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Solving Combinatorial Problems with Networks of Genetic Processors1

Marcelino Campos, José M. Sempere

Abstract: Recently, a new model of computation that is inspired by genetic operations over strings such as mutation

and crossover has been proposed. Networks of Genetic Processors (NGPs) are highly related to previously

proposed models such as Networks of Evolutionary Processors (NEPs) and Networks of Splicing Processors

(NSPs). NGPs are computationally complete and several complexity measures have been proposed to evaluate

their computing power with restricted resources (mainly, the time and the number of processors in the network). In

this work we evaluate NGPs in an experimental approach. We have selected a NP-complete decision problem, the

Hamiltonian Cycle Problem, and we have solved different instances with the proposed model of computation. Our

aim is to prove that the selected problem (and all NP problems) can be solved in polynomial time with NGPs. In this

case, our experiments show that the problem can be solved in linear time with a fixed number of processors for a

given size of the problem.
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Introduction

Natural Computing [KR, 2008] is a research area that looks to biology and biochemistry nature in order to propose

new models of computation and algorithms. The experiment performed by Adleman [Adleman, 1994] in which he

solved a combinatorial problem using only DNA strands and enzymes was a milestone that triggered the proposals

of new models of computation based on the biomacromolecules and living cells behavior. So, the Networks of

Bio-inspired Processors (NBPs) have processors that operate over multisets of strings by applying string operations

inspired by biology. The communication and the filtering of the new strings among the processors are the two

remaining ingredients that make this moldel a complete model of computation (that is, in many cases they are

equivalent to Turing machines). There have been different proposals of NBPs: the Networks of Evolutionary

Processors (NEPs) [CMMS, 2003] operate with point mutation over strings by applying substitution, deletion and

insertion of new symbols. The Networks of Splicing Processors (NSPs) [MMM, 1949] work with splicing rules

inspired by DNA recombination with context. In our model, the Networks of Genetic Processors (NGPs) [CS, 2012],

the processors can apply mutation by substitution and splicing with empty context (full crossover). It has been

proved that NGPs are computationally complete and they can solve any NP problem with a polynomial number of

computing steps which can be applyied in polynomial time over the size of the input instance. In this work, we use

NGPs to solve the Hamiltonian Cycle Problem (HCP) that is a well known NP-complete decision problem. So, any

combinatorial decision problem that belongs to NP can be solved by reducing it to the HCP and then applying our

proposal to obtain a solution.

The structure of this work is as follows: first, we introduce basic concepts on formal language theory and computation

that are used in some definitions. Then, we define the Networks of Genetic Processors and we introduce a

complexity measure to evaluate the time complexity of the model. In the next section, we define The Hamiltonian

Cycle Problem and we propose a NGP to solve it. We show the results of the experiments that we have carried out

and, finally, we provide some conclusions and some guidelines for future work.

Basic concepts and notation
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research project TIN2011-28260-C03-01.
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In the following we will introduce some basic concepts about language theory from [HU, 1979] and computational

complexity from [DK, 2000].

An alphabet is a finite set of elements named symbols. A string is any ordered finite sequence of symbols. The

empty string is denoted by ε and it is defined as the string with no symbols. The infinite set of all the strings defined

over a given alphabet V will be denoted by V ∗. Given the string x ∈ V ∗, we denote the minimal subset W ⊆ V

such that x ∈W ∗ by alph(x). Given the string x ∈ V ∗, we denote the set of segments of x by seg(x), and it is

defined as the set {β ∈ V ∗ : x = αβγ with α, γ ∈ V ∗}. Obviously, given any string x ∈ V ∗ the set alph(x)
is a subset of seg(x). A language defined over an alphabet V is a subset of strings of V ∗.

Given the alphabet V , a mutation rule a → b, with a, b ∈ V , can be applied over the string xay to produce the

new string xby (observe that a mutation rule can be viewed as a substitution rule).

A crossover operation is an operation over strings defined as follows: Let x and y be two strings, then x ./ y =
{x1y2, y1x2 : x = x1x2 and y = y1y2}. Observe that x, y ∈ x ./ y given that we can take ε to be a part of

x or y. The operation can be extended over languages as L1 ./ L2 =
⋃

x∈L1,y∈L2
x ./ y. Obviously, for any

language L, L ./ L is well defined.

Let P and F be two disjoint subsets of an alphabet V , and let w ∈ V ∗. We define the predicates ϕ(1) and ϕ(2)

as follows

1. ϕ(1)(w,P, F ) ≡ (P ⊆ alph(w)) ∧ (F ∩ alph(w) = ∅) (strong predicate)

2. ϕ(2)(w,P, F ) ≡ (alph(w) ∩ P 6= ∅) ∧ (F ∩ alph(w) = ∅) (weak predicate)

We can extend the previous predicates to act over segments instead of symbols. Let P and F be two disjoint sets

of finite strings over V , and let w ∈ V ∗. We extend the predicates ϕ(1) and ϕ(2) as follows

1. ϕ(1)(w,P, F ) ≡ (P ⊆ seg(w)) ∧ (F ∩ seg(w) = ∅) (strong predicate)

2. ϕ(2)(w,P, F ) ≡ (seg(w) ∩ P 6= ∅) ∧ (F ∩ seg(w) = ∅) (weak predicate)

In the following, we work with this extension over segments instead of symbols. We can use single symbols

depending on the definition ofP andF . The construction of these predicates is based on random-context conditions

defined by the sets P (permitting contexts) and F (forbidding contexts). Let V be an alphabet and L ⊆ V ∗, and

let β ∈ {(1), (2)}, we define ϕβ(L,P, F ) = {w ∈ L|ϕβ(w;P, F )}.

In the following, we introduce some basic concepts of computational complexity theory. A decision problem is a

(mathematically defined) problem where the answer is the affirmation or negation of a predicate over the parameters

of the problem. A deterministic algorithm is an algorithm that given a particular input, it always produce the

same output. A nondeterministic algorithm is an algorithm that can exhibit different behaviors on different runs.

A nondeterministic algorithm for a decision problem has two different phases: the guessing phase and the checking

phase. In the guessing phase a possible solution is created randomly without complexity cost. In the checking

phase the algorithm checks if this possible solution is a good real solution. The time complexity in nondeterministic

algorithms is measured only by the checking phase. The complexity class P contains all the decision problems that

can be solved by deterministic algorithms in polynomial time. The complexity class NP contains all the decision

problems that can be solved by nondeterministic algorithms in polynomial time. It is a classical and open problem

to know whether P = NP or not.

Accepting Networks of Genetic Processors

Now, we provide the basic concepts and definitions for the Networks of Genetic Processors as they were introduced

in [CS, 2012]. In the same work, a formal proof of the computational completeness and the relationships between

NGPs and Parallel Genetica Algorithms are showed.
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Let V be an alphabet. A genetic processor N over V is defined by the tuple (MR, A, PI, FI, PO, FO, α, β),
where:

• MR is a finite set of mutation rules over V

• A is a multiset of strings over V with a finite support and an arbitrary large number of copies of every string.

• PI, FI ⊆ V are finite sets with the input permitting/forbidding contexts

• PO,FO ⊆ V are finite sets with the output permitting/forbidding contexts

• α ∈ {1, 2} defines the function mode with the following values

– If α = 1 the processor applies mutation rules

– If α = 2 the processor applies crossover rules and MR = ∅

• β ∈ {(1), (2)} defines the type of the input/output filters of the processor. More precisely, for any word

w ∈ V ∗ we define an input filter ρ(w) = ϕβ(w,PI, FI) and an output filer τ(w) = ϕβ(w,PO, FO).
That is, ρ(w) (resp. τ(w)) indicates whether or not the word w pass the input (resp. the output) filter of the

processor. We can extend the filters to act over languages. Thus, ρ(L) (resp. τ(L)) is the set of words of

L that can pass the input (resp. output) filter of the processor.

A Network of Genetic Processors (NGP) of size n is defined by the tuple Π = (V,N1, N2, ..., Nn, G,N ),
where V is an alphabet, G = (XG, EG) is a graph, Ni (1 ≤ i ≤ n) is a genetic processor over V , and

N : XG → {N1, N2, ..., Nn} is a mapping that associates the genetic processor Ni to each node i ∈ XG.

We distinguish two types of Networks of Genetic Processors: The accepting one and the generating one. In the

accepting case, the network will be denoted by ANGP and it has two distinguished processors, the input and the

output processors, Ninput andNoutput respectively. A configuration of an ANGPΠ = (V,N1, N2, ..., Nn, G,N )
is defined by the tuple C = (L1, L2, ...Ln), where Li is a multiset of strings defined over V for all 1 ≤ i ≤ n. A

configuration represents the multisets of strings which are present in any processor at a given moment (remember

that every string appears in an arbitrarily large number of copies). The initial configuration of the network is

C0 = (A1, A2, ...An). Observe that since the input string w is allocated in the input node, Ainput = {w},

while the output node is empty, so Aoutput = ∅.

Every copy of any string in Li can be changed by applying a genetic step in accordance with the mutation or

crossover rules associated with the processor Ni. Formally, we say that the configuration C1 = (L1, L2, ...Ln)
directly changes into the configuration C2 = (L′

1, L
′
2, ...L

′
n) by a genetic step, written as C1 ⇒ C2, if L′

i is

the multiset of strings obtained by applying the mutation or crossover rules of Ni to the strings in Li. An arbitrarily

large number of copies of each string is available in every node. Therefore, after a genetic step, one gets an

arbitrarily large number of copies of any string, which can be obtained by using all possible mutation or crossover

rules associated with that node. By definition, if Li is empty for some 1 ≤ i ≤ n, then L′
i is empty as well.

In a communication step, each processor Ni sends all copies of the strings to all the processor connected to Ni

according to G, provided that the strings are able to pass its output filter of Ni. In addition, it receives all copies

of the strings sent by any processor connected to Ni according to G, provided that they can pass its input filter.

Formally, we say that the configuration C ′ is obtained in one communication step from configuration C , written as

C ` C ′, iff

C ′(x) = (C(x)− τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG (1)

LetΠ = (V,N1, N2, ..., Nn, G,N ) be an ANGP. A computation sequence inΠwill be a sequence of configurations

C0, C1, · · · , where C0 is the initial configuration of Π, C2i ⇒ C2i+1 and C2i+1 ` C2i+2 for all i ≥ 0. This

sequence must be maximal (no other sequence follows from the previous one).
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We will consider that a sequence of configurations is finite whenever at least one of the following two conditions

holds:

1. The output node contains at least one string. That is, if Nk is the designated output node then Lk 6= ∅. In

this case we say that the network accepts the input string.

2. In a genetic step the operations cannot be applied (the strings at every processor do not change) and no string

is received or transmitted in the next communication step. After two consecutive genetic or communication

steps, the configuration of the network does not change.

The language accepted by an Accepting Network of Genetic Processors is the set of input strings such as the

network halts with at least one string in the output processor. Observe that, from the definitions given above, any

ANGP is a deterministic device and we can predict the network behavior from a given input configuration.

We can establish the following time complexity measure for the ANGP model: Let us consider an ANGP R and the

language L accepted by R. The time complexity of the accepting computation of R, if x is given as an input string,

is denoted by TimeR(x) and it is defined as the number of steps (both communication and evolutionary ones)

such that the network R halts on x in an acceptance mode. Observe that this measure is not defined whenever

the machine does not halt or it repeats two nonacceptance consecutive configurations. This measure, as defined

above, fully satisfies Blum’s axioms for abstract complexity measures [Blum, 1967]. In addition, we can define the

partial function TimeR : N→ N as follows:

TimeR(n) = max{TimeR(x) : x ∈ L(R), |x| = n} (2)

If we take an integer function f : N→ N then we can define the following language class provided that there exists

an ANGP R that holds the property required in the definition

T imeANGP (f(n)) = {L : There exits an ANGP , R and a natural number n0

such that L = L(R) and ∀n ≥ n0 T imeR(n) ≤ f(n)}
(3)

Finally, for a set of integer functions C we define

T imeANGP (C) =
⋃

f∈C

TimeANGP (f(n)) (4)

We will consider the function set poly as the set of integer polynomial functions, and we denote TimeANGP (poly)
by PTimeANGP . It has been proven in [CS, 2012] that NP ⊂ PTimeANGP . So, all NP problems can be

solved by ANGPs in polynomial time. In the following section, we select a NP-complete problem in order to test the

practical implications of the previous result.

The Hamiltonian Cycle Problem

In order to test NGPs as decision problem solvers, we have selected a well known combinatorial problem: the

Hamiltonian Cycle Problem (HCP). This problem belongs to Karp’s list of NP-complete problems that were published

in his landmark paper on NP-completeness [Karp, 1972]. In addition, the same problem was selected by Adleman

to give a proof of concept for DNA computing solving [Adleman, 1994]. The HCP can be defined as follows: In

graph theory, a path is a sequence of vertices such that from each of hem there is an edge to the next vertex in

the sequence. A Hamiltonian cycle is a path that includes every vertex of the graph exactly once, and there exists

an edge from the last vertex in the sequence to the first one. The (undirected) Hamiltonian Cycle Problem is the

problem of determining whether, given an (undirected) graph, a Hamiltonian cycle exits.
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Proposal of an ANGP to solve the HCP

Before we start to define an ANGP to solve the HCP, we must propose an encoding of the input graph instance.

Given that the size of the graph (the number of vertices it has) is unbounded, and the input alphabet of the ANGP is

finite, we will encode each vertex as a string of symbols. In order to make our experiments in an easy way, we will

consider only those graphs that have at most 50 vertices. Observe that for those graphs with a number of vertices

bigger than 50, we can provide the same solution that we are carrying out. The encoding of vertices to strings have

a linear time complexity, so the results will not be affected by this aspect.

Given a graph G = (D,E) where D is a set of n vertices, with n ≤ 50, and E is a set of edges, we propose the

following ANGP R:

R = (V,N0, N1, N2, ..., N49, Nc, Npc, Nout,K53, f), where V = {0, 1, 2, ...49} ∪ {0′, 1′, 2′, ...49′} ∪
{#,#′, 0∗}, where K53 is a star graph with 53 nodes. The graph have two connected central nodes Nc and Npc

that are connected with the rest of nodes Ni : 0 ≤ i ≤ 49. The output node Nout is only connected to Npc.

The processors are defined as follows:

For every vertex q ∈ D

Nq = ({#→ q′}, ∅, {p# : (p, q) ∈ E} ∪ {0∗# : (0, q) ∈ E}, {q}, {q′}, ∅, 1, (2))

Nc = (∅, {#′}, {n′ : 0 ≤ n ≤ 49}, {#,#′}, {n′ : 0 ≤ n ≤ 49} ∪ {n : 0 ≤ n ≤ 49} ∪
{#′#′, 0∗}, ∅, 2, (2))

Npc = ({q′ → q : 0 ≤ q ≤ 49} ∪ {#′ → #}, {0∗#}, {n′#′ : 0 ≤ n ≤ 49}, ∅, {n : 0 ≤ n ≤
49} ∪ {0∗#}, {n′ : 0 ≤ n ≤ 49} ∪ {#′}, 1, (2))

Nout = (∅, ∅, {n : 0 ≤ n ≤ 49}, ∅, ∅, ∅, 1, (1))

The computation of the network starts in the Npc processor, with the sequence 0∗# given that we consider that

the cycle starts at vertex 0. The # symbol marks the end of the string and it is used to add new vertices to the

cycle. The sequence leaves Npc and goes to processors Ni : 0 ≤ i ≤ 49 where (0, i) ∈ E. Every processor

Ni : 0 ≤ i ≤ 49 has a rule that changes the # symbol for the symbol i (the name of the vertex). Then, the

sequence goes to the processor Nc that is used to add the symbol #′ at the end. This sequence goes to Npc

that cleans all the marks from all the symbols. The most interesting aspect of the sequence from Npc is that the

symbols before the # represents the last vertex from the path, that is the vertex j. In the next computation step,

the sequences go only to the processors Ni : 0 ≤ i ≤ 49 where (j, i) ∈ E (this process is carried out by the

filters of each processor). The network repeats this process until the computation ends. If during the computation,

a string gets a path with all the nodes, this string goes to the Nout processor, the computation ends and the answer

to the problem is YES. On the other hand, if the graph does not have a Hamiltonian cycle there is a computation

step where the strings cannot be communicated to any processor Ni : 0 ≤ i ≤ 49. Then, no string is received

or transmitted and the configuration of the network does not change. So, the network halts and the answer to the

problem is NO.

Experimental Results

We have considered only instances of graphs with Hamiltonian cycles. This is the case to measure the complexity

in the worst case, given that the number of steps in the computation, for each graph, is the highest when it has a

cycle. The reason for this is that the computation of the NGP consists in creating a Hamiltonian path. If the input

graph does not have a Hamiltonian cycle the process ends before, and the number of steps is lower (this result has

been observed empirically).
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The graphs used in the experiments have a different number of vertices and edges. The table in the Figure 1 shows

the results obtained by the experiments.

vertices edges Computation steps

5 8 40

5 10 40

5 12 40

10 18 80

10 20 80

10 22 80

15 28 120

15 30 120

15 32 120

20 38 160

20 40 160

20 42 160

Figure 1: Computation steps to solve The Hamiltonian Cycle Problem using Networks of Genetic Processors.

We can observe that the number of edges does not affect to the number of computation steps. The NGP can check

all the edges at the same time because the edges are represented by the filters of every processor Ni : 0 ≤ i ≤ 49
and they work in pararell.

If n is the number of vertices, the number of computational steps used by the NGP to check if the graph have a

Hamiltonian cycle is a most 8 ∗ n (O(n)). In order to add one vertex to the path, the network makes 8 computation

steps: one, in Ni, to change the # simbol to i′, one to send the sequence from Ni to Nc, one to add #′ at the end,

one to go to Npc, three to clean the sequence (two genetic steps plus one communication step), and one to return

the sequence to Nj processor. If the graph has a hamiltonian cycle, the network repeats this process n times. So,

the network performs at most n∗8 computation steps. This results gives a sign that HCP belongs to PtimeANGP

as it has been theoretically proved [CS, 2012].

Conclusions and Future Work

In a previous work [CS, 2012], we proposed a new model of computation, the Networks of Genetic Processors. In

the same work we proved that the model is computational complete and we defined a time complexity measure for

it.

In this work, we have carried out some experiments to observe the behavior of the NGPs to achieve the time

complexity that has been theoretically proved. We have selected a NP -complete problem, the Hamiltonian Cycle

Problem, and we have implemented an ANGP to solve it. The results of the experiments give a sign that the NGPs

can solve NP problems in polynomial time (nevertheless, the NGPs work in an ideal parallel model and some

practical aspects must be taken into account). For the Hamiltonian Cycle Problem, we can implement an ANGP

where the computation steps depend only on the number of vertices (not on the number of the edges), and with a

linear time complexity.

For our future research, we will consider other types of problems such as the optimization problems (i.e. the

optimization Travelling Salesman Problem or the Knapsack Problem). For this case, we need to define a new kind

of NGPs that work like a set of Parallel Genetic Algorithms. In addition, the implementation of NGPs in hardware to

exploit the parallelism of the model will be considered too.
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