Formal Languages Arising from Gene Repeated
Duplication

Peter Leupold?, Victor Mitrana?, and José M. Sempere®

! Research Group on Mathematical Linguistics
_ Rovira i Virgili University
Pca. Imperial Tarraco 1, 43005 Tarragona, Spain
pl. doc@estudiants.urv.es
? Faculty of Mathematics and Computer Science, Bucharest University
Str. Academiei 14, 70109 Bucuresti, Romania
and
Reseaich Group on Mathematical Linguistics
Rovira i Virgili University
Pca. Imperial Tarzaco 1, 43005 Tarragona, Spain
_ vniQfll.urv.es
3 Departamento de Sistemas Informéticos y Computacion
Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
jeempere@dsic.upv.es

Abstract. We consider two types of languages defined by a string
through iterative factor duplications, inspired by the piocess of tandem
repeats production in the evolution of DNA. We investigate some de-
cidability matters concerning the unbounded duplication languages and
then fix the place of bounded duplication languages in the Chomsky hier-
archy by showing that all these languages are context-free. We give some
conditions for the non-regularity of these languages. Finally, we discuss
some open problems and directions for further research

1 Introduction

In the last years there have been introduced some operations and generat-
ing devices based on duplication operations, motivated by considerations from
molecular genetics. It is widely accepted that DNA and RNA structures may
be viewed to a certain extent as strings; for instance, a DNA stiand can be
presented as a string over the alphabet of the complementary pairs of symbols
(A, T),(T, A),(C,G), (G, C). Consequently, point mutations as well as large scale
rearrangements occuriing in the evolution of genomes may be modeled as oper-
ations on strings.

One of the most frequent and less well understood mutations among the
genome rearrangements is the gene duplication or the duplication of a segment
of a chromosome Chromoesomal rearzangements include pericentiic and para-
centric inversions, intrachromosomal as well as interchromosomal transpositions,

N. Jonoska et al. (Eds.): Molecular Computing (Head Festschnft) LINCS 2950, pp. 297-308, 2004,
© Springer-Verlag Berlin Heidelberg 2004

208 Peter Leupold, Victor Mitrana, and José M. Sempere

translocations, etc. Crossover results in recombination of genes in a pair of ho-
mologous chromosomes by exchanging segments between parental chromatides.
We refer to [3], [4], [5] and [19] for discussions on different formal operations on
strings related to the language of nucleic acids. This feature is also known in
natural languages. For motivations coming from linguistics, we refer to [11] and
[17].

In the process of duplication, a stretch of DNA is duplicated to produce two
or more adjacent copies, resulting in a tandem repeat. An interesting property
of tandem repeats is that they make it possible to do “phylogenetic analysis” on
a single sequence which might be useful to determine a minimal or most likely
duplication history.

£

Several mathematical models have been proposed for the production of tan-
dem repeats including replication, slippage and unequal crossing over [10,24,18].
These models have been supported by biological studies [20,7].

The so-called crossing over between “sister” chromatides is considered to be
the main way of producing tandem repeats or block deletions in chromosomes. In
[2], modeling and simulation suggests that very low recombination 1ates (unequal
crossing over) can result in very large copy number and higher order repeats.
A model of this type of crossing over has been considered in [6]. It is assumed
that every initial string is replicated so that two identical copies of every initial
string are available. The first copy is cut somewhere within it, say between the
segments « and 3, and the other one is cut between v and ¢ (see Figure 1). Now,
the last segment of the second string gets attached to the first segment of the
first string, and a new string is obtained. More generally, another string is also
generated, by linking the first segment of the second string to the last segment
of the first string.

h

z Y) ¢
Figure 1: A scheme for gene duplication

It is easily seen that one obtains the insertion of a substring of w in w; this has
the potential for inducing duplications of genes within a chromosome. We note
here that, despite this model is inspired from recombination in vivo, it actually
makes use of splicing rules in the sense of [8], where a computational model based
on the DNA recombination under the influence of restriction enzymes and ligases
essentially in vitro is introduced. This model turned out to be very attractive
for computer scientists, see, e g., the chapter [9] in [16] and [15].

Formal Languages Arising from Gene Repeated Duplication 299

Based on [3], Martin-Vide and Paun introduced in {12] a generative mecha-
nism (similar to the one considered in [4]) based only on duplication: one starts
with a given finite set of strings and produces new strings by copying specified
substrings to certain places in a string, according to a finite set of duplication
rules. This mechanism is studied in [12] from the generative power point of view.
In [14] one considers the context-free versions of duplication grammars, solves
some problems left open in [12], proves new results concerning the generative
power of context-sensitive and context-fiee duplication grammars, and compares
the two classes of grammars. Context-free duplication grammars formalize the
hypothesis that duplications appear more o1 less at random within the genome
in the course of its evolution.

In [7] one considers a string and constiucts the language obtained by iter-
atively duplicating any of its substrings. One proves that when starting from
strings over two-letter alphabets, the obtained languages are regular; an answer
for the case of arbitrary alphabets is given in [13], where it is proved that each
string over a three-letter alphabet generates a non-regular language by duplica-
tion.

This paper continues this line of investigation. Many questions are still un-
solved; we list some of them, which appear more attractive to us — some of then
will be investigated in this work:

- Is the boundary of the duplication unique, is it confined to a few locations
01 it is seemingly unrestricted?

- Is the duplication unit size unique, does it vary in a small range or is it
unrestricted?

- Does pattern size affect the variability of duplication unit size?

- Does duplication occur preferentially at certain sites?

In [7] the duplication unit size is considered to be unrestricted We continue

here with a few properties of the languages defined by unbounded duplication
unit size and then investigate the effect of restricting this size within a given
range.
The paper is organized as follows: in the next section we give the basic
definitions and notations used thioughout the paper. Then we present some
properties of the unbounded duplication languages based essentially on [7,13].
The fourth section is dedicated to bounded duplication languages. The main
results of this section are: 1. Each bounded duplication language is context-free,
2. Any square-free word over an at least three-letter alphabet defines a k-bounded
duplication languages which is not regular for any k > 4. The papers ends with
a discussion on several open problems and directions for further research.

2 Preliminaries -

Now, we give the basic notions and notations needed in the sequel For basic for-
mal language theory we refer to {15] or {16]. We use the following basic notation.
For sets X and Y, X \ Y denotes the set-theoretic difference of X and Y. If X
is finite, then card(X) denotes its cardinality; § denotes the empty set. The set

300 Peter Leupold, Victor Mitrana, and Jogé M. Sempere

of all strings {words) over an alphabet V is denoted by V* and V™ = V*\ {¢},
whete € denotes the empty string. The length of a string z is denoted by |z,
hence |¢| = 0, while the number of all occurrences of a letter a in z is denoted
by |z|s . For an alphabet V = {ay,a2,...,ax} (we consider an ordering on V'),
the Parikh mapping associated with V is a homomorphism ¥y fiom V* into
the monoid of vector addition on IN®, defined by Wy-(s) = (|S|ays [Slass - -+ 1Sy);
moreovel, given a language L over V, we define its image through the Parikh
mapping as the set ¥y (L) = {@y(x) | z € L}. A subset X of IN* is said to be
- linegr it there are the vectors cg,¢1,62,. . ,Cp € e , for some n > 0 such that
X ={eo+ Z;L:l zic; | x; € IN,1 <4 < n}. A finite union of linear sets is called
semilinear. For any positive integer n we write [n] for the set {1,2,.. .,n}.

Let V be an alphabet and X € {IN}U{[k] | k > 1}. For a string w € VT, we
set

Dx(w) = {uzzv | w =vzv,u,v € V,z e VT, |z| € X}

We now define recursively the languages:

D% (w) = {w}, Dyw)= |J Dx(),ix>1,

ze Dy (w)

Dy (w) = |) Di(w).
i>0

The languages Dj(w) and D*k] (w), k > 1, are called the unbounded duplication
language and the k-bounded duplication language, 1espectively, defined by w. In
other words, for any X € {IN} U {[k] | k > 1}, D% (w) is the smallest language
L’ C V* such that w € L’ and whenever uzv € L/, uzzv € L' holds for all
wrveV,ze VT and |z| € X.

A natural question concerns the place of unbounded duplication languages
in the Chomsky hierarchy. In [7] it is shown that the unbounded duplication
language defined by any word over a two-letter alphabet is regular, while [13]
shows that these are the only cases when the unbounded language defined by a
word is regular. By combining these results we have:

Theorem 1. {7,13] The unbounded duplication language defined by a word w is -

reqular if and only if w contains at most two different letters.

3 Unbounded Duplication Languages

We do not know whether or not all unbounded duplication languages are context-
free. A straightforward observation leads to the fact that all these languages are
linear sets, that is, the image of each unbounded duplication language through
the Parikh mapping is linear. Indeed, if w € V', V = {a1,0a2,...,a,}, then one
can easily infer that

K
Ty (D (w)) = {Wy(w) + ine?) |z; e N, 1 <i<n},

i=1

Formal Languages Arising from Gene Repeated Duplication 301

where egn) is the vector of size n having the ith entry equal to 1 and all the other
entries equal to 0.

Theorem 2. Given a regqular language L one can algorithmically decide whether
or not L is an unbounded duplication language.

Proof We denote by alph(z) the smallest alphabet such that z € (alph(z))".
The algorithm works as follows: '

(i) We find the shortest string z € L (this can be done algorithmically). If there
are more strings in L of the same length as z, then L is not an unbounded
duplication language.

(ii) We now compute the cardinality of alph(z).

(iii) If card(alph(z)) > 3, then there is no x such that L = Dy(z).

(iv) If card(alph(z)) = 1, then L is an unbounded dup11cat10n language if and
only if L = {al*I*™ | m > 0}, where alph(z) =

(V) If k=2, z=225... 2n, % € alph(z), 1 <1 5 n, then L is an unbounded
duplication language if and only if

L=z ejzes.. . en12), (1)

where

e; ziq, 2 = 2igg
{2i + zipr }*, if 23 # zia

for all 1 <14 < n—1. Note that one can easily construct a deterministic finite
automaton recognizing the language in the right-hand side of equation (1).

|

Theorem 3. 1 The following problems are algorithmically decidable for un-
bounded duplication languages:

Membership: Given x and y, is x in Di(y)?
Inclusion: Given x and y, does D (z) C Di(y) hold?

2. The following problems are algorithmically decidable in linear time:
Equivalence: Given x and y, does Diy(x) = Dy(y) hold?
Regularity: Given z, is Diy(z) a regular language?

Proof. Clearly, the membership problem is decidable and
Din(z) € Div(y) if z € Die(y)-
For Dj(z) = Dj(y), it follows that |z| = |y|, hence z = y. In conclusion, Z =¥

iff D}(z) = Dy(y). This implies that the equivalence pxoblem is decidable in
linear time.

The regularity can be decided in linear time by Theorem 1. =

302 Peter Leupold, Victor Mitrana, and José M. Sempere

4 Bounded Duplication Languages

Unlike the case of unbounded duplication languages, we are able to determine
the place of bounded duplication languages in the Chomsky hierarchy. This is
the main result of this section.

Theoréem 4. For any word r and any integer n > 1, the n-bounded duplication
language defined by r is context-free.

Proof. For our alphabet V = alph(r) we define the extended alphabet V. by
V. := VU {{a) | a € V}. Further we define L= := {w € L | |w| < I} for any
language L and integer [. We now define the pushdown automaton

(orns[{)

where @) = { M lwe (V- VeV V)=t ve (V)" we (V*)S!f-i},

and I == {“L}U{m [} €@Q,ve (V¥Er & (V)= |}

Here we call the three strings occurring in a state from bottom to top pat-
tern, memory, and guess, respectively. Now we proceed to define an intermedi-
ate deterministic transition function §’. In this definition the following variables
ale always quantified universally over the following domains: u,v € (V*)=7,
we (VSN pe (VIS ne (Vi Vuv:. VEr yel,zeVandY € V.,

o[)= (1)) e ()) (2
o #([75) (]) e (5])= (3]

Eon

. =E(E>Y;L uzY p _
(iii) 5’(el ,z,v] = e|,v} and
w w
) , u{x)¥Yu uzY
J 20156 | = M

oo (9= (2] # (- ()

For all triples (g, z,v) € @ x(VU{e}) x I" not listed above, we put § (g, z,v) = 0.

To ensure that our finite state set suffices, we take a closer look at the memory
of the states — since after every reduction the reduced word is put there (see
transition set (iv}), there is a danger of this being unbounded. However, during
any reduction of a duplication, which in the end puts & < n letters into the
memoty, either 2k letters from the memory or all letters of the memory (provided
the memory is shorter than 2&) have been 1ead, since reading from memory has
priority (note that the tape is 1ead in states with empty memory only). This
gives us a bound on the length of words in the memory which is n. It is worth
noting that the transitions of §’ actually match either the original word 7 or the

Formal Languages Arising from Gene Repeated Duplication 303

guess against the input or memory. To obtain the transition function § of our

automaton, we add the possibility to interrupt in any point the computation of

¢’ and change into a state that starts the reduction of another duplication To
7

this end we define for all { vl e@Q\F,andvye I’

w

(8 en) - (2) o{([E] mpr=e ey

Such a transition guesses that at the current position a duplication of the
form zz can be reduced (note that also here the bound of the length of the
memory is not violated). For the sake of understandability we fixst describe also
the function of the sets of transitions of §’. Transitions (i) match the input word
and r; this is only done on empty guess and stack, which ensures that every letter
is matched only after all duplications affecting it have been reduced. Sets (ii) and
(iii) check whether the guess, which is the segment of a guessed duplication, does
indeed occur twice adjacently in the memory followed by the input. This is done
by converting first guess letters from letters in V' to the corresponding letters in
V. (set (ii)) exactly if the respective letter is read from either memory or input.
Then set (iii) recovers the original letters. Finally the transitions in (iv) check
the last letter; if it also matches, then the duplication is reduced by putting only
one copy (two have been read) of the guess in the memory, and the computation
is continued by putting the string encoded in the topmost stack symbol back
into the guess. Now we can state an important property of A}, which allows us
to conclude that it accepts exactly the language D’[*n](r').‘

Property. If there is an accepting computation in A}, starting from the config-

n
uration ([e] , U, a), then there is also an accepting computation starting from
w

7
any configuration ([01] ,vg,a) where v = v1v9, U1} < 1.
w
Proof of the property. The statement is trivially true for v1 = ¢, therefore in the
rest of the proof we consider v; # . We prove the statement by induction on the
length of the computation. First we note that there exists an unique accepting
£
configuration that is ({s] 2 E, _L) . Let IT be an accepting computation in A7,

€
: n
starting from the configuration ({ s] ,v,a)
w

If the length of IT is one, then n = ¢, o = L, and v = w € V which makes
the statement obviously true. Let us assume that the statement is true for any
computation of length at most p and consider a computation I7 of length p+1
where we emphasize the first step. We distinguish three cases:

et (HE R (HE O L (e

Em3

304 Peter Leupold, Victor Mitrana, and José M. Sempere

w

7 z -
Clearly, we have also ([w} ,vg,a> t- ([m:] ,vg,'ﬁa) for any vive = v, jvi < n.
w

z

£
By the induction hypothesis, ([Ul} . vg,“ﬁa) F* ({e} , E, J_) holds as well.
w £

Case 2. (m ,xv,’a> . ([H ,v’,a) = (H ’E’l> ’.

where v = zv’ and the first step is based on a transition in the first part of the
n 7'
sets (i-iii). We have also ([mvi} ,'Uz,(]f) - ({vi} ,vg,a) based on one of the

w w
corzesponding transitions in the second part of the sets (i-iii). Since v; = T,
by the induction hypothesis we are done in the second case.

Case 3.
([Z] ,xv’,c‘ra’) = ([;} ,v’,a’) = (F} ,5,L> ,

where the first step is based on a transition in the first part of the set (iv). Since
reading from memory has priority, there exist w’, 7, and 8 such that

(HEC A (RO R (HED]

7 o
We have ([wvi} ,ng,Ea’) = ([yvi] ,vg,a’) for any viva = v, |v1f £ n.

w w

T
Further, following the same transitions as above, we get ([yvi} ,Ug,a’) -
w

-

([v%] , Vg, ,B), and by the induction hypothesis we conclude the proof of the
Iw

third case, and thus the proof of the property.

After the elaborate definition of our pushdown automaton, the proof for
L(ATY = Dry; (r) by induction on the number of duplications used to create
a word in D .(r) is now rather straightforward. We start by noting that the
original WOI({ r is obviously accepted. Now we suppose that all words reached
from r by m-~1 duplications are also accepted and look at a word s 1eached by m
duplications. Clearly there is a word s’ reached from r by m—1 duplications such
that s is the result of duplicating one part of s'. By the induction hypothesis,
s’ is accepted by AT, which means that there is a computation, we call it =,
which accepts s'. Let s'[l.. k] (the subword of ¢’ which starts at the position {
and ends at the position % in §’, I < k) be the segment of & which is duplicated
at the final stage of producing s Therefore

s=¢[L. Kl || =s[1.. -1l KL . KsTk+1.. |5
Because AE reads in an accepting computation every input letter exactly once,

- . — - . - 'u'
there is exactly one step in =, where s’ [f] is read Let this happen in a state { eJ
w

1
1
i
i
L
o
I
i
i
|

Formal Languages Arising from Gene Repeated Duplication 305

with s'[I. .. |s'[] = s[k+1...]s|] left on the input tape and o the stack contents.
s'[1.. K]

Now we go without reading the input tape to state e | and push 7 onto
w

~ the stack. Then we reduce the duplication of the subword §'[l .. . k] of s, which is

the guess of the curzent state, by matching it twice against the letters read on the
input tape After reducing this duplication, we arrive at a configuration having
a state containing p in the guess, s'[l.. . k] in the memory, and w in the pattern,
sik+1...|s| left on the tape, and the stack contents as before. By the pioperty
above, there exists an accepting computation starting with this configuration,
hence s is accepted. Since all words accepted by A7 are clearly in Dg‘n] (r), and
we are done.

Clearly, any language Df‘u(w) is regular. The same is true for any language
Diy(w). Indeed, it is an easy exercise (we leave it to the reader) to check that

Diy(w) = (w]*wl2]")" (w27 w[3])" .- (wljw — 1T wilw])"

The following question appears in a natural way: Which are the minimal k£ and
n such that there are words w over an n-letter alphabet such that Dy, (w) is not
regular?

Theorem 5. 1. Df‘k](w) is always reqular for any word w over a two-letter al-
phabet and any k > 1.

2. For any word w of the form w = xabcy with a # b # ¢ # a, DE“k] (w) is not
regular for eny k > 4

Proof 1. The equality Dj(w) = Diy (w) holds for any k > 2 and any word w
over a two-letter alphabet, hence the first item is proved.

2. Qur reasoning for proving the second item, restricted without loss of gen-
erality to the word w = abe, is based on a similaz idea to that used in [13]. So,
let w = abe, V = {a,b,c}, and k > 4. First we prove that for any v € V¥ such
that wu is square-free, there exists v € V* such that wuv € Dy, (w). We give
a recursive method for constructing wuwv starting fiom w; at any moment we
have a string wu'v’ where u' is a prefix of v and v’ is a suffix of v. Initially,
the current string is w which satisfies these conditions. Let us assume that we
reached z = wu[lju(2]. .. u[t — 1]v’ and we want to get y = wu[l]u[2] ... u[ilv”
To this end, we duplicate the shortest factor of 2 which begins with w[i] and
ends on the position 2 + 7 in z. Because wu[l]ui2] .. u[i — 1] is square-free and
any factor of a square-free word is square-free as well, the length of this factor
which is to be duplicated is at most 4. Now we note that, given u such that wu
is square free and v is the shortest word such that wuv € Df‘k] (w), we have on
the one hand k|u} + 3 > |wuv| (each duplication produces at least one symbol
of u), and on the other hand (k — 1)|v| > |u| (each duplication produces at least
one symbol of v since wu is always square-fiee). Therefore,

(k— Dlul > o] > 2

“ k-1 2

306 Peter Leupold, Victor Mitrana, and José M. Sempere

We are ready now to prove that Df‘k] (w) is not regular using the Myhill-Nerode
characterization of regular languages. We construct an infinite sequence of square-
free words w1, ws,. .. ,, each of them being in a different equivalence class:
wy = w and ws11 = wu such that wu is square-free and (k — 1)|w;| < E‘T—Lli :
Cleatly, we can construct such an infinite sequence of square-free words since
there are arbitraiily long square-free words having the prefix abe {21,22,1}. For
instance, all words h™(a), n > 1, are square-free and begin with abc, where A is
an endomoiphism on V* defined by h{a) = abeab, h(b) = acach, h{c) = acbcach.
Let v; be the shortest word such that wyv; € Dy, (w), i > 1. By relation (2),
wiy1v; ¢ Djfy(w) for any 1 < j < 4. Consequently, Diyy(w) is not regular. O
Since each square-free word over an at least three-letter alphabet has the
form required by the previous theorem, the next corollary directly follows.

Corollary 1. Df‘k] (w) is not regular for any square-free word w over an alphabet
of at least three letters and any k > 4.

5 Open Problems and Further Work

We list here some open problems which will be in our focus of interest in the
near future:

1. Is any unbounded duplication language context-free? A way for attacking
this question, in the aim of an affirmative answer, could be to prove that for
any word w there exists a natural k,, such that Dy (w) = D?kw](w).‘ Note that a
similar result holds for words w over alphabets with at most two letters.

2. What is the complexity of the membership problem for unbounded du-
plication languages? Does the particular case when vy is square-free make any
difference?

3. We define the X-duplication distance between two strings z and y, denoted
by Dupdx(z,y), as follows:

Dupdx (z,y) = min{k | z € D%(y) or y € D% (2)}, X € {N}U{[n] | n > 2}.

Clearly, Dupd is a distance. Are there polynomial algorithms for computing
this distance? What about the particular case when one of the input strings is
square-free?

4. An X-duplication root, X € {IN} U {[n] | n > 2}, of a string z is an X-
square-free string y such that z € D% (y). A string y is X-squaze-free if it does
not contain any factor of the form zz with |z| € X. It is known that there are
words having more than one IN-duplication root. Then the following question is
natuzal: If £ and y have a common duplication 100t and X is as above, then
D% (z) N D3 (y) £ ()7 We strongly suspect an affirmative answer. Again, the
case of at most two-letter alphabets is quite simple: Assume that z and y are
two strings over the alphabet V = {4, b} which have the same duplication root,

Formal Languages Arising from Gene Repeated Duplication 307

say aba (the other cases are identical). Then z = a*1bP1ak2 . gFrbPrgknsr and
y = ab%a’2 . a@Imbimgimtt for some n,m > 1. It is an easy exercise to get
by duplication starting from z and y, respectively, the string (a'6*)°a’, where

s = max(n,m) and { = max(A4), with

A:{kt|1§t§n+1}u{pt|15t_<_n}
U{pll<t<m+1}U{g|1<t<m}

What is the maximum number of X-duplication 100ts of a string? How hard
is it to compute this number? Given n and X € {IN} U {[n] | n > 2}, are there
words having more than n X-duplication roots? (the non-triviality property)
Given n, are there words having exactly n X-duplication roots? (the connec-
tivity property) Going further, one can define the X-duplication root of a given
language. What kind of language is the X -duplication root of a regular language?
Clearly, if it is infinite, then it is not context-free.

References

1. Bean, D.R., Ehrenfeucht, A., Mc Nulty, G.F. (1979) Avoidable patterns in strings
of symbols, Pacific J. of Math. 85:261-294.

2. Charlesworth, B., Sniegowski, P., Stephan, W. (1994) The evolutlonaxy dynamics
of repetitive DNA in eukaryotes, Nature 371:215-220.

3. Dassow, J., Mitrana, V. (1997) On some operations suggested by the genome evo-
hution. In: Altman, R., Dunker, K., Hunter, L, Klein, T. (eds.) Pacific Symposium
on Biocomputing’97, 97-108

4. Dassow, J., Mitrana, V. (1997) Evolutionary grammars: a grammatical mode} for
genome evolution In: Hofestddt, R, Lengauer, T., Lofiler, M., Schomburg, D
(eds.) Proceedings of the German Conference in Bioinformatics GCB’96, LNCS
1278, Springer, Berlin, 199-209.

5. Dassow, J., Mitrana, V., Salomaa, A. (1997) Context-free evolutionary grammars
and the language of nuclelc acids. BioSystems 4:169-177.

6. Dassow, J., Mitrana, V. (1998) Self cross-over systems. In: Piun, G. (ed) Com—
puting w1th Bio-Molecules, Springer, Singapore, 283-294.

7. Dassow, J., Mitrana, V., Paun, G. (1999) On the regularity of duplication closuze,
Bull. EATCS, 69:133-136.

8. Head, T (1987) Formal language theory and DNA: an analysis of the generative
capacity of specific recombinant behaviours, Bull Math. Biology 49:737—759.

9 Head, T, Péun, G., Pixton, D. (1997} Language theory and molecular genetics.
Generative mechanisms suggested by DNA recombination In: [16]

10. Levinson, G., Gutman, G. (1987) Slipped-strand mispairing: a major mechanism
for DNA sequence evolution, Molec. Biol. Evol 4:203-221.

11. Manaster Ramer, A. (1999) Some uses and misuses of mathematics in linguistics.
In: Martin-Vide, C. (ed.) Issues from Mathematical Linguistics: A Workshop, John
Benjamins, Amsterdam, 70-130.

12. Martin-Vide, C, Paun, G (1999) Duplication grammars, Acta Cybernetica
14:101-113.

13 Ming-wei, W. (2000) On the irregularity of the duplication closure, Bull. EATCS,
70:162-163.

308

14.

15.

6.

17.

18.

19.

20,

21.

22.

23.

24.

Peter Leupold, Victor Mitrana, and José M. Sempere

Mitrana, V., Rozenberg, G. (1999) Some properties of duplication grammars, Acta
Cybernetica, 14:165-177

Piun, G., Rozenberg, G, Salomaa, A (1998) DNA Computing. New Computing
Paradigms, Springer, Berlin.

Rozenberg, G., Salomaa, A. {(eds.) (1997) Handbook of Formal Languages, vol.
I-III, Springer, Berlin.

Rounds, W.C, Manaster Ramer, A, Friedman, J. (1987) Finding natural lan-
guages a home in formal language theory In: Manaster Ramer, A (ed) Mathe-
matics of Language, John Benjamins, Amsterdam, 349-360.

Schlotterer, C., Tautz, D (1992) Slippage synthesis of simple sequence DNA,
Nucleic Acids Res. 20:211-215

Searls, D.B. (1993) The computational linguistics of bioclogical sequences. In:
Hunter, L. (ed.) Axtificial Intelligence and Molecular Biology, AAAI Press/MIT
Press, Menlo Park, CA/Cambridge, MA, 47-120.

Strand, M., Prolla, T, Liskay, R, Petes, T. (1993) Destabilization of tracts of

simple repetitive DNA in yeast by mutations affecting DNA mismatch repair,
Nature 365:274-276.

Thue, A. (1906) Uber unendliche Zeichenieihen, Norske Videnskabers Selskabs
Skrifter Mat.-Nat. K1 (Kristiania}, 7:1-22.

Thue, A (1912) Uber die gegenseitige Lage gleicher Teile gewiisser Zeichenteihen,
Norske Videnskabers Selskabs Skrifter Mat.-Nat. KL (Kristiania), 1:1-67
Weitzmann, M., Woodford, K., Usdin, K. (1997) DNA secondary structures
and the evolution of hyper-variable tandem arrays, J. of Biological Chemistry
272:9517--9523.

Wells, R (1996) Molecular basis of genetic instability of triplet 1epeats, J. of

Biological Chemistry 271:2875-2878.

