Solving NP-Complete Problems with Networks
of Evolutionary Processors

Juan Castellanos?, Carlos Martin-Vide?, Victor Mitrana?®,
and Jose M. Sempere?

! Dept Inteligencia Artificial - Facultad de Informdtica, Universidad Politécnica de
Madrid - Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain -
jcastellanos@fi.upm.es - http://www.dia.fi.upm.es
2 Research Group in Mathematical Linguistics - Rovira i Virgili University - Pga.
Imperial Tarraco 1, 43005 Tarragona, Spain - cmv@correu.urv.es
3 Faculty of Mathematics, University of Bucharest? - Str. Academiei 14, 70109
Bucharest, Romania - mitrana@funinf .math. unibuc.ro
* Department of Information Systems and Computation - Polytechnical University of
Valencia, - Valencia 46071, Spain - jsempere@dsic.upv.es

Abstract, We propose a computational device based on evolutionary
rules and communication within a network, similar to that introduced in
[4], called network of evolutionary processors. An NP-complete problem
is solved by networks of evolutionary processors of linear size in linear
time. Some furher directions of research are finally discussed.

1 Introduction

A basic architecture for parallel and distributed symbolic processing, related to
the Connection Machine [8] as well as the Logic Flow paradigm [5], consists of
several processors, each of them being placed in a node of a virtual complete
graph, which are able to handle data associated with the respective node. Each
node processor acts on the local data in accordance with some predefined rules,
and, then local data becomes a mobile agent which can navigate in the network
following a given protocol. Only such data can be communicated which can pass
a filtering process. This filtering process may require to satisfy some conditions
imposed by the sending processor, by the reveiving processor or by both of them.
All the nodes send simultaneously their data and the receiving nodes handle also
simultaneously all the arriving messages according to some strategies, see, eg.,
[6, 8].

Starting fiom the premise that data can be given in the form of strings, [4]
introduces a concept called network of parallel language processors in the aim of
investigating this concept in terms of formal grammars and languages. Networks
of language processors are closely related to grammar systems, more specifically
to parallel communicating grammar systems [3]. The main idea is that one can

1 Research supported by the Direccién General de Ensefianza Superior e Investigacién
Cientifica, SB 97-00110508

J. Mira and A. Prieto (Eds): IWANN 2001, LNCS 2084, pp 621-628, 2001.
® Springer-Verlag Berlin Heidelberg 2001

622 T Castellanos et a'l‘.

place a language generating device (grammar, Lindenmayer system, etc.} in any
node of an underlying graph which rewrite the strings existing in the node, then
the strings are communicated to the other nodes. Strings can be successfully
communicated if they pass some output and input filter.

In the present paper, we modify this concept in the following way inspired
from cell biology Each processor placed in a node is a very simple processor,
an evolutionary processor. By an evolutionary processor we mean a processor
which is able to perform very simple ooperations, namely point mutations in a
DNA sequence (insertion, deletion or substitution of a pair of nucleotides). More
generally, each node may be viewed as a cell having a genetic information encoded
in DNA sequences which may evolve by local evolutionary events, that is point
mutations. Each node is specialized just for one of these evolutionary operations.
Furthermore, the data is each node is organized in the form of multisets, each
copy being processed in parallel such that all the possible evolutions events that
can take place do actually take place.

These networks may be used as language (macroset) generating devices or as
computational ones. Here, we consider them as computational mechanisms and
show how an NP-complete problem can be solved in linear time.

It is worth mentioning here the similarity of this model to that of a P sys-
tem, a new computing model inspired by the hierarchical and modularized cell
structure recently proposed in [11].

2 Preliminaries

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. Any sequence of symbols from an alphabet
V' is called string (word) over V. The set of all strings over V is denoted by V*
and the empty string is denoted by e. The length of a string z is denoted by |z|.

A multiset over a set X is a mappingg M : X — NU{co}. The number M (z)
expresses the number of copies of 2z € X in the multiset M. When M (z) = oo,
then z appears arbitrarily many times in M. The set supp(M) is the support of
M,ie, supp(M) = {z € X | M{(z) > 0}. For two multisets M; and M, over X
we define their union by (M; U M,)(z) = Mi(z) + Ms(z). For other operations
on multisets the reader may consult [1].

A network of evolutionary processors (NEP for short) of size n is a construct

I'= (I/;NleZ}" JN’FL):

where:

— V' is an alphabet,
— foreach 1 <i <n, Ny = (M;, A;, PI;, FI;, PO;, FO;) is the i-th evolutionary
node processor of the network. The parameters of every processor are:
e M, is a finite set of evolution rules of one of the following forms only
-a—b,a,b €V (substitution rules),
-a— g, a €V {deletion rules),

Solving NP-Complete Problems with Networks of Evolutionary Processors 623

- & —a, a €V (insertion rules),
More clearly, the set of evolution rules of any processor contains either
substitution or deletion or insertion rules.

e A, is a finite set of strings over V. The set A; is the set of initial strings
in the ¢-th node. Actually, in what follows, we consider that each string
appearing in a node of the net at any step has an arbitrarily large num-
ber of copies in that node, so that we shall identify multisets by their
supports.

o PI; and FI; are subsets of V representing the input filter. This filter, as
well as the output filter, is defined by random context conditions, PI;
forms the permitting context condition and FI; forms the forbidding
context condition. A string w € V* can pass the input filter of the node
processor %, if w contains each element of PI; but no element of FI;.
Note that any of the random context conditions may be empty, in this
case the corresponding context check is omitted. We write p;(w) = true,
if w can pass the input filter of the node processor ¢ and p;(w) = false,
otherwise. -

e PO; and FO; are subsets of V' representing the output filter. Analo-
gously, a string can pass the output filter of a node processor if it satisfies -
the random context conditions associated with that node. Similarly, we
write 7;(w) = true, if w can pass the input filter of the node processor 4
and 7;(w) = false, otherwise.

By a configuration (state) of an NLP as above we mean an n-tuple ¢' =
(L1,La,...,Ly), with Ly C V* for all 1 <1 < n A configuration represents
the sets of strings (remember that each string appears in an arbitrarily large
number of copies) which are present in any node at a given moment; clearly the
initial configuration of the network is Cy = (A, Aa, ..., A,). A configuration can
change either by an evolutionary step or by a communicating step. When chan-
ging by a evolutionary step, each component L; of the configuration is changed
in accordance with the evolutionary rules associated with the node ¢.

Formally, we say that the configuration C; = (L1, L, ..., Ly) directly changes
for the configwration Cy = (L, LS, ..., L) by a evolutionary step, written as

Clm?cg

if L is the set of strings obtained by applying the rules of R; to the strings in
L; as follows:

- If the same substitiution rule may replace different occurrences of the same
symbol within a string, all these occurrences must be replaced within diffe-
rent copies of that string. The result is the multiset in which every string
that can be obtained appears in an arbitrarily large number of copies.

— Unlike their common use, deletion and insertion 1ules are applied only to
the end of the string. Thus, a deletion rule a = & can be applied only to
a string which ends by a, say wa, leading to the string w, and an insertion
rule € = ¢ applied to a string z consists of adding the symbol @ to the end
of z, obtaining za.

624 J Castellanos et al.

— If more than one rule, no matter its type, applies to a string, all of them
must be used for different copies of that string.

More precisely, since an arbitrarily large number of copies of each string
is available in every node, after a evolutionary step in each node one gets an
arbitrarily large number of copies of any string which can be obtained by using
any rule in the set of evolution rules associated with that node. By definition, if
L; is empty for some 1 < ¢ < n, then L is empty as well.

When changing by a communication step, each node processor sends all copies
of the strings it has which are able to pass its output filter to all the other
node processors and receives all copies of the strings sent by any node processor
providing that they can pass its input filter.

Formally, we say that the configuration C1 = (L1, Lo, ..., L,) directly changes
for the configuration Cy = (L], L5, ..., L) by a communication step, written as

Ci+Cy
if for every 1 <i¢ <n,
Li=L\{we L; | n(w) = true} U

U {e €L 7() = true and p(a) = true}.
J=1,5%#1

Let I" = (V, N1, Na,.. ., N,) be an NEP. By a computation in I” we mean a
sequence of configurations Cg, C1,Cy, .. , where Cp is the initial configuration,
Co; =—> 021'__{_1 and CQH.l F Cz,;_'_z for all 4 > 0.

If the sequence is finite, we have a finite computation. The result of any finite
computation is collected in a designated node called the output (master) node
of the network. If one considers the output node of the network as being the
node k, and if Co,C1,...,C; is a computation, then the set of strings existing
in the node £ at the last step - the k-th component of C - is the result of this
computation. The time complexity of the above computation is the number of
steps, that is ¢.

3 Solving NP-Complete Problems

In this section we attack one problem known to be NP-complete, namely the
Bounded Post Correspondence Problem (BPCP) [2,7] which is a variant of a
much celebrated computer science problem, the Post Correspondence Problem
(PCP) known to be unsolvable [9] in the unbounded case, and construct a NEP
for solving it. Furthermore, the proposed NEP computes all solutions.

An instance of the PCP consists of an alphabet V and two lists of strings
over V '

u=(u1,ug,. .,uy) and v=(v,v2,...,U)

Solving NP-Complete Problems with Networks of Evolutionary Processors 625

The problem asks whether or not a sequence 41,42,. ..,ix of positive integers
exists, each between 1 and n, such that

gy Ugy o Ugy, = Uiy Vi .- Uiy

The problem is undecidable when no upper bound is given for £ and NP-complete
when k is bounded by a constant K < n. A DNA-based solution to the bounded

PCP is proposed in {10]

Theorem 1 The bounded PCP can be solved by an NEP in size and time linearly
bounded by the product of K and the length of the longest string of the two Post
lists.

Proof. Let u = (uy,ug,...,un) and v = (v1,ve,... ,v,) be two Post lists over
the alphabet V = {a;,0a9,...,amn} and K > n. Let

s=K max ({jus] | 1<5 <n}U{uj] | 1<5<n}). o

Consider a new alphabet
m
U=tal e, al"} = {br,bo, - b}
i=1

For each = 1142...1; € {1,2,...,n}SK (the set of all sequences of length at
most K formed by integers between 1 and n), we define the string

) —

;= Oy gy ‘G;tp(m)‘.

We now define a one-to-one mapping « : V* — U™ such that for each sequence
z as above a(u(®)} does not contain two occurrences of the same symbol from
U. We may take '

@) = ag)ag) gle@)

tp(a)

The same construction applies to the stzings in the second Post list v. We define
F={a(u®aw®)|ze{1,2, . ,n}* = {z,2,..., 4}

and assume that z; = bj1bja.. .b;,,, 1 < j < I, where |z;| = r;. By the
construction of F, no letter from U appears within any string in F for more
than two times. Furthermore, if each letter of z = a(u(®)a(v(®)) appears twice
within z, then z is a solution of the given instance.

We are now ready to define the NEP which computes all the solutions of the
given instance It is a NEP of size 2sm + 1

I= (UUU_U[}UﬁU{X}U{XéC) |1 S & S TL,2 S d S |z|c}:N1:N2:‘ o N2.sm+1):

626 1. Castellanos et al.

where
U={blbecU}
(the other sets, namely U’ and U, which form the NEP alphabet
~ are defined similarly)
M f ={e = b.f}7
Ay =0,

FI; :{XG(EC)|2§d§lz\c,1_<_c§lsuchthat by #bc,d}UﬁUTA}U@',
PI; = FO; = POy =10,

forall1 < f < sm,

Msm+1:{X—+X§°)|1§c§l}U{X|zic%bc,lu{bd—aﬁdtlgd,gsm}
UX® 5 x |1<e<t2<d Sl 1},

A.sm-l-l = {X}!
Frsm+1 = Plsm+1 = FOgmy1 = POsm+1 = @:

and

Momtat1r = {ba = 5al,-f’d —* Bd}a

Asmyatr =0,

Flomam = O\ DU {XP|2<g< el 1 <e <),
Plsm+d+1 = FOsmtd+1 = Q)s
POsmtd+1 = {Bd:f)d}s

for all 1 <d < sm. _

Here are some informal considerations about the computing mode of this
NEP. Tt is easy to note that in the first stage of a computation only the processors
1,2,...,sm-+1are active. Since the input filter of the others contains all symbols

of the form X éc), they remain inactive until one strings from F is produced in

the node sm + 1.
First let us explain how an arbitrary string z; = b;1bjz2 .. by, from F can

be obtained in the node sm + 1. One starts by applying the rules X — Xé?),
1 < j <1, in the node sm + 1. The strings Xé‘”, 1 < j <, obtained in the node
sm + 1 as an effect of a evolutionary step are sent to all the other processors,
but for each of these strings there is only one processor which can receive it. For

instance the string Xéc) is accepted only by the node processor f, 1< f <sm,
with by = bco. In the next evolutionary step, the symbol b9 is added to the
right hand end of the string Xéj) for all 1 < j < I Now, a communication
step is to be done. All the strings ij}bj,g can pass the output filters of the

nodes processors where they were obtained but the node processor sm+11is the
only one which can receive them. Here the lower subscripts of the symbol X are

Solving NP-Complete Problems with Networks of Evolutionary Processors 627

increased by one and the process from above is resumed in the aim of adjoining
a new letter. This process does not apply to a string quj)b?',g ... bj, anymore,
if and only if r = |z;|, when X7 () is replaced by b;1 resulting in the string z;.
By these considerations, we infer that all the strings from F are pr oduced in the
node sm + 1 in 2s steps.

Another stage of the computation checks the number of occurrences of any
letter within any string obtained in the node sm + 1, as soon the string contains
only letters in U. This is done as follows. By the way of applying the subs-
titution rules aforementioned, each occurrence of any letter is replaced by its
barred version in the node sm + 1. Let us consider a string produced by such
an evolutionary step. Such a string has only one occurrence of a symbol ba, for
some 1 < d < sm, the other symbols being from U U U uU. Tt can pass the
input filter of the processor sm + d + 1 only, where it remains for three steps
(two evolutionary steps and one comunication one) or forever. The string can
leave the node sm + d + 1, only if it has an ooccurrence of the symbol b4 By
replacing this occurrence w1th by and by with by, the string can pass the output
filter of the node processor sm + d + 1 and goes to the node sm + 1. In this way,
one checked whether or not the original string had have two occurrences of the
letter by, After 6s steps the computation stops and the node sm + 1 has only
strings which were produced from those strings in F having two occurrences of
any letter. As we have seen, these strings encode all the solutions of the given
instance of BPCP. O

4 Concluding Remarks

We have proposed a computational model whose underlying aichitecture is a
complete graph having evolutionary processors placed in its nodes. Being a bio-
inspired system, a natural question arises: How fax is this model from the biolo-
gical reality and engineering possibilities? More precisely, is it possible exchange
biological material between nodes? Can the input/output filter conditions of
the node processors be biologically implemented? What about a technological
implementation? We hope that at least some answers to these questions are
affirmative.

We have presented a linear algorithm based on this model which provide all
solutions of an NP-complete problem.

Further, one can go to different directions of research. In our variant, the
underlying graph is the complete graph. In the theory of networks some other
types of graphs are common, e.g., rings, grids, staz, etc. It appears of interest to
study the networks of evolutionary processors where the underlying graphs have
these special forms.

A natural question concerns the computational power of this model. Is it com-
putationally complete? However, our belief is that those variants of the model
which are “specialized” in solving a few classes of problems have better chances
to get implemented, at least in the near future.

628

I Castellanos et al.

References

10.

11

12

J. P. Bandtre, A. Coutant, D. Le Metayer, A parallel machine for multiset transfor-
mation and its programming style, Future Generation Computer Systems, 4 (1988),
133144

R. Constable, H. Hunt, 5. Sahni, On the computational complexity of scheme equi-
valence, Technical Report No. 74-201, Dept. of Computer Science, Cornell Univer-
sity, Ithaca, NY, 1974

E. Csuhaj - Varju, J. Dassow, J Kelemen, Gh. Paun - Grammar Systems, Gordon
and Breach, 1993

. B Csuhaj-Varji, Networks of parallel language processors. In New Trends in For-

mal Languages (Gh. Pdun, A. Salomaa, eds.), LNCS 1218, Springer Verlag, 1997,
299-318

- L. Errico, C. Jesshope, Towards a new architecture for symbolic processing. In

Artificial Intelligence and Information-Control Systems of Robots '94 (I. Plander,
ed.), World Sci. Publ,, Singapore, 1994, 31-40.

- 5. E. Fahlman, G E Hinton, T. J. Seijnowski, Massively parallel architectures for

AL NETL, THISTLE and Boltzmann machines. In Proc. AAAI Notional Conf. on
Al William Kaufman, Los Altos, 1983, 109-113.

M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of
NP-completeness, Freeman, San Francisco, CA, 1979.

W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.

J. Hopcroft, J. Ulmann, Formal Languages and Their Relation to Automata,
Addison-Wesley, Reading, MA, 1969.

L. Kari, G. Gloor, S. Yu, Using DNA to solve the Bounded Correspondence Pro-
blem, Theoret. Comput. Sci., 231 (2000), 193-203.

Gh. P3un, Computing with membranes, J. Comput. Syst. Sci. 61(2000). (sce also
TUCS Research Report No. 208, November 1998, http://www. tucs.fi)

Gh. Paun, G Rozenberg, A. Salomaa, DNA Computing. New Computing Para-
digms, Springer-Verlag, Berlin, 1998.

