that u is transformed by one or more substitution rules into u1

which can pass the filter on the edge {xi, xj} and a copy originated from u1 will

eventually enter Out.

We now follow the itinerary of u through Γ′ which leads to acceptance. From

yi, all words obtained from u, in which an arbitrary occurrence of some symbol was

replaced by its primed copy, go to y′i, where u is recovered. From y′i, u enters y(i,j),

where u1 is obtained and send out to zj . From now on, it enters zj and then yj
and the simulation process is resumed with this node. Note the role played by the

intermediate nodes y′i and zj , namely to prevent a word going out from y(i,j) to re-

enter y(i,j) in the next communication step. A possible direct exchange between the

nodes xi and xj in Γ is simulated in Γ′ by an itinerary following (not in immediate

succession) y(i,j), y(j,i), y(i,j), and so on.

It is easy to note that each substitution/communication step in Γ is simulated

by Γ′ with a constant number of substitution/communication steps. Therefore, we

can state the main result of the paper.

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

164 F. Arroyo Montoro et al.

Theorem 1. L(ANSPFC) = L(ANSP). Moreover, each simulation is time com-

plexity preserving.

4. Further Work

In almost all works devoted to AHNEPs and AHNEPFCs, the underlying graph is

a complete graph. Simulations preserving the type of the underlying graph of the

simulated network (together with its computational complexity) represent, in our

view, a matter of interest. Starting from the observation that every ANSPFC can be

immediately transformed into an equivalent ANSPFC with a complete underlying

graph (the edges that are to be added are associated with filters which make them

useless), we may immediately state that Proposition 1 holds for complete ANSPs

and ANSPFCs as well. A direct simulation of ANSPFCs by complete ANSPs seems

to be possible but the complexity is increased by a factor equal to the length of the

input word. A complexity preserving simulation remains open.

Furthermore, simulations preserving complexity as well as the shape (ring, star,

grid, etc.) of the underlying graph remain to be further investigated. Last but not

least, the investigation started here for substitution may be continued for the other

two operations: insertion and deletion.

References

[1] P. Bottoni, A. Labella, F. Manea, V. Mitrana and J. Sempere, Filter position in
networks of evolutionary processors does not matter: A direct proof, in Proc. 15th

International Conf. on DNA Computing and Molecular Programming, (LNCS 5877,
Springer, 2009), pp. 1–11.

[2] E. Csuhaj-Varjú and A. Salomaa, Networks of parallel language processors, in New

Trends in Formal Languages (LNCS 1218, Springer, 1997), pp. 299-318.
[3] E. Csuhaj-Varjú and V. Mitrana, Evolutionary systems: a language generating device

inspired by evolving communities of cells, Acta Informatica 36 (2000) 913-926.
[4] C. Drăgoi, F. Manea and V. Mitrana, Accepting networks of evolutionary processors

with filtered connections, Journal of Universal Computer Science 13 (2007) 1598-
1614.

[5] L. Errico and C. Jesshope, Towards a new architecture for symbolic processing, in Ar-

tificial Intelligence and Information-Control Systems of Robots 94, (World Scientific,
1994), pp. 31-40.

[6] S.E. Fahlman, G.E. Hinton and T.J. Seijnowski, Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann Machines, in Proc. of the 3rd. National Con-

ference on Artificial Intelligence (AAAI Press, Washington DC, 1983), pp. 109-113.
[7] W. Hillis, The Connection Machine (MIT Press, Cambridge, 1985).
[8] F. Manea, M. Margenstern, V. Mitrana and M.J. Perez-Jimenez, A new charac-

terization of NP, P, and PSPACE with accepting hybrid networks of evolutionary
processors, Theory of Computing Systems 46 (2010) 174-192.

[9] F. Manea, C. Martin-Vide and V. Mitrana, Accepting networks of evolutionary word
and picture processors: a survey, in Scientific Applications of Language Methods,
(World Scientific, 2010), pp. 523–560.

December 28, 2010 15:22 WSPC/INSTRUCTION FILE
S0129054111007915

Filter Position in Networks of Substitution Processors Does Not Matter 165

[10] G. Păun and L. Sântean, Parallel communicating grammar systems: the regular case,
Annals of University of Bucharest, Ser. Matematica-Informatica 38 (1989) 55–63.

[11] G. Păun, (2000). Computing with Membranes, Journal of Computer and System

Sciences 61 (2000) 108-143.

	Introduction
	Accepting Networks of Substitution Processors
	Equivalence Between the Two Variants
	Further Work

