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highly related to previously proposed ones such as Networks of Evolutionary Processors

and Networks of Splicing Processors. These models are complete computational models

inspired by DNA evolution and recombination. Here, we prove that the proposed model is

computationally complete (it is equivalent to the Turing machine). Hence, it can accept any

recursively enumerable language. In addition, we relate the proposed model with (parallel)
LS D Genetic Algorithms or Evolutionary Programs and we set these techniques as decision

Networks of biologically-inspired

processors problem solvers. . .
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1. Introduction

In the last few years, there has been an increasing and renewed interest in looking to biological nature in order to propose
new (complete) computational models. There were two milestones in this research area which is part of what is called
natural computing [14]: first, the experiment performed by Adleman [1], in which he implemented an algorithm using only
DNA strands and enzymes to solve a combinatorial problem; second, the model proposed by Paun [22], which was inspired
by the membrane structure of the living cell and the interchange of molecules and energy (performed inside it) through
different membranes.

Recently, there have been new proposals that take the genetic information and genome evolution inside the cell as a
source of inspiration. Castellanos et al. proposed Networks of Evolutionary Processors (NEP) as a computational model inspired
by point mutations and evolutive selection on the DNA genome [6,7]. Some years before, T. Head introduced the splicing
operation in the so-called H systems [12]. The Network of Splicing Processors (NSP) proposed by Manea et al. [ 17] substitutes
point mutation operations by splicing operations over strings in the NEP model. Both models, NEP and NSP, have been
proved to be complete models of computation. Therefore, they are equivalent to Turing machines in their computational
power. Furthermore, they have been used to solve NP-complete problems in polynomial time with a constant number of
processors [6,15-17].

In this work, we introduce a variant of the above models in which we replace point mutation (insertion, substitution, or
deletion) and splicing operations (with nonempty contexts) by classical mutation (only substitution) and crossover (splicing
with empty context) operations over strings. In the framework of genetic algorithms and evolutionary computation, our
proposal can be considered as a finite set of genetic algorithms running in parallel. These models have been studied in the
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recent times in order to increase the efficiency in solving optimization problems [2,3,5]. Parallel genetic algorithms hold
different populations that evolve independently and provide mechanisms to communicate their populations (the migration
phenomena). We show how the proposed model of Networks of Genetic Processors satisfies both requirements and can be
considered as a suitable theoretical model to study the computational power of Parallel Genetic Algorithms as a decision
problem solver.

The structure of this work is as follows: first, we introduce basic concepts on formal language theory and computability
that we will need in the sequel. Then, we formulate the model of Networks of Genetic Processors (NGP) with two different
variants such as the acceptor and the generator case. We prove that NGPs are computationally complete for the accepting
case, and we study the computational time complexity with respect to the & & complexity class. Then, we formalize the
proposed model as Parallel Genetic Algorithms. Finally, we summarize the differences between our proposal and previously
referred ones, and we outline our future research on this topic.

2. Basic concepts and notation

In the following, we will introduce basic concepts about the Turing machine and formal language theory from [13] and
about computational complexity from [11].

An alphabet is a finite set of elements named symbols. A string is any ordered finite sequence of symbols. The empty
string is denoted by ¢ and is defined as the string with no symbols. Given a string w, the length of the string is the number
of symbols that it contains, and it will be denoted by |w| (note that |¢| = 0). The infinite set of all the strings defined over
a given alphabet V will be denoted by V*. Given the alphabet V, the set VT is defined as V¥ = V* — {g}. Given the string
x € V*, we denote the minimal subset W C V such that x € W* by alph(x). Given the string x € V*, we denote the set of
segments of x by seg(x), and it is defined as the set { € V* : x = a8y with«, y € V*}. Obviously, given any string x € V*,
the set alph(x) is a subset of seg(x). A language defined over an alphabet V is a subset of strings of V*.

A deterministic Turing machine is defined by the tuple M = (Q, ¥, I', 8, qo, B, Qs), where Q is a finite set of states, ¥
and I” are the input and the tape alphabets with ¥ C I', go € Q is an initial state, B is an special blank symbol from I" — X,
Qr C Qisasetoffinal states,and § : Q x I" — Q x I' x {L, R} is a (possibly partially defined) transition function. The
machine has a potentially infinite tape that is divided into cells, a finite state control that stores a state from Q, and a tape
head to access the cells of the tape. We consider that the tape has a left bound while the infinite space grows to the right.
Every cell of the tape holds a symbol from I". Initially, an input string x from X* is loaded in the tape by introducing every
symbol of x in a tape cell. The loading starts from the leftmost cell of the tape. The rest of the cells to the right of the input
string hold the special blank symbol B. The tape head points to the first symbol of x and the finite control stores the initial
state qo. An instantaneous description of the Turing machine M is defined by the string «q8, where « S is the content of the
tape from the leftmost cell to the rightmost nonblank symbol or the symbol to the left of the head (whichever is rightmost),
q is the current state of the finite control, and the tape head is assumed to be scanning the leftmost symbol of 8. Observe
that the initial instantaneous description gox means that we have loading the string x in the tape and the machine can start
to make movements.

We define a movement of M as follows: Let x1X, - - - X;_1qx; - - - X, be an instantaneous description of M. Let us suppose
that 8(q, x;) = (p, Y, L) whereifi — 1 = n, then x; = B.If i = 1, then the machine halts (there is no next instantaneous
description) due to the fact that the machine tries to move to the left end of the tape (here, L means left movement). Ifi > 1,
we write

XiXo o X1 QX Xn b XX - X aPXi 1 Vi X

Alternatively, let us suppose that §(q, x;) = (p, Y, R). Then, we write

X1X2 « - - Xi—1GXj - - - Xy 7 X1X2 ++ - Xi—1YDXiy1 - -+ Xn.
Observe that > is a relation between instantaneous descriptions of the Turing machine M. We denote the reflexive and
M

transitive closure of 7 by r—[} Hence, o1qf84 f—;l> apfB, denotes that the machine has made a finite number of movements

(possibly including zero movements) to obtain the right instantaneous description from the left one.

There exist two situations that make the machine halt: first, the instantaneous description cannot be followed by a
subsequent one because the movement function is not defined with the current scanned symbol and the state of the finite
control; second, the machine tries to move to the left of the left end of the tape. We do not define movements from final

states. The halting situation is denoted by the symbol | as follows: «1q8; Mr% apf, means that the machine M changes

the instantaneous description «1gf; to the description a;p8, and straight afterwards it halts. The language accepted by a
Turing machine M is defined to be the set L(M) = {w € X* : qow M'_*l aqpf with g € Qr}. It is widely known that the

family of languages accepted by deterministic Turing machines is the family of recursively enumerable languages which will
be denoted by RE.
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A nondeterministic Turing machine is defined by the tuple M = (Q, X, I, §, qo, B, Qr) where every component is defined
as in the deterministic case with the exception of the § function, which is definedasé : Q x I' — £(Q x I x {L, R})' and
is a (possibly partially defined) transition function. The transition function 6(q, a) = {(q1, a1,z1), ..., (qp, Gp, zp)} where
gi € Q,a; € I'and z; € {L, R} 1 < i < p has the following meaning: if the tape head is scanning the symbol a and the finite
control is in state g, the machine nondeterministically selects a movement (g;, g;, z;), so the tape head substitutes a by a;,
the finite control changes from q to g; and the tape head moves to the z; direction (left or right). Observe that in the same
situation the machine could select a different tuple and the result could be different. The halting criterion is the same as in

the deterministic case. The machine accepts an input string w if a sequence of movements such that gow M'_*i aqf withq € F
exists.

We say that a computational model is complete if it can accept or generate any language in R &. Alternatively, we can say
that the model has the computational power of the Turing machine or the model is able to simulate any arbitrary Turing
machine.

In the following, we introduce some basic concepts of computational complexity theory from [11]. Let M be a
deterministic Turing machine; if for every input string w of length n, M makes at most T (n) movements before halting, we
say that M is a Ty, (n) deterministically time-bounded Turing machine or of deterministic time complexity Ty, (n). The language
accepted by M is said to be of deterministic time complexity Ty, (). In the case that M be non deterministic, then it is said
that M is Ty (n) nondeterministically time-bound if for every input string w € L(M) the machine has a minimum sequence
of T(n) movements to accept w. In this case, we say that the language accepted by M is of nondeterministic time complexity
Ty (n). We can define larger classes of languages depending on the time complexity function T (n) as follows:

e DTIME(T (n)) is the class of languages accepted by deterministic Turing machines with deterministic time complexity
T(n).

e NTIME(T(n)) is the class of languages accepted by nondeterministic Turing machines with nondeterministic time
complexity T(n).

If we fix a collection of integer functions, then we can define different time complexity classes of languages. In this case,
for a given collection of integer functions ¢, we have:

o DTIME(C) = | Jje DTIME(f)
o NTIME(C) = ;e NTIME(f).

Let poly be the collection of all integer polynomial functions with nonnegative coefficients. Then, $ = DTIME (poly) and
NP = NTIME (poly).

A decision problem is a (mathematically defined) problem where the answer is the affirmation or negation of a predicate
over the parameters of the problem. Any decision problem D defines a formal language L, which contains the encoded
parameter instances such that the answer is affirmative. Formally, a decision problem X is a pair (I, 6x) such that Ix is a
language over a finite alphabet (whose elements are called instances) and 6y is a total Boolean function over Iy.

Therefore, the computational complexity of a decision problem can be transferred to the computational complexity of
its associated formal language. We will come back to this approach when we study the relation between Parallel Genetic
Algorithms and the computational model that we propose in the following section.

3. Networks of Genetic Processors

In the following, we define the Networks of Genetic Processors. Some basic concepts come from previous works on NEPs
[6,7] and NSPs [16,17], while some others are referred to classical genetic algorithms or evolutionary programs [19].

Given the alphabet V, a mutation rule a — b, with a, b € V, can be applied over the string xay to produce the new string
xby (observe that a mutation rule can be viewed as a substitution rule introduced in the NEP [7]).

A crossover operation is an operation over strings defined as follows: Let x and y be two strings, thenx >< y = {X1y2, y1X; :
X = x1x; and y = y1y,}. Observe that x, y € x 0« y given that we can take € to be a part of x or y. The operation can be
extended over languages as L < L, = LJXELl,yeL2 X >< y. Obviously, for any language L, L o< L is well defined. Observe
that the crossover operation can be considered as a splicing operation over strings where the contexts of the strings are
empty [23].

Let P and F be two disjoint subsets of an alphabet V, and let w € V*. We define the predicates ¢» and ¢® as follows:

1. ¢ (w,P,F)
2. @ (w, P, F)

(P C alph(w)) A (F N alph(w) = @) (strong predicate)
(alph(w) NP # @) A (F N alph(w) = @) (weak predicate).

1 The set P (A) is the set of all the subsets of A.
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We can extend the previous predicates to act over segments instead of symbols. Let P and F be two disjoint sets of finite
strings over V, and let w € V*. We extend the predicates ¢» and ¢® as follows:

1. W (w, P, F) = (P C seg(w)) A (F N seg(w) = P) (strong predicate)
2. 9P (w, P, F) = (seg(w) NP # @) A (F Nseg(w) = ¥) (weak predicate).

In the following, we work with this extension over segments instead of symbols. We can use single symbols that depend
on the definition of P and F. The construction of these predicates is based on random-context conditions that are defined
by the sets P (permitting contexts) and F (forbidding contexts). Let V be an alphabet and L € V*, and let B € {(1), (2)}; we
define p? (L, P, F) = {w € L : ¢#(w; P, F)}.

Now, we define a genetic processor, which can be viewed as a simple abstract machine that is capable of applying mutation
or crossover rules over a multiset of strings.

Definition 1. Let V be an alphabet. A genetic processor N over V is defined by the tuple (Mg, A, PI, FI, PO, FO, «, B), where:

e M is a finite set of mutation rules over V
e Ais a multiset of strings over V with a finite support and an arbitrary large number of copies of every string.
e PI, FI C V* are finite sets with the input permitting/forbidding contexts
e PO, FO C V* are finite sets with the output permitting/forbidding contexts
e o € {1, 2} defines the function mode with the following values
- If @ = 1 the processor applies mutation rules
- If o = 2 the processor applies crossover rules and Mz =
e B € {(1), (2)} defines the type of the input/output filters of the processor. More precisely, for any word w € V*, we
define an input filter p(w) = ¢P(w, PI, FI) and an output filter T(w) = ¢?(w, PO, FO). That is, p(w) (resp. t(w))
indicates whether or not the word w passes the input (resp. the output) filter of the processor. We can extend the filters
to act over languages. Thus, p(L) (resp. t(L)) is the set of words of L that can pass the input (resp. output) filter of the
processor.

Definition 2. A Network of Genetic Processors (NGP) is defined by the tuple IT = (V, Ny, Na, ..., Ny, G, V), where V is an
alphabet, G = (Xg, E¢) is a graph, N; (1 < i < n) is a genetic processor over V,and & : Xc — {Ni, N,, ..., N,}is a mapping
that associates the genetic processor N; to the node i € X.

We distinguish two types of Networks of Genetic Processors: The accepting one and the generating one. In the accepting
case, the network will be denoted by ANGP and it has two distinguished processors, the input and the output processors,
Ninput and Noyepue, TESpectively. A configuration of an ANGP IT = (V, Ny, Na, ..., Ny, G, N) is defined by the tuple C =

(L1, Ly, ..., L;), where L; is a multiset of strings defined over V forall 1 < i < n. A configuration represents the multisets
of strings that are present in any processor at a given moment (remember that every string appears in an arbitrarily large
number of copies). The initial configuration of the network is Chp = (A1, Az, .. ., Ap). Observe that since the input string w is

allocated in the input node, Aj;p,: = {w}, while the output node is empty, so Agupur = 9.

Every copy of any string in L; can be changed by applying a genetic step in accordance with the mutation or crossover
rules associated with the processor N;. Formally, we say that the configuration C; = (L, L,, . .., L,) directly changes into
the configuration G, = (L}, L}, ..., L},) by a genetic step, written as C; = C, if L] is the multiset of strings obtained by
applying the mutation or crossover rules of N; to the strings in L;. An arbitrarily large number of copies of each string is
available in each node. Therefore, after a genetic step, one gets an arbitrarily large number of copies of any string, which
can be obtained by using all possible mutation or crossover rules associated with that node. By definition, if L; is empty for
some 1 < i < n, then L; is empty as well. In a communication step, each processor N; sends all copies of the strings to all
the processors connected to N; according to G, provided that the strings are able to pass the output filter of N;. In addition,
it receives all the copies of the strings sent by the processors connected to N; according to G, provided that they can pass its
input filter. Formally, we say that the configuration C’ is obtained in one communication step from configuration C, written
as C + C', iff

C'(x) = (Cx) — (Cx))) U U (ty(CY)) N px(C(y))) forallx € Xg

(xy}eke

Let IT = (V, Ny, N, ..., Ny, G, &) be an ANGP. A computation sequence in IT is a sequence of configurations Cy, Cy, ...,
where Cy is the initial configuration of I7, C;; = Cyiy1, and Cyiy1 F Cyiyp for all i > 0. This sequence must be maximal (no
other sequence follows from the previous one).

We consider that a sequence of configurations is finite whenever at least one of the following two conditions holds:

1. The output node contains at least one string. That is, if Ny, is the designated output node, then L, # @. In this case, we say
that the network accepts the input string.

2. Inagenetic step, the operations cannot be applied (the strings at every processor do not change) and no string is received
or transmitted in the next communication step. After two consecutive genetic or communication steps, the configuration
of the network does not change.
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output

processor processor

fully connected subnetwork

Fig. 1. The proposed ANGP to simulate an arbitrary deterministic Turing machine to process an arbitrary input string. This topology is denoted by the
graph K.

The language accepted by an Accepting Network of Genetic Processors is the set of input strings such as the network halts
with at least one string in the output processor. Observe that, from the definitions given above, any ANGP is a deterministic
device and we can predict the network behavior from a given input configuration.

Since the NGP can operate as a generating device, we have Generating Networks of Genetic Processors (GNGP). The main
differences with respect to the accepting case are the following:

1. There is no defined input processor.
2. If the output node contains any string, then the network does not necessarily halt.

Observe that, in this case, the output processor collects a possibly infinite language and it constitutes its output language.
In the following, we work with accepting networks of genetic processors.

4. Accepting Networks of Genetic Processors are computationally complete

In this section, we prove that every recursively enumerable language can be accepted by an ANGP.
Theorem 1. Accepting Networks of Genetic Processors are computationally complete.

Proof. The proof will be based on the simulation of any arbitrary deterministic Turing machine during the computation of
any input string. We prove that whenever M halts in an accepting state, the ANGP computes a finite sequence with at least
one string in the output processor. Conversely, if the Turing machine rejects the input string or it does not halt, then the
ANGP does not accept the corresponding input string.

LetM = (X, I,Q, §, qo, B, Qs) be an arbitrary Turing machine. We consider an instantaneous description of M in the
form xq;ay, where x,y € I'*,a € I" and g; € Q. We define the alphabets I'" = {a’ : a € I'} and I={a:aerl).

First, the network encodes the initial instantaneous description gow as qo$wF. We define the processor N, to encode the
input string as follows:

NC = (ﬂv {w’ q0$7 F}a @a @a {qoﬂ_;wF}v {aq()! Fa:ae (2 U {q07 F» ﬂ_;})}v 27 (2))s

where w is the input string considered in the proof. Observe that the processor N. operates only with crossover operations
between w, qo$ and F with qo$wF € (qo$ >< w) o< F. The output filters (here, segment filters) ensure that the output string
will have the form qo$wF (permitted segments) and no symbol is to the right of the F mark or to the left of the qg mark
(forbidden segments). In addition, no string can enter into this processor given that the permitted input filter is empty and
the processor works in a weak manner.

The output processor is denoted by N, and is defined as follows:

Nout = (@, @, @, @7 @7 @7 27 (1))

Observe that Ny, admits any string. We prove that this processor receives a string iff the Turing machine halts in a final
state.

In the following, we takex,y € I'*, a, b, c € I" and q;, q; € Q. We propose an ANGP with an underlying fully connected
graph that is connected to the input node N, and the output node N,,;. The topology of the network is shown in Fig. 1 and
is denoted by the graph K.

The network architecture is described as follows: The input processor holds the input string to be computed; it transforms
the initial string into an initial instantaneous description according to the encoding scheme that we have defined above. The
output processor receives a string whenever the input string is accepted by the Turing machine. Finally, the fully connected
subnetwork is composed by several processors: the processors in the form Nfl” play the role of the states before applying a
transition step in the Turing machine; the processors in the form Ng”f play the role of the final states of the Turing machine;
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and, finally, the rest of processors, such as N; or N; are defined to carry out the simulation of a transition step in the Turing
machine. A complete description of these processors is made below.

The network is defined by the tuple R = (V, N, Ny, N2, ..., Ny, Noy, IA<,f), whereV = T'UT"UTUQU{F, #,$, 8},
with F, #,$,$ ¢ I', and f is the correspondence from vertexes to processors shown in Fig. 1. The processors are defined as
follows:

1. For every stateq € Q
N'” = M‘” 0, {q, 8}, (#}.0,{,j:je rYU{$) 1, (1)), where
M;”:{k —k:kellUfk—>k:keTr}u{$—$}

2. For every state q € Qf
N = (3,9, {q, 8}, {#, $F}, 4, 8,1, (1))

= (0, {#BF}, {$F, #BF}, 0, V, 0, 2, (2))
. Ngo = (0, {#BF}, {#BF}, {a#,Fa:a € V},0,0, 1, (2))
. For every state q; € Q and every symbol a € I" such that §(q;, a) = (q;, b, R)

Noak = ({4 — @5, — b’ a — 8}, 0. {q;. Sa}, (#, $F), (¢} b'S}. {c$ : c € '} U {8, 58}, 1. (1))
6. For every state g; € Q and every symbol a € I" such that §(q;, a) = (g;, b, L) and for every symbol ¢ € I"
Ngacr1 = ({8 — €, i — gj.a — b'}, 0, {qi, $a}, {#, SF}, {g;, ccb'}, 0, 1, (1))
7. For every state g; € Q and every symbol a € I" such that §(g;, a) = (g;, b, L), and for every c € I
Ngaciz = (fc — $}, @, {q;, ccb'}, {$, #} U {kb',K'D' 1k e T UQ,K € I''}, {q;, $cb'}, {$k : k € '} U {$F}, 1, (1))

We explain the role of every processor that we have defined. The network strings encode the instantaneous descriptions
of the Turing machine during the computing time. Processors N"]” hold the encoded instantaneous descriptions after the

simulation of any movement in the Turing machine. Processors Ng”f receive the encoded instantaneous descriptions with
final states. Processors Np and Np, are used to add a blank symbol before the F symbol. This happens when the tape head of
the Turing machine visits new cells by moving the tape head to the right. Processors Ny,qr simulate a movement of the Turing
machine which moves the tape head to the right. Finally, processors Ng,qc1 and Ny» are used to simulate a movement of
the Turing machine that moves the tape head to the left. Here, we need to consider all the possible symbols to the left of the
tape head and the simulation is more complex than the movements to the right.

Now, we explain how the proposed ANGP works: Initially, N;’; receives the encoded initial instantaneous description of

the Turing machine from processor N.. The remaining processors N;" will not admit any string with a state that is different

from q. We have explained above how the processor N, encodes the input string w as the string go$wF. Each movement of
the Turing machine is simulated by sending the instantaneous description to the corresponding processor that simulates the
movement (observe that we have defined one processor for every movement that moves the tape head to the right, and a
couple of processors for every movement that moves the tape head to the left). The processors simulate the movement and
return the new instantaneous description to Nfl”. The encoded instantaneous description ¢;x$F means that the tape head of
the Turing machine has moved to the rightmost cell and it contains a blank symbol. In this case, the encoded string is sent
to Ng, and this processor returns the string g;x$BF to the rest of the processors. Finally, whenever strings in the form g;x$yF
are obtained and g; € Qy, these strings are sent to N"“‘ then they are sent from N"“‘ to Ny and the network halts in an
acceptance mode.

Observe that only the processor N'” admits the strings with the $ and the g; symbols. The remaining processors N'”
will not admit any string with a state tﬁat is different from g and the remaining processors will not admit strings with the
symbol $ (observe that some of them require the strings to have the segment $a). Therefore, the operativity of the network
implies that the processors NZ;" distribute the information over the complete network and they receive the results from the

remaining processors. The symbol § is used to ensure that only the processors N;” can receive an encoded instantaneous
description after simulating a movement in the Turing machine.

The formal proof that the proposed ANGP simulates the Turing machine is made by induction over the number of
movements that the Turing machine carries out. The key idea is that, at the beginning and the end of any movement of
the Turing machine, the resulting encoded instantaneous description will be in one of the Nfl” processors. Formally, we
prove the following predicate:

U W

If gow 7 aqp, then (Fk > 0)[Co = C; - G- - - G with qa$BF € Ge(NIM)]

Induction base

The base case of the induction is the initial configuration of the network that represents the initial instantaneous
description of the Turing machine qow = «qgpf. If w is the input string, then N(’;:J holds the string go$wF that is received
from processor N, after a communication step.
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Induction hypothesis
Let us suppose that, if gow 7 aqp in, at most, j steps, then

Gk=0) [Co= CiF G- F Gwithqa$pF € G(NH]
Induction step
For the inductive step we will consider that gow '—;l> a1qipBi > aqB. We must analyze all the movements that allow the

transition from a1q;8; to «qgB depending on the symbol being scanned, the state of the finite control, and the tape head
movement (to the left or to the right). The change from qow to «1g; 81 will be made in, at most, j movements, and, by our
induction hypothesis, g;a1$8:F € Ck(Ni")

First, let us suppose that the encoded instantaneous description gq;x$F is obtained in N'” In this case, the network
transforms g;x$F into q;x$BF in order to add a new blank symbol before applying a new movement in the next step. Only the
processor Ny can receive the string g;x$F given that the rest of the processors cannot receive any string with the segment $F.
Therefore, q;x$F is received by N and the crossover operation with #BF is applied. It is easy to see that q;x$BF is obtained
after one genetic step in Np. In the next communication step, all the strings in the processor N are sent out (it includes
the string #BF). The string ¢;x$BF passes the input filter of the corresponding processor to apply the movement defined by
5(qi, B). Observe that, in the nodes N, in the string will not be admitted given that the $ symbol is required. At the same time,
processor Np, sends out the string #BF which will be only admitted in processor Np. The pair of processors Nz and N, will
operate in a synchronized mode to ensure that the string #BF is always present in processor Np.

Now that we have shown how the network adds a new blank symbol, we analyze every movement as follows:

Case 1. Let us suppose that Nc'{,] holds the string g;x$ayF (which corresponds to the instantaneous description «1q;81 with
o = xand B; = ay) and the network must simulate the movement 6(q;, a) = (gj, b, R). The only node which can receive
this string is Ng,qz given thatits input filter accepts a sequence with the segments q; and $a. In Ny qr, the mutation rule g; — g;
is applied to change the state, and the mutation rules $ — b’ and a — § are applied to simulate the tape head movement
and writing. The rule @ — $ can be applied over all the symbols a of the strings, but only the string qjxb’ $yF can pass the
output filter with PO = {q;, b’ $}andFO = {c$: c e I'} U {qj$, $$). This string is sent out, and it passes the input filter of
the node N(‘; since it permits the segments g; and $. Then, in processor N(Z1 the rules b’ — band $§ — $ are applied and
the result is the sequence qjxb$yF. If we apply the rule 6(q;, a) = (gj, b, R) to the description xq;ay, the result is xbg;y, and
qgjxb$yF is obtained in N};

Case 2. Let us suppose that N&? holds the string g;xc$ayF (which corresponds to the instantaneous description «1q;8; with
a1 = xc and B; = ay) and the network must simulate the rule §(q;, @) = (gj, b, L). Only the processors Ny, can receive
the string due to their permitted input filter with the segments g; and $a. In Ny, the mutation rules $ — ¢, a — b’
and g; — g; are applied, but only the string gjxcch’yF passes the output filter with PO = {q;, ccb’}. Observe that the string
gjxcch'yF does not contain any symbol $ and only the processor Ny, admits this string. The application of the rule c — $
and the definition of the forbidden output filter ensures that the only string that can leave the processor has a segment $cb'.
Therefore, the string q;x$cb’yF leaves the processor and it is only admitted in the processor N}; due to the current state and

the $ symbol. In the processor N"b” the rules b’ — b, ¢ — c,and $§ — $ are applied and the result is the string q;x$cbyF,
which corresponds to the instantaneous description xq;jcby.

Case 3. Let us suppose that Nm holds the string g;$ayF and the network must simulate the rule 6(g;, a) = (g;, b, L). In this
case, the Turing machine halts and it rejects the input string given that the tape head cannot move to the left of the first cell
of the tape. Here, only the processors N1 can receive the string and the rule § — ¢ is applied. Given that the $ symbol
appears just to the right of the g; symbol, the mutated string will have the form g;cayF. The new strings cannot pass the output
filter due to the permitted segments cc and they will remain in this node. Given that no new strings are communicated, the
mutations over the rest of the strings at the rest of the processors will be finite. The only processors that are still active are
Ng and Np,. They will interchange the string #BF, so the network will repeat two consecutive configurations and it will halt
in a nonacceptance mode.

We now consider the acceptance situation in the Turing machine. Let us suppose that N;’f holds the string q;x$yF with
gi € Qy.In this case, the Turing machine halts and it accepts the input string. The network sends the string to the processors
N;'“. The processor N(‘I’l_”t admits the string, and then it sends the string to the processor N,,:. Then the network halts and it
accepts the input string.

In this reasoning, we have excluded the case when € € L(M). Here, the initial instantaneous description of the Turing
machine is qo, with go € Qf, and the corresponding encoded string is qo$F. The processor Né’; receives the encoded string

qo$F and mutates $ by $. Then the string qo$F is sent to Ny which adds the blank symbol, and then it is admitted in the
processor N%, Therefore, the empty string is accepted by the network.

Finally, 1? the Turing machine has no defined movement for a given state and tape symbol, then there is no processor to
receive the encoded instantaneous description and the only processors that are still active are Ng and Np,. They interchange
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the string #BF, so the network repeats two consecutive configurations and it halts in a nonacceptance mode. It can
be observed that, if the Turing machine performs an infinite computation, then the network also performs an infinite
computation, and the input string will never be accepted. O

In summary, we have proposed an ANGP that works for a given input string w and a given Turing machine M.
Here, the number of processors depends on the size of the next movement function of M. Therefore, it is bounded by
2-1Q| +1Q|- || +2-1Q]| - |I'|> + 4. Observe that this is an upper bound in the number of processors given that for any
symbol and state there will be only one processor (if the movement is to the right) or 2 - | I"| processors (if the movement is
to the left). Both cases cannot occur simultaneously given that the Turing machine is deterministic.

An alternative proposal is based on an ANGP which can accept any encoded instance of the input word for the Turing
machine. In this case, the processor N. would be removed and the processor N;Z will be the input one that receives the
encoded string qo$wF.

The nondeterministic case

We have shown how an ANGP simulates a deterministic Turing machine; hence, the model is proved to be
computationally complete. Now, we show a direct simulation of nondeterministic Turing machines by ANGPs. Although
this result does not add anything new about computational completeness, it is important to relate complexity results.

Theorem 2. Every nondeterministic Turing machine can be simulated by an ANGP.

Proof. The nondeterministic Turing machine differs from the deterministic one in the definition of the next movement
function. Therefore, 6(q, @) = {(q1, a1, z1), ..., (4p, ap, Zp)}. In the deterministic case we have defined a processor for every
value of the next movement function. In this case, we will define a processor for every choice of the next movement function.
The network topology is the same as in the deterministic case. Here, processors N, and N, are defined as in the deterministic
case, and a complete definition of the rest of processors follows:

1. For every stateq € Q
N = M, 9, {q. 8}, (#}.9. (.j:j € YU {8}, 1, (1)), where
M'={K—>k:kelUfk—k:keI'}U{$— $}

2. For every state q € Q
N = (8,0, {q, $), {#, $F}, 0,0, 1, (1))

. Ng = (O, {#BF}, {$F, #BF}, 0, V, 0, 2, (2))
. Np, = (@, {#BF}, {#BF}, {a#,Fa:a eV}, 0,0,1, (2)
. For every pair of states q;, ¢; € Q and every pair of symbols a, b € I" such that (q;, b, R) € 5(q;, a)

NqiaquR = ({ql — qj, $ g b/v a— i}v @7 {in $a}a {#5 $F}s {qja b/§}5 {C$ . ce F} U {%i ig}a 1s (]))

6. For every pair of states q;, g; € Q and every pair of symbols a, b € I" such that (g;, b, L) € §(q;, a) and for every symbol
cerl

Nq,-aqucLl = ({$ - 67 qi — qj, a — b/}a @, {Qi, $a}a {#a $F}v {qjs CEb/}v Q’ 17 (]))
7. For every pair of states g;, ¢; € Q and every pair of symbols a, b € I" such that (g;, b, L) € §(q;, a), and for everyc € I"
Nyagberz = ({¢ = $}. 0, {gj, ccb'}, {$, #} U {kb', K'b 1 k € T UQ, K € I''}, {g;, $cb'}., {$k : k € I'} U {$F}, 1, (1))

The operativity of this ANGP is the same as in Theorem 1. The only difference is that the encoded instance qaz$aSF will
be sent out from processor Né” and it will probably enter in more than one processor NqaquR or NqaqucLl- In the case that
the encoded string enters in at least two different processors Ngqq;r, then ga$aBF will be transformed at every processor

independently of each other and the transformed strings will enter at nodes Né”. Observe that if more than one string enters

inasingle processor NI, then they will be transformed again independently of each other and they will keep the computation
path according to the Turing machine movements. In the case that the encoded string enters in at least two different
processors Nyqg;beL1, they will be transformed independently of each other. In processors Ngagjbet2, the transformations depend
on the symbol that is to the left of the one that is changed, so, these symbols will be transformed independently of each other.
Finally, in the case that the encoded string enters in the processors Nqaqum and NqaquR, the transformed strings will not enter
the same processors. The operativity of the Ny and Np, processors ensures that, whenever two or more strings enter into
them, the crossover between them will be lost after a communication step (hence, only the addition of an encoded blank
symbol will be effective for the rest of the computation). O

[S2IN O]

Introducing the time complexity measure

Now that we have provided a full simulation of nondeterministic Turing machines by ANGPs, we focus our attention on
the time complexity of this new model. The time complexity of the Networks of Evolutionary Processors (NEPs) was first
defined in [18]. We can follow the same definitions given in that work.
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First, we can establish the following time complexity measure for the ANGP model: Let us consider an ANGP R that halts
on every input string and the language L accepted by R. The time complexity of the accepting computation of R, if x is given
as an input string, is denoted by Timeg(x) and it is defined as the number of steps (both communication and evolutionary
ones) such that the network R halts on x in an acceptance mode. Observe that this measure is not defined whenever the
machine does not halt or it repeats two nonacceptance consecutive configurations. This measure, as defined above, fully
satisfies Blum'’s axioms for abstract complexity measures [4]. In addition, we can define the partial function Timeg : N — N
as follows:

Timeg(n) = max{Timeg(x) : x € L(R), |x| = n}

If we take an integer function f : N — N, then we can define the following language class provided that there exists an
ANGP R that holds the property required in the definition

Timeancp (f) = {L : There exists an ANGP, R, and a natural number ng such that L = L(R) and Vn > ng (Timeg(n) < f(n))}

Finally, for a set of integer functions C, we define:

Timeance (C) = U Timeancp ().
feC

We consider the set of integer functions poly as the set of integer polynomial functions, and we denote Timeaycp (poly)
by PTimeancp in order to preserve the classical notation in computational complexity theory. Then, we have the following
result:

Lemma3. NP C PTimeANGp.

Proof. If any language L € N P, then there exists a nondeterministic Turing machine M that works in polynomial time to
accept any input string from L. In this case, we can construct an ANGP from M to work with the same input string according
to Theorem 2. This ANGP carries out a constant number of steps (genetic and communication ones) to simulate a transition
of the Turing machine.

We can can make the following analysis to ensure the previous affirmation: first, if the Turing machine performs a
configuration transition by using a movement choice to the right (i.e. (q, a, R)), then the ANGP performs three genetic
steps to simulate this movement (it changes the state, the symbol, and the tape head position). Then, the new string is
communicated to the Né" processor, and it performs two genetic steps to change the symbol a’ by a and $ by $. Second, if
the Turing machine makes a configuration transition by using a movement choice to the left (i.e. (q, a, L)), then the ANGP
performs three genetic steps to simulate this movement (it changes the state, the symbol, and the tape head position) in
processors Nq,-aqucLl and one genetic step in processors Nq,-aqucLZ- Again, the new string is communicated to the Né” processor,

and it performs three genetic steps to change the symbol @’ by a, the symbol b by b, and the symbol § by $. Finally, if the
Turing machine explores a new cell with the blank symbol, the network performs two genetic steps (in this case, with the
crossover operation in processor Ng) to add this extra symbol to the string.

The ANGP proposed in Theorem 2 simulates the Turing machine behavior by considering all the transition combinations
simultaneously. If the Turing machine M works in polynomial time then the ANGP works in polynomial time too, given
that the simulation of every transition of the Turing machine takes a constant number of steps in the network. Hence,
NP C I)TimEANGp. O

5. Networks of Genetic Processors and Parallel Genetic Algorithms

Genetic Algorithms (GA) were proposed as programming techniques to solve optimization problems. The source of
inspiration of this approach comes from the evolution of a population of individuals according to the Darwinian laws of
mutation of individuals to face the difficulties of the environment and the survival of the best adapted ones. An overview of
this approach is [19]. According to that work, the main components of a genetic algorithm (or evolution program) are:

e a genetic representation for potential solutions to the problem

a way to create an initial population of potential solutions

an evaluation function that plays the role of the environment, rating solutions in terms of their “fitness”

genetic operators that alter the composition of the potential solutions

values for various parameters that the genetic algorithm uses (population size, probabilities of applying genetic operators,
etc.).

The GAs were proposed to find optimal solutions for optimization problems. The power of GAs is based on the quick
search of optimal solutions in the search space defined by the problem. This is an advantage, but it implies that some times
these techniques are unable to converge to the optimal solution due to the fact that they quickly converge to local optimal
solutions. There have been many proposals to tackle this disadvantage but they are not of interest in this work.

Parallel Genetic Algorithms (PGAs) have been proposed to speed-up the efficiency of simple GAs during the search for
optimal solutions. According to different reviews and Refs. [2,3,5,24], the main components for proposing parallel and
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Fig. 2. The scheme to convert AC-I in AC-II.

distributed GAs are the following:

e The distribution of the individuals in different populations. They can be organized in different topologies: master-
slave, multiple populations or islands, fine-grained populations or hierarchical and hybrid populations. In addition, the
neighborhood connections can be rings, m, n-complete, ladders, grids, etc.

e The synchronicity of evolution and communication of the populations

e The migration phenomena: migration rates (the percentage of individuals that migrate from one population to a different
one), migration selection (the selections of the individuals that migrate) and migration frequency.

All of these components have been introduced in the ANGP model proposed in this work: a topology of fully-connected
populations or islands, a universal clock to synchronize the evolution and communication operations, a migration rate and
a migration frequency of one hundred per cent, and a migration selection based on the input/output filters attached to the
processors. Nevertheless, the Networks of Genetic Processors as acceptors that we have proposed in this work are not used
to solve optimization problems but to solve decision problems. Therefore, in order to consider our approach as a classical
proposal of PGAs, we need to formulate these techniques as decision problem solvers.

We propose two reasonable criteria to work with PGAs as decision problem solvers:

e Acceptance criterion I (AC-I)

Let w be an input string. We say that a PGA accepts w if w appears in a predefined survival population after a finite

number of iterations (operators applications, fitness selection, and individuals migration).
e Acceptance criterion Il (AC-II)

Let w be an input string. We say that a PGA accepts w if a distinguished individual x,.s appears in a predefined survival
population after a finite number of iterations (operators applications, fitness selection, and individual migration). We say
that the PGA rejects the input string if a distinguished individual x,,,; appears in a predefined survival population after a
finite number of iterations (operators applications, fitness selection, and individual migration).

We can prove that both acceptance criteria are equivalent in the following:

Theorem 4. Let D be a decision problem and Lp be its acceptance language. D can be solved by a Parallel Genetic Algorithm with
acceptance criterion I iff it can be solved with acceptance criterion II.

Proof. Let us suppose that D can be solved by a parallel genetic algorithm Ap_; with AC-I. Then, after a finite number of
operators applications and fitness selection, Ap_; has a predefined population with the individual w. One can formulate a
PGA with AC-I1 Ap_j; as follows: Ap_j; simulates Ap_; and it obtains the individual w in the predefined population of Ap_;. Let
us suppose that the fitness function in the predefined population of Ap_; is g, and we reformulate this function as follows:

£(x) = {g(y) + 1(withy = argmax,(z) ) ifx=w
g otherwise

This function ensures that the input w obtains the maximum fitness value in the predefined population of Ap_;. The
migration rate and frequency can be adjusted to ensure that w migrates to the new predefined population in Ap_;;. When
the string arrives to the new predefined population, it can be mutated to ;s (by introducing the specific mutation rules);
therefore the string is accepted by Ap_. Fig. 2 shows this scheme.

In the opposite situation, let us suppose that D can be solved by a genetic algorithm Ap_j; with AC-II. Then, after a finite
number of operators applications and fitness selection, Ap_j has a predefined population with the individual Xy or X;,0.. One
can formulate Ap_; as follows: First, Ap_; simulates Ap_j;. If the acceptance decision is x,,,¢, then Ap_; does nothing (so w will
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never appear in the predefined population and Ap_; does not accept w). Let us suppose that Ap_j obtains the individual xye,
in the predefined population. The fitness function in the predefined population is reformulated as follows:

g(x) = g(y) + Ywithy = argmax,(z) ) ifx= Xyes
gx) otherwise

This function ensures that the input xy.s obtains the maximum fitness value in the predefined population of Ap_j. The
migration rate and frequency can be adjusted to ensure that x,.; migrates to the new predefined population in Ap_;. When
the string arrives to the new predefined population, it can be mutated to w (by introducing the specific mutation rules).
Therefore, the string is accepted by Ap_,. Fig. 3 shows this scheme. O

Now that we have established that both criteria AC-I and AC-II are equivalent, we have the following result, which
summarizes the computational power of PGAs as decision problem solvers:

Theorem 5. Parallel Genetic Algorithms with multiple-populations, synchronicity, and full migration phenomena are
computationally complete.

Proof. It is sufficient to consider that ANGP are PGAs with multiple-populations, synchronicity, and full migration
phenomena. O

6. Final remarks

We have proposed a new computational model to achieve computational completeness by using crossover and mutation
over strings. There have been previous works that explore the computational power of Networks of Evolutionary Processors
with restricted processor operations [8-10,21,25]. In these previous works, it has been proved that at least one processor
with insertion operation is needed in order to achieve computational completeness. Hence, the role of mutation in the
Networks of Genetic Processors (and subsequently in (Parallel) Genetic Algorithms) in an isolated way is not sufficient to
accept any recursively enumerable language. The other operation involved in the model is the crossover between strings.
This can be formalized as a splicing operation with empty contexts proposed in previous models. Again, the role of the
contexts in the splicing operation is a basic ingredient for achieving computational completeness. For example, in the works
[16,17,20], it is required the splicing rules to have non empty contexts. Hence, the role of crossover in the Networks of
Genetic Processors (and subsequently in (Parallel) Genetic Algorithms) in an isolated way is not sufficient to accept any
recursively enumerable language.

The final conclusion that we have drawn is that the model that we have proposed is a novel approach that is based
on well known operations which in an isolated way are not sufficient to get computational completeness. The new
combination of operations that we have proposed, which directly relates to the classic paradigm of Genetic Algorithms,
ensures computational completeness.

With respect to future works, we must explore the complexity issues of the proposed models. In this sense, the complete
characterization of PTimeancp remains open. This characterization will provide a formal framework to look to Genetic
Algorithms to efficiently solve decision problems. Other complexity measures such as the space complexity should also
be explored. In this case, the definition of length complexity as in [ 16] should help to understand the computational cost of
operations such as crossover.
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