Filter Position in Networks of Evolutionary
Processors Does Not Matter: A Direct Proof

Paolo Bottoni!, Anna Labella!, Florin Manea?*, Victor Mitrana?3:*,
and Jose M. Sempere®**

! Department of Computer Science, “Sapienza” University of Rome
Via Salaria 113, 00198 Rome, Italy
{bottoni,labella}@di.uniromal it
2 Faculty of Mathematics, University of Bucharest
Str Academiei 14, 70109 Bucharest, Romania
{flmanea,mitrana}@fmi.unibuc.ro
3 Department of Information Systems and Computation
Technical University of Valencia,
Camino de Vera s/n 46022 Valencia, Spain
jsempere@dsic.upv. es

Abstract. In this paper we give a direct proof of the fact that the
computational power of networks of evolutionary processors and that of
networks of evolutionary processors with filtered connections is the same.
It is known that both are equivalent to Turing machines. We propose here
a direct simulation of one device by the other. Each computational step
in one model is simulated in a constant number of computational steps
in the other one while a translation via Turing machines squares the time
complexity

1 Introduction

The origin of accepting networks of evolutionary processors (ANEP for short)
is a basic architecture for parallel and distributed symbolic processing, related
to the Connection Machine [5] as well as the Logic Flow paradigm [4], which
consists of several very simple processors (called evolutionary processors), each
of them being placed in a node of a virtual complete graph. By an evolutionary
processor we mean an abstract processor which is able to perform very simple
operations, namely point mutations in a DNA sequence (insertion, deletion or
substitution of a pair of nucleotides). More generally, each node may be viewed
as a cell having genetic information encoded in DNA sequences which may evolve
by local evolutionary events, that is point mutations. Each node is specialized
just for one of these evolutionary operations. Furthermore, the data in each

* Work supported by the PN-II Programs 11052 (GlobalComp) and 11056 (CellSim).
Victor Mitrana acknowledges support from Academy of Finland, project 132727

** Work supported by the Spanish Ministerio de Educacién y Ciencia under project
TIN2007-60769.

R. Deaton and A. Suyama (Eds.): DNA 15, LNCS 5877, pp. 1-11, 2009
© Springer-Verlag Berlin Heidelberg 2009

2 P. Bottoni et al

node 1s organized in the form of multisets of words (each word may appear in
an arbitrarily large number of copies), and all copies are processed in parallel
such that all the possible events that can take place do actually take place.
Further, all the nodes send simultaneously their data and the receiving nodes
handle also simultaneously all the arriving messages, according to some strategies
modelled as permitting and forbidding filters and filtering criteria, see [7]. The
reader interested in a more detailed discussion about the model is referred to
[7,6]. In [7] one shows that this model is computationally complete and presents
a characterization of the complexity class NP based on accepting networks of
evolutionary processors (ANEP for short),

It is clear that filters associated with each node of an ANEP allow a strong
control of the computation Indeed, every node has an input and output filter;
two nodes can exchange data if it passes the output filter of the sender and the
input filter of the receiver. Moreover, if some data is sent out by some node and
not able to enter any node, then it is lost. The ANEP model considered in [7]
is simplified in [2] by moving the filters from the nodes to the edges. Each edge
is viewed as a two-way channel such that the input and output filters, respec-
tively, of the two nodes connected by the edge coincide Cleatly, the possibility
of controlling the computation in such networks seems to be diminished For
instance, there is no possibility to lose data during the communication steps. In
spite of this {act, in the aforementioned work one proves that these new devices,
called accepting networks of evolutionary processors with filtered connections
(ANEPFC) are still computationally complete. This means that moving the fil-
ters from the nodes to the edges does not decrease the computational power
of the model. Although the two variants are equivalent from the computational
power point of view, no direct proof for this equivalence has been proposed so
far It is the aim of this paper to fill this gap. We mention that both simulations
presented here are time efficient, namely each computational step in one model
is simulated in a constant number of computational steps in the other. This is
particularly useful when one wants to translate a solution from one model into
the other. A translation via a Turing machine squares the time complexity of
the new solution.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is wiitten
card(A). Any finite sequence of symbols from an alphabet V is called word over
V. The set of all words over V' is denoted by V* and the empty word is denoted
by €. The length of a word z is denoted by |z| while alph(z) denotes the minimal
alphabet W such that z € W=,

We say that a rule @ — b, with a,b € VU{e} and ab # £ is a substitution rule
if both a and b are not ¢; it is a deletion ruleif a # € and b = ¢; it is an insertion
rule if a = € and b # €. The set of all substitution, deletion, and insertion rules
over an alphabet V' are denoted by Suby, Dely, and Insy, respectively.

v ¥} ot O

Filter Position in Networks of Evolutionary Processors Does Not Matter 3

Given a rule o as above and a word w € V¥, we define the following actions of
o on w:

{wbv: Ju,v € V" (w = uvav)},

{w}, otherwise

{uv: Ju,v € V" (w = uav}},

{w}, otherwise

O R s SN S Gl

{w}, otherwise {w}, otherwise
elfoc=ec—ac€ Insy, then

e Ifo=a—b& Suby, then o (w) = {

e lf o =a— ¢ & Dely, then ¢"(w) = {

o*(w) = {uav: Ju,v e V" (w=u)}, 0" (w) = {wa}, o'(w) = {aw}

a € {*,1,7} expresses the way of applying a deletion or insertion rule to a word,
namely at any position (a = %), in the left (o = 1), or in the 1ight (@ =171) end
of the word, 1espectively. For every rule o, action o € {x,1,7}, and L C V*, we
define the a-action of o on L by o®(L) = U o*(w). Given a finite set of rules

wel
M, we define the «-action of M on the word w and the language L by:

M(w) = U, ey 0%w) and MO(L) =, o, M (w),

respectively. In what follows, we shall refer to the rewriting operations defined
above as evolutionary operations since they may be viewed as linguistic formu-
lations of local DNA mutations. :

For two disjoint subsets P and F' of an alphabet V and a word w over V, we
define the predicates:

o (w; P, F) = P C alph(w) A Fralph(w)=10
oW (w; P FY = alph(w) NP £ 0 A Fnalph(w) =0

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts/symbols) and F' (forbidding con-
texts/symbols). Informally, the first condition requires that all permitting sym-
bols are present in w and no forbidding symbol is present in w, while the second
one is a weaker variant of the first, requiring that at least one permitting sym-
bol appears in w and no forbidding symbol is present in w. For every language
L CV*and 8 € {(s), (w)}, we define:

WP (L,P,F) ={w¢c L|¢"(u; P, F)}.
An evolutionary processor over V' is a tuple (M, PI, FI, PO, FO), where:

e M is a set of substitution, deletion or insertion rules over the alphabet V.
Formally: (M C Suby) or (M C Dely) or (M C Insy) The set M represents
the set of evolutionary rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.

e PI.FI C V are the input permitting /forbidding contexts of the processor,
while PO, FO C V are the output permitting/forbidding contexts of the pro-
cessor. Informally, the permitting input/output contexts are the set of symbols
that should be present in a word, when it enters/leaves the processor, while the

4 P. Bottoni et al

forbidding contexts are the set of symbols that should not be present in a word
in order to enter/leave the processor

We denote the set of evolutionary processors over V by EPy. Obviously, the
evolutionary processor described here is a mathematical concept similar to that
of an evolutionary algorithm, both being inspired by the Darwinian evolution.
The rewriting operations we have considered might be interpreted as mutations
and the filtering process described above might be viewed as a selection process.
Recombination is missing but it was asserted that evolutionary and functional
relationships between genes can be captured by taking only local mutations into
consideration [10] Furthermore, we are not concerned here with a possible bio-
logical implementation of these processors, though a matter of great importance.

An accepting network of evolutionary processors (ANEP for short) is a 7-tuple
r'=WV,UGN,uB,z1,t0), where:

¢ V and U are the input and network alphabets, respectively, V C U.

o G = (Xg, Fg) is an undirected graph, with the set of nodes X and the set
of edges E¢ Each edge is given in the form of a binary set. & is called the
underlying groph ol the network.

o N : Xo — EPy is a mapping which associates with each node x € X¢ the
evolutionary processor N(z) = (M,, PI,, F1,, PO,, FOy,).

o w: Xg ~— {*x 1,7} a(r) gives the action mode of the rules of node z on
the words existing in that node.

o f: Xe — {(s),(w)} defines the type of the input/output filters of a node.
More precisely, for every node, r € X, the following filters are defined:

input filter: p, () = @?@)(; PI,, FI,),
output filter: 7,(-) = ¢*®)(; PO,, FO,)
That is, py(w) (resp. 7) indicates whether or not the word w can pass the
input (resp. output) filter of z. More generally, p, (L) (resp. 7,(L)) is the set
of words of L that can pass the input {1esp output) filter of z.

o x5 and zo € X¢g are the input node, and the oufput node, respectively, of

the ANEP.

An accepting network of evolutionary processors with filtered connections(ANEPFC
for short) isa 8&tuple I' = (V,U, G, R, N, o, 8,71, 70), where:

o V.U, G, o, x5, and 2o have the same meaning as for ANEPs.

o R: Xg — 2°ubv y 2Delu (y2Insu is 3 mapping which associates with each
node the set of evolutionary rules that can be applied in that node. Note that
each node is agsociated only with one type of evolutionary rules, namely for
every z € Xg either R(z) C Suby or R{x) C Dely or R{z) C Insy holds.

o N : Eg — 2V x 2Y is a mapping which associates with each edge e € Eg
the disjoint sets A'(e) = (FPe, Fe), P, Fe. C U,

o B: Eqg — {s,w} defines the filter type of an edge.

For both variants we say that card(Xg) is the size of I
A configuration of an ANEP or ANEPFC I' as above is a mapping C': X —
2V which associates a set of words with every node of the graph. A configuration

Filter Position in Networks of Evolutionary Processors Does Not Matter 5

may be understood as the sets of words which are present in any node at a given
moment. A configuration can change either by an evolufionary step or by a
communication step.

An evolutionary step is common to both models. When changing by an evo-
lutionary step each component C(z) of the configuration C is changed in accor-
dance with the set of evolutionary rules M, associated with the node z and the
way of applying these rules a(z). Formally, we say that the configuration C” is
obtained in one evolutionary step from the configuration C, written as C = ",
if and only if

C'(z) = M2 N(C(x)) for all z € X

When changing by a communication step, each node processor x € X of an
ANEP sends one copy of each word it has, which is able to pass the output filter
of z, to all the node processors connected to z and receives all the words sent
by any node processor connected with x provided that they can pass its input
filter. Formally, we say that the configuration C’ is obtained in one communica-
tion step from configuration C, written as C'+ C’, if and only if

C'(z) = (C@) —m(C@) U {J @®CW)Ne(Cw)
{z.y}€Ee
for all 2 € X¢. Note that words which leave a node are eliminated from that
node. If they cannot pass the input filter of any node, they are lost.

When changing by a communication step, each node processor x € Xg of an
ANEPFC sends one copy of each word it has to every node processor y connected
to x, provided they can pass the filter of the edge between z and y. It keeps no copy
of these words but receives all the words sent by any node processor z connected
with z providing that they can pass the filter of the edge between z and z

Formally, we say that the configuration C’ is obtained in one communication
step from configuration ', written as C'F C, iff

C'lw)=(Cl)\(|J LDy, M{z y1)))
{z,u}€FEg
u U O, Nz,))

{zzy}eEG

for all x € Xg. Note that a copy of a word remains in the sending node x only
if it not. able to pass the filter of any edge connected to z.

Let I" be an ANEP or ANEPFC, the computation of I' on the input word
w € V* is a sequence of configurations C’éw), wa), ci™) . where C’éw) is the
initial configuration of I" defined by C{*)(z;) = {w} and C§*)(z) = § for all
z € Xa,r # 77, Cg;”) — Cé;ﬂzl and C’Z(:-Ljr)l - 02(;”32, for alli > 0. By the previous
definitions, each configuration Ci(w) is uniquely determined by the configuration
C’fi”i A computation as above is said to be an accepting computation if there
exists a configuration in which the set of words existing in the output node o
is non-empty. The language accepted by I' is

6 P Bottoni et al

L(I') = {w € V* | the computation of I" on w is an accepting one}.

We denote by L(ANEP) and L{(ANEPFC) the class of languages accepted by
ANEPs and ANEPFCs, respectively.

3 A Direct Simulation of ANEPs by ANEPFCs
Theorem 1. L(ANEP) C L(ANEPFC).

Proof Let I' = (V,U,G,N,a,B,z1,%,) be an ANEP with the underlying graph
G = (Xg,Eg) and Xg = {z1,72, ,zn} for some n > 1 We construct the
ANEPFC I'" = (V,U",G"\R,N", &/, i, :1:1, 73, where

U =UU{X;, X4 XelUie{l, .. ,n}tu{$|ief{l, ,n}}U{#8}
The nodes of the graph G’ = (X é;,E’G), the sets of rules associated with them
and the way in which they are applied, as well as the edges of E(, together with
the filters associated with them are defined in the following.

First, for every pair of nodes z;,z; from X¢ such that {z;,z;} € Fg we have
the f'ollowing nodes in I’

~sl; Rlal) = (s~ Shoal(el,) =
55’37' R(z?;) = {8 — e} o'(z7;) = 1,
and the followmg edges

—{a:z,m }: P =PO(x;), F = FO(z;) U{$}, 8’ = B(z;)
- {fﬁw ”} P = Pl(z;), F = FI(zy), ' = (w)

{xw,m b P=Pl(zy), F=FI(z;) U{$,$;}, 0" = B(z;).
For each node z; in I we add a subnetwork to I according to the cases consid-
ered in the sequel. :

Case 1. For an insertion or a substitution node z; € X¢g with weak filters we
have the following subnetwork in I

1

Ly
xi 22
P = {$;} Y — Xi| P=U ‘
{e — &} F={X| Y » X eM,,, | F={#} {8 — #}
Y e UU{e}} '
o (z5) =7 XeU} B=uw o (22) = #
B=w |o(zi)=al@)
p={#}p| F=184
8= w
pP=U
P=U,F {X: — X | = {#} —
X eU) (el
g = (w) o/ (@f) = B=w (F@) =
3
2! i

i

O(z;) U{$;}. if z; is a substitution node

The set of forbidden symbols F' on the edge {:cf ,zf} is defined by:

[{FO(IE) U PO(z;) U {$;}, if ; is an insertion node

Filter Position in Networks of Evolutionary Processors Does Not Matter 7

Case 2 If x; is an insertion or a substitution node with strong filters we just
add the following nodes to the above construction:

237 R(@p?) = {e - 8.}, o/ (2]7) = %,

1

and the edges
{-xf’zaﬂff}} P = {$?}1F = {Xi I X e U}aﬁl = (w)
5.2 , FO(xz;)U{Z §;}, U z; is an insertion node
{xf 2,7} P=ULF = {{Z, g&}) if{:zi is i substitution node
8" = (w), for all Z € PO(z;)
Case §. 1f x; € X is a deletion node, then the construction in the Case 1 is
modified as follows:

— The way of applying the rules in node z{ is changed to [if o(z;) =r.

— Parameters of the node z} ate now R(z!) = {X — X¢ | X — £ € M,,},

o (z}) = .

~ A new node is added: zf with R(z}) = {X¢ — ¢}, o/(z}) = a(z;).

— Parameters of the node z/ are now R(a:f) ={X? > X| X cU}, a’(:cif) = *,
In this case, the edges are:

—Azf, i h P={8} F={X?| X €U}, §' = (w),

~{zl, 22} P=U" F = {#}, 3 = (w),

—{al, @t P ={#}, F={8:}, 5 = (w),

(et P=U, P =05 = (u),

~{azl 23} P =FO(z;), F = {$;}, ' = (w).

Let us follow a computation of I” on the input word w € V* Let us assume
that w lies in the input node z] of I'V. In the same time, we assume that w is
found in 2, the input node of I'. Inductively, we may assume that a word w is
found in some z;, a node of I', as well as in zf from I,

In the sequel we consider two cases: z; is a substitution or a deletion node.
Since the reasoning for an insertion node is pretty similar to that for a substi-
tution node, it is left to the reader. Let #; be a substitution node, where a rule
Y — X is applied to w producing either w; Xws, if w = wnYws or w, if w
doesn’t contain Y. Here is the first difference with respect to an insertion node
where every rule that could be applied is actually applied In [, the word w is
processed as follows First w becomes w$; in ¢, then it can enter z] only Here it
may become w1 X;we$;, if w = w1 Y ws, or it is left unchanged. Further, w§; can
go back to z7, where another $; symbol is added to its 1ighthand end. Then it
returns to z; and the situation above is repeated When z; is an insertion node,
then this “ping-pong” process cannot happen. On the other hand, w; X;w.$;

enters z2. Tt is worth mentioning that any word arriving in 22 contains at most

2

one occurrence of X; for some X € U In z7, all the symbols §; are replaced by

which is to be deleted in 27 Finally, the current word enters mf where the
symbol X;, if any, is rewritten into X Thus, in node m{ we have obtained the
word w1 Xws, if w = w1 Yws, or wif w doesn’t contain Y'; all the other words

8 P. Bottoni et al

that may be obtained during these five steps either lead to the same word in 3:{

or have no effect on the rest of the computation.

The second case to be considered is when z; is a deletion node containing a
rile Y — &; we will assume that this node is a left deletion node, all the other
cases being treated similarly. In this node, the word w is transformed into w’, if
w =Y uw', or is left unchanged, otherwise. In I"* the word is processed as follows.
First, in 2§ a symbol $; is inserted in the rightmost end of the word Then the
word enters z}, where it is transformed into w1 Y %w,$ (if w = wy Yws, for all
the possible wi,wy € U*) or w$; (if ¥ doesn’t occur in w). After this step,
w$; goes back to zi, where another $; symbol is added. It then returns to x,}
and the situation above is repeated. On the other hand, all words w1 Y% $;
enter z7. Again, we mention that every word arriving in z2 contains at most one
occurrence of X% for some X € U Here all the symbols §; are replaced by #.
The words can now enter z2 only, where all the symbols # are deleted Further
they go to node z¥, where the symbol X? is deleted, provided that it is the
leftmost one. Otherwise, they are left unchanged. Then each obtained word goes
to :z:;f , where it is transformed back into w, if the symbol X 4 was not deleted in
the previous node, or can be left unchanged. If the word still contains X ¢ then
it goes back to node z} and the above considerations can be applied again. If
the word obtained doesn’t contain any X9, then it is either w’, where w = Yo/,
or w; all the other words that we may obtain during these six steps either lead
to the same word in xfc or have no effect on the rest of the computation.

In conclusion, if w € U* is a word in the nodes z; of I" and z{ of I/, then we
can obtain w’ € U* in one processing step of 1" if and only if we can obtain w'
in the node :z:f of I in 5 processing steps (if x; is an insertion or substitution
node) or in 6 processing steps (if z; is a deletion node) At this point we note
that w’ can leave z; and enters z; in I" if and only if w’ can leave rzf " and enters
3 via the nodes a; and 27 Tf w' can leave z; but cannot enter z; in I,
then it is trapped in a:llj in I”. Finally, if w’ cannot leave node z;, then it is
resent by $;f to z; (in the case of deletion nodes, and insertion and substitution
nodes with weak filters) or to the nodes 27, for all Z € PO(z;) (in the case of
insertion and substitution nodes with strong filters); from this point the process
described above is repeated, with the only difference that in the case of insertion
and substitution nodes with strong filters, the 1ole of node z] is played by the
nodes 2%

From the above considerations, it follows that I simulates in at most 6 pro-
cessing steps and 5 communication steps a processing step of 17, and in another
2 processing steps and 3 communication steps a communication step of I". We
conclude that L,(I") = L {I") [l

4 A Direct Simulation of ANEPFCs by ANEPs

Theorem 2. L(ANEPFC) C LIANEP),

Proof LetI'={(V,U G, RN, a,f,x1,z,) be an ANEPTC with G = (Xq, Eg),
X having n nodes 1,22, ., %, We construct the ANEP [V = (V,U',G', A,

Filter Position in Networks of Evolutionary Processors Does Not Matter 9

o, B, xr,20), where
— U’—VUXU{Y},X: {X;;11<1#j<ni#n, and {z;,2;} € Eg}
G = (X B, --
— Xt =A{zr,xoy U{zi o ; [1 <i#j<n,i#n, and {z;,2;} € Eg}
~BL = {{era} |20 <0} U {{ay, w1 si#j<nifnpU

{{zi 2} 1 1<i# 7 <n1<j#k <nfu{{zi, 70} [1<i<n—1}
and the other parameters defined as follows:

enodez;: M ={e— X;,;|2<i<n},
~-PI=V,FI=X,PO=X, FO =1,
—o =%, 3 = (w)

e nodes z; 5, 1 < i j<n,i#n: M =R(z;),
- Pl ={X;;}, FI = X\{Xi;}, PO= Py, 2}, FO = Fiz, 2.},
— o = ozi), B = B({zi, z;})-

e nodes 2} ;, 1 <i# j<n,i#n
M {{Xw- —Xipg|1<k<nk#7},fj<n

(X =Y ifj=n

- PI = {Xi}h, FT = X\ {Xi}, PO = (X U{Y]\ {Xi;}, FO =0,
—o =%, = (w)

onodeajoM b, PI={Y}, FI=0,PO =0, FO =1,
o = *, 18’ ()

Any computation in I’ on an input word w € V™ produces in z; all words
w X1 swe with wy, ws € V* such that w = wywe and 2 < ¢ < n provided that
{z1,z;} € E¢. Bach word containing X 1,; enters zq ;. In a more general setting,
we assume that a word 11X, 592, y1,%2 € V7, enters z, ; at a given step of the
computation of IV on w. This means that y = y1y; enters z; at a given step
of the computation of I on w. Let y be transformed into z = z12z» in node z;
and z can pass the filter on the edge befween z; and z;. Let us further assume
that y, is transformed into z,, p = 1,2 This easily implies that y, X, y2 is
transformed into 2; X; ;22 in node z; ; and 21X, ;22 can pass the output filter
of z; ;. Note that the converse is also true Now, 21X, ,22, j # n, enters x] i
where all words 2; X g22, with 1 <k # j <n and {z;, 21} € Egq, are produced.
Bach word 21 X 23 enters z;; and the process of Slmulatmg the computation
in I" resumes On the other hand, 21X, ,22 enters :Cz ., Where X;, is 1eplaced
by Y. All words produced in mz n, Jor some 1 <1 < n— 1, enter zo and the
computation ends. Note that by the considerations above, a word enters z; . if
and only if a word from z; was able to pass the filter on the edge between x;
and z, in I

Note that two consecutive steps (evolutionary and communication) in I are
simulated by four steps (two evolutionary and two communication) in I™. O

5 Final Remarks

The simulations presented above may lead to underlying graphs of the simulating
networks that differ very much from the underlying graphs of the simulated

10 P Bottoni et al

networks. However, it looks like there is some form of duality between edges and
nodes in the simulations. In network theory, some types of underlying graphs are
common like rings, stars, grids, etc Networks of evolutionary words processors,
seen as language generating or accepting devices, having underlying graphs of
these special forms have been considered in several papers, see, e.g., [8] for an
early survey. Simulations preserving the type of the underlying graph of the
simulated network represent a matter of interest that is not considered here.

On the other hand, in almost all works reported so far ANEPs and ANEPFCs
have a complete underlying graph Starting from the observation that every
ANEPFC can be immediately transformed into an equivalent ANEPFC with a
complete underlying graph (the edges that are to be added are associated with
filters which make them useless), we may immediately state that Theorem 1 holds
for complete ANEPs and ANEPFCs as well. Although it is true that every ANEP
is equivalent to a complete ANEP (every Turing machine can be simulated by a
complete ANEP), we do not know a simple and direct transformation as that for
ANEPFCs. Therefore, direct simulations preserving the type of the underlying
graph remain to be further investigated.

The language decided by an ANEP and ANEPFC is defined in [7] and [2],
respectively. It is easy to note that the construction in the proof of Theorem 2
works for a direct simulation of ANEPFCs halting on every input. However, in
the proof of Theorem 1, I doesn’t detect the non-accepting halting computa-
tions of I', since configurations obtained in consecutive processing steps of I are
not obtained here in consecutive processing steps. Thus I doesn’t necessarily
decide the language decided by I'. It is known from the simulation of Turing
machines by ANEPs and ANEPFCs [6,3] that the languages decided by ANEPs
can be also decided by ANEPFCs, Can the construction from the proof of The-
orem 1 be modified for a direct simulation of ANEPs halting on every input?
Finally, as the networks of evolutionary picture processors introduced in [1] do
not have insertion nodes, it would be of interest to find direct simulations for
these devices

References

1 Bottoni, P, Labella, A., Mifrana, V., Sempere, J.: Networks of evolutionary picture
processors (submitted)

2. Dragoi, C., Manea, F., Mitrana, V.: Accepting networks of evolutionary processors
with filtered connections. Journal of Universal Computer Science 13, 1598-1614
(2007)

3. Dragoi, C., Manea, F: On the descriptional complexity of accepting networks of
evolutionary processors with filtered connections. International Journal of Foun-
dations of Computer Science 19, 1113-1132 (2008)

4. Errico, L., Jesshope, C: Towards a new architecture for symbolic processing. In:

Artificial Intelligence and Information-Control Systems of Robots 1994, pp. 31-40

World Scientific, Singapore (1994)

Hillis, W.: The Connection Machine MIT Press, Cambridge (1985)

o

10

Fiiter Position in Networks of Evolutionary Processors Does Not Matter 11

Manea, F., Martin-Vide, C., Mitrana, V : On the size complexity of universal ac-
cepting hybrid networks of evolutionary processors. Mathematical Structuzes in
Computer Science 17, 753-771 (2007)

Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of
evolutionary systems In: Ferretti, C, Mauri, G., Zandron, C. (eds) DNA 2004.
LNCS, vol 3384, pp. 235-246. Springer, Heidelberg (2005)

Maztin-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and
perspectives In: Molecular Computational Models: Unconventional Approaches,
pp. 78-114. Idea Group Publishing, Hershey (2005)

Rozenberg, (., Salomaa, A. (eds): Handbook of Formal Languages Springer.
Berlin (1997)

Sankoff, D, et al.: Gene order comparisons for phylogenetic inference: evolution of
the mitochondrial genome. In: Proc. Natl Acad. Sci USA, vol 89, pp. 6575-6579

(1992)

