
1658 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 4, AUGUST 2004

Inference of Reversible Tree Languages
Damián López, José M. Sempere, and Pedro García

Abstract—In this paper, we study the notion of -reversibility
and -testability when regular tree languages are involved. We
present an inference algorithm for learning a -testable tree
language that runs in polynomial time with respect to the size
of the sample used. We also study the tree language classes in
relation to other well known ones, and some properties of these
languages are proven.

Index Terms—Grammatical inference, pattern recognition,
regular tree languages.

I. INTRODUCTION

I N THE FIELD of machine learning, one classical problem
is to obtain the rules or patterns that model the structure of

a set. When the objects are represented by elements of a formal
language, the patterns determine the rules of a grammar which
are able to generate the language. The search for these rules is
known as grammatical inference. In the grammatical inference
process, the information about the target language is given as
two sets; a positive sample that consists of objects belonging to
the language, and a negative sample of objects that do not belong
to it.

There exist many factors that limit the learning of these rules
[1]. Of these factors, it is important to note that without neg-
ative sample it is impossible to infer the class of regular lan-
guages. However, there exist several inference methods that use
positive samples only. These methods lead to the characteriza-
tion of important subfamilies of regular languages, for example,
the -testable in the strict sense [2], or the -piecewise testable
languages [3]. In an intuitive way, these languages model the se-
quences of symbols that can appear in the words of the language
(consecutive symbols when -testable in the strict sense lan-
guages are involved, or, nonconsecutive symbols when -piece-
wise testable languages are considered).

Another classical approximation to formal string language
inference is the use of structured sample during the learning
process. In this approach, tree-like descriptions of the words are
given to the inference method. This description usually gives
relevant information which is related to the training data, for
instance, one of the possible ways the data can be generated
[4]–[6]. These inference methods can be modified for inferring
tree languages. However, such modified methods are not the

Manuscript received January 17, 2003; revised July 1, 2003 and February 4,
2004. This work was supported by Spanish Comisión Interministerial de Ciencia
y Tecnología (CICYT) under Contract TIC2000-1153. This paper was recom-
mended by Associate Editor J. B. Oommen.

The authors are with the Departamento de Sistemas Informáticos y Com-
putación, Universidad Politécnica of Valencia, 46071 Valencia, Spain (e-mail:
dlopez@dsic.upv.es; jsempere@dsic.upv.es; pgarcia@dsic.upv.es).

Digital Object Identifier 10.1109/TSMCB.2004.827190

only way to infer tree languages, and there exist several spe-
cific algorithms for these languages in the literature [7]–[13].

The inference of tree languages is related to the inference
of context-free string languages using a structural sample, but
the development of specific tree language learning algorithms
should open new possibilities for the characterization of sub-
classes of the context-free languages. Sakakibara [6] shows that
every context-free language has a grammar in a zero-reversible
normal form, and he provides an algorithm to learn the con-
text-free class by using structured sample. Besides, the charac-
terization of tree language classes should also open the possi-
bility to learn context-free languages with some desirable prop-
erties that could permit the development of efficient parsers.

Learning results have been widely applied to the field of
pattern recognition (PR). The syntactic approximation to PR
tasks [14], [15] attempts to model the structure, instead of
measuring features of the objects to be classified. Several
approaches to syntactic representation of patterns have been
proposed, but those with the greatest representation power
(mainly based on several kinds of graphs), are also the most
complex to manipulate. Therefore, in an attempt to reduce the
time complexity of the process, linear representations have
been used extensively (chains of symbols) due to the existence
of efficient algorithms that deal with these representations.
Research exists [2], [16]–[19] which propose solutions to PR
tasks under a syntactic approach with good results.

Nevertheless, in a syntactical approach to PR, the develop-
ment of algorithms to perform operations on more complex ob-
jects than strings of symbols, permits a more suitable repre-
sentation of the objects of the domain. Thus, the existence of
error-correcting parsers for tree languages [20], [21] permits the
use of these languages in recognition tasks [12], [22].

In this paper, two new tree language classes are studied. The
first one generalizes the notion of -reversibility [23] to tree lan-
guages. -reversible languages could be seen as a special case of
the distinguishable languages introduced by Fernau [24]. Fernau
presents a general scheme that could be used to infer this class.
In our paper we propose a more efficient algorithm to learn -re-
versible languages. We also study -reversible languages in re-
lation to other well-known tree language classes. The second
class of tree languages characterized in this paper extends the
concept of -testability from string languages [18]. -testable
tree languages are also studied in relation to other classes.

The paper is structured as follows. In Section II, we establish
the notation and the basic definitions used throughout the paper.
In Section III, we define the class of -reversible tree languages
and we present some characterizations and results. In Section IV
the inference algorithm for this class is proposed, one example
of run is shown, and the polynomial time complexity is proved.
In Section V, this class is studied in relation to other well-known

1083-4419/04$20.00 © 2004 IEEE

LÓPEZ et al.: INFERENCE OF REVERSIBLE TREE LANGUAGES 1659

regular tree languages. The class of -testable tree languages is
also characterized and related to all the previous classes. Finally,
the conclusions of the paper are presented.

II. NOTATION AND DEFINITIONS

Let a ranked alphabet be the association of an alphabet
together with a finite relation in . We denote the subset

with .
The set of trees over , is defined inductively as follows:

for every

whenever and

and let a tree language over be defined as a subset of .
Let be the set of finite strings of natural numbers, sepa-

rated by dots, formed using the catenation as the composition
rule and the empty word as the identity. Let the prefix relation

in be defined by the condition that if and only if
for some (,). A finite subset of

is called a tree domain if

where implies and

whenever

Each tree domain could be seen as an unlabeled tree whose
nodes correspond to the elements of where the hierarchy re-
lation is the prefix order. Thus, each tree over can be seen
as an application . The set is called the domain
of the tree , and denoted by . The elements of the tree
domain are called positions or nodes of the tree . We
denote with the label of a given node in .

Example 2.1: As an example, given
, a valid tree over is .

The tree domain of is
and for instance and .

Let the level of be . Intuitively, the level of a
node measures its distance from the root of the tree. Then, we
can define the depth of a tree as depth

. In the same way, for any tree , we define the set of
subtrees of [denoted with] as follows:

for all

and the natural extension to operate on a set of trees as
. For any , we will denote the set

of subtrees of with depth by .
Let $ be a new nullary symbol not in , and be the set of

trees , where each tree contains $ only once, we will
refer to the elements of this set as contexts and to the node with
label $ as the link point. For any and , the
operation is defined by

whenever and

where

and

Therefore, for any two trees , , the tree quotient
is defined by

for every

otherwise

The special treatment of trees in allows us to reduce
the complexity of further definitions (mainly the definition
of canonical automaton). This quotient can be extended to
consider sets of trees as

A finite deterministic tree automaton is defined as a system
: where is a finite set of states; is a ranked

alphabet, ; is the set of final states and
is a set of transitions defined as follows:

From now on we will refer to finite deterministic tree au-
tomata simply as tree automata. See [25] and [26] for other def-
initions of tree automata.

The transition functions are extended to a function
on trees as follows:

for any

for

Please note that the symbol denotes both the set of transition
functions of the automaton and the extension of these functions
to operate on trees. Note that the tree automaton cannot accept
any tree of depth zero.

We say that a tree is accepted by if . Given
, we define , and, in the same way,

the language accepted by the automaton as .
We also will refer to these languages as regular tree languages
or regular tree sets.

For every regular tree language , let its canonical automaton
be defined as the automaton , where

for every

for any

where the set of states is proved to be finite [6]. Note that for
any tree , and therefore, .

Given a finite set of trees , let the subtree automaton for
be defined as , where

For any , let the –root of a tree be defined as follows:

root

if depth

otherwise.

1660 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 4, AUGUST 2004

Intuitively, the -root of a tree takes into account only those
nodes which are at a level which is lower than or equal to the
value of . The extension to operate over a set of trees is
defined as root root .

For any other definition about formal languages, we follow
the notation of Hopcroft and Ullman [27].

III. -REVERSIBLE TREE LANGUAGE

The first attempt to learn reversible languages is due to An-
gluin [23] who proposes algorithms to learn the classes of zero
reversible and -reversible string languages.

Sakakibara [6] extends the idea of zero reversibility to tree
languages, and proposes an inference algorithm to learn this
class. He also proves that every context-free string language
has a grammar in normal form such that the derivation trees of
that grammar are elements of a zero reversible tree language.
From this, by considering structural information (i.e., the skele-
tons of the derivation trees of a context-free grammar in normal
form), Sakakibara proves that it is possible to infer the whole
context-free class.

Following [6], we call a tree automaton
reset free if there are no two distinct states , such that

for some , , and
. A tree automaton is zero reversible if it is

reset-free and has at most, one final state.
Lemma 3.1 (Sakakibara [6]): Let be a zero

reversible tree automaton, be a context and , . If
and , then .

Let a tree automaton be defined as order reset free, if,
given , , where root root , in
the automaton there do not exist two transitions

and leading
to the same state.

Thus, we say a tree automaton is -reversible if it is order
reset free and for every pair of final states and the condition
root root is fulfilled. A tree language

is defined as -reversible if there exist a -reversible tree au-
tomaton such that . Note that the definition of zero
and -reversible languages are equivalent when .

Lemma 3.2: Let be a -reversible tree au-
tomaton, be a context and , . If
and with root root , then

.
Proof: Let’s suppose that , and let

be such that (the link point of or).
In reference to the link point of the trees, there are two possi-

bilities.

• : This leads to a contradiction, Clearly
root root , and therefore, there
would exist two final states , with root

root .
• : This also leads to a contradiction. Let ,

two contexts such that . It is easy to see that
root root . The automaton fulfills

the order reset free condition because it is -reversible.
Again, two possibilities arise. We can apply the first rea-
soning of this proof or repeat this reduction. Thus, we con-
clude that .

Now, we give a characterization of the -reversible tree lan-
guages which is based on the canonical automaton.

Theorem 3.3: A tree language is -reversible if, and only
if, its canonical automaton is -reversible.

Proof: If is -reversible, then the
proof is direct. Conversely, let’s suppose that there exist a -re-
versible automaton such that

. Let , be such that, root root . Two
possibilities arise.

• When , , then it is clear that ,
because is -reversible.

• When or do not belong to , and
— there exist such that

and
;

— there also exist a context such that
and

both belong to ,
then by the Lemma 3.2 .

The canonical automaton would be -reversible whenever,
for any two transitions such that

and root root , this imply that . We
conclude so, because in both situations, , and
this implies .

A characterization of the -reversible tree languages in terms
of regular tree sets is the following:

Theorem 3.4: Let be a regular tree language. is
-reversible if and only if for any context and , such

that root root , whenever and belong to
, then .

Proof: If is -reversible, then, by applying Theorem
3.3 is -reversible. If and belong to with
root root , in , , then

.
Conversely, it is always possible to construct a canonical au-

tomaton for any regular tree language . If and be-
long to , then there exist transitions in fulfilling the fol-
lowing:

by hypothesis root root . Thus, if ,
then is -reversible.

Lemma 3.5: The class of -reversible tree languages is prop-
erly included in the class of -reversible languages.

Proof: Easy from the -reversibility definition. Note
that given a set of trees, whenever two trees , fulfill
that root root then they also fulfill that
root root . As an example of the strictness of the

LÓPEZ et al.: INFERENCE OF REVERSIBLE TREE LANGUAGES 1661

Fig. 1. k-reversible tree language inference algorithm. I(q) denotes a state
identifier function (see text for details).

inclusion, consider the language accepted by the following
automaton:

This language is 1-reversible but it is not 0-reversible.

IV. INFERENCE OF -REVERSIBLE TREE LANGUAGES

We propose the algorithm in Fig. 1 for obtaining a -re-
versible tree automaton such that . The proposed
algorithm constructs the subtree automaton that accepts the

training set, merging those states that do not fulfill the -re-
versibility conditions. To do this in an efficient way, for every
state of the automaton, the algorithm maintains a table that
contains the state identifiers with a common -root. In the
algorithm, denotes a function that returns the identifier of
the state , and denotes the set of states which share a -root
with the state whose identifier is .

First, the algorithm merges the final states which share a
-root. Once this step is performed, the algorithm traverses

the transitions of the automaton, in order to fulfill the -re-
versibility conditions.

Example 4.1: As an example of run, consider and let
the training set be the following:

The transitions of the subtree automaton together with the
entries of the common -root table are shown as follows.

First, the final states that share a -root are merged. There-
fore, the states , , and are considered to be the same.
The modified transitions are marked with an asterisk.

The algorithm searches for transitions that do not fulfill the
-reversibility conditions; for instance, and

1662 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 4, AUGUST 2004

, because the states and have a common
-root. The modifications of these transitions are also marked.

The algorithm proceeds in the same way with the states
and

Note that the transitions and
do not lead to the merging of and , because they do not
have a common -root. As there are no more states to merge,
the automaton obtained is shown in the last table.

Lemma 4.2 proves the polynomial complexity of the algo-
rithm with respect to the training sample size, where the size is
considered as the number of subtrees of every tree contained in
the set.

Lemma 4.2: The algorithm in Fig. 1 learns the -reversible
tree language class with complexity , where denotes the
size of the training set.

Proof: The proposed algorithm carries out the inference
process in three steps. First, the algorithm obtains table by
traversing every transition in the subtree automaton. This can be
done in steps.

Once the table is obtained, the algorithm merges the states
of the automaton when necessary in order to fulfill the -re-
versibility conditions. The traversal of the automaton transitions
can be performed in steps. Therefore, taking into ac-
count that it is possible to merge all the states of the subtree
automaton [bounded by], the whole process can be per-
formed in .

The general scheme to learn any function distinguishable tree
language proposed by Fernau [11] is suitable also to learn -re-
versible tree languages. Nevertheless, when that scheme is used
to learn this class of tree languages, the parameter has an ex-
ponential role in the time complexity of the algorithm.

V. -REVERSIBLE AND -DEFINITE TREE LANGUAGES

When dealing with tree languages, it is possible to extend the
results from the classical theory of formal languages. For any

, the relation on is defined by the condition that
if and only if root root . Heuter [28]

calls a tree language over -definite if it is the union of some
-classes. A tree language is definite if it is -definite for

some . The relation on is similarly defined by the
condition that if and only if .
A tree language over is called -reverse definite if it is the
union of some -classes. In an analogous way, the relation

on is defined by the condition that if and
only if and . A tree language over is

-generalized definite if it is the union of some -classes
[29].

In the string language domain, the classes of the -definite,
-reverse definite and the class of the -generalized definite lan-

guages are defined taking into account the set of prefixes and
suffixes of the strings. All this classes are properly included in
the class of the -reversible languages. This relation also re-
mains when tree languages are considered, as we demonstrate
in the following theorems.

Theorem 5.1: For any , every -definite tree language
is -reversible.

Proof: Let , were , , is a con-
text and root root . It is clear that the membership
of , to depend on the -roots of and .
Thus whenever it follows that , and there-
fore we can conclude that , and by Theorem 3.4,

is -reversible.
Theorem 5.2: Any -reverse definite tree language is -re-

versible.
Proof: Let , , where is a context, ,

and root root . To show that we
distinguish two cases:

• if then and the claim
holds trivially;

• if , then let be a context .
The claim follows from the fact that, whenever

it follows that because
.

Theorem 5.3: Any -generalized definite tree language is
-reversible.

Proof: For any -generalized definite tree language is
both -definite and -reverse definite, and therefore, by theo-
rems 5.1 and 5.2, we can conclude that is -reversible.

VI. -REVERSIBLE AND -TESTABLE IN THE STRICT

SENSE TREE LANGUAGES

The -testable in the strict sense (-TSS) languages are intu-
itively defined by a set of structures which are allowed to appear
in the elements of the language. The first algorithm proposed to
learn the class of -TSS tree languages is due to Knuutila [7].
García [8] improves the algorithm, reducing its time complexity
from to , where in both cases denotes the
size of the training set.

LÓPEZ et al.: INFERENCE OF REVERSIBLE TREE LANGUAGES 1663

For any over , we define the -test vector of as
where

root

if depth
otherwise.

In order to obtain the -test vector of a tree set , we
define , and

. A tree language is -TSS if there
exist three tree sets , and

, such that for any over , if and
only if , and . Another
characterization of these languages is the following:

Theorem 6.1: Let . is a -TSS if and only if, for
any trees , such that root root ,
whenever and , then .

Proof: Let’s suppose to be -TSS characterized by the
sets , and . Let and be in with root
root such that and . Looking for a
contradiction, let and let be a context such that

and . It is easy to see that
. Furthermore, due to the fact

that and . Finally , and
root root imply that . All these
facts together lead to a contradiction.

In order to demonstrate the other direction, it is possible to
prove that, given a tree language , when its canonical au-
tomaton fulfill the -reversibility conditions, then it is isomor-
phic to the automaton obtained by using the -TSS tree language
inference algorithm proposed in [8] (see Appendix).

The inclusion of the -TSS string languages into the class of
the -reversible string languages is demonstrated in [2].
Now we prove this result to take into account tree languages.

Theorem 6.2: Let . If is -TSS, then is
-reversible.

Proof: Let , be trees over where root
root and be a context such that both and
belong to .

Clearly and . If is a -TSS tree lan-
guage, then by Theorem 6.1, , and, therefore, by
the Theorem 3.4, is -reversible.

VII. -REVERSIBLE AND -TESTABLE TREE LANGUAGES

The -test vector , defined in Section VI, allows us to define
the equivalence relation such that, given two trees, and ,

if and only if . From this equivalence
relation, we define the -testable tree languages as those that
result from the union of a finite number of equivalence classes
defined by . This extends to tree languages a well-known
string languages family (i.e., [18] and [30]).

Example 7.1: Let be the following automaton:

is 1-testable. accepts all the trees equivalent to the
following:

in other words, every tree whose vector is the following:

If were 1-TSS then the tree would belong to the
language, however, it does not.

It is easy to see that the class of -definite tree languages
(as well as the -reverse definite and the -generalized definite
tree languages) is included in the class of -testable tree lan-
guages. However, the classes of -testable and -reversible tree
languages are not comparable.

Theorem 7.2: The classes of -testable and -reversible tree
languages are not comparable.

Proof: The 2-testable language obtained with the set of
trees equivalent to is accepted by the
canonical automaton with transitions.

This language is a counterexample of a -testable language
that is not -reversible. If it were, the states and should
be merged, as well as the states and and, in this case, the
automaton will accept, for instance, the tree that does
not belong to the -testable language.

Conversely, the automaton with transitions:

is -reversible, but it is not -testable. For instance, the tree

that does not belong to the language should belong to it, as it
has the same characteristic tuple as the tree

that belongs to the language.

1664 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 4, AUGUST 2004

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, two classes of tree languages are characterized,
some properties concerning these classes are proven, and they
are also studied in relation to other well-known tree language
classes.

The first class of tree languages is obtained by extension of
the notion of -reversibility from string languages to tree lan-
guages. We prove that this class contains several classes of tree
languages and we propose an algorithm which learns the class
in polynomial time complexity with respect to the size of the
training sample set. The class of -reversible tree languages
could be seen as a function distinguishable language, and there-
fore it is possible to use the scheme proposed by Fernau [11],
but in this case, with an exponential time complexity. We also
define the class of -testable tree languages as the extension
to tree-like structures of the well-known notion in string lan-
guages. This class is also studied in relation to other classes.

For future lines of work, the characterization of new tree lan-
guages will offer a way to learn new subclasses of context-free
string languages. The development of tree language inference
algorithms will also allow, in pattern recognition tasks, to use
powerful representation primitives to model the different classes
of classification problems.

APPENDIX

PROOF OF THEOREM 6.1

Given a tree set and , , in order to
demonstrate that whenever

root root

and

implies that then is -TTS, we will take into
account the algorithm proposed by Garcia [8], that constructs a

-TTS tree automaton where

for all add to the transition for all
add to the transition
and we will prove that the canonical

automaton that fulfills the conditions is isomorphic to .
Let be the canonical automaton of
where

If the automaton fulfills the -TSS conditions, then we
can identify the sets with , that is, we can
identify with . In the same way, we can see that is
equivalent to and that finally the set of transitions is also
equivalent to .

ACKNOWLEDGMENT

The authors wish to acknowledge the anonymous referee for
all the remarks that helped to improve this paper.

REFERENCES

[1] E. M. Gold, “Language identification in the limit,” Inform. Contr., vol.
10, pp. 447–474, 1967.

[2] P. García, E. Vidal, and J. Oncina, “Learning locally testable languages
in the strict sense,” in Proc. Workshop Algorithmic Learning Theory,
1990, pp. 325–328.

[3] J. Ruiz and P. García, “Learning k-piecewise testable languages from
positive data,” in Proc. 3rd Int. Colloq., vol. 1147, 1996, pp. 203–210.

[4] V. Radhakrisnan and G. Nagaraja, “Inference of regular grammars via
skeletons,” IEEE Trans. Syst., Man, Cybern., vol. SMC-17, pp. 982–992,
1987.

[5] Y. Sakakibara, “Learning context-free grammars from structural data in
polynomial time,” Theor. Comput. Sci., vol. 76, pp. 223–242, 1990.

[6] , “Efficient learning of context-free grammars from positive struc-
tural examples,” Inform. Computat., vol. 97, pp. 23–60, 1992.

[7] T. Knuutila, “Chapter inference of k-testable tree languages,” in Proc.
Advances Structural Syntactic Pattern Recognition, 1992, pp. 109–120.

[8] P. García. (1993) Learning k-Testable Tree Sets From Positive
Data, Tech. Rep. DSIC/II/46/1993. Dept. Syst. Inform. Comput.,
Univ. Politécnica Valencia, Valencia, Spain. [Online]. Available:
http://www.dsic.upv.es/users/tlcc/tlcc.html

[9] P. García and J. Oncina, “Inference of Recognizable Tree Sets,” Dept.
Syst. Inform. Comput., Univ. Politécnica Valencia, Valencia, Spain,
Tech. Rep. DSIC/II/47/1993, 1993.

[10] E. Mäkinen, “On inferring linear single-tree languages,” Inform. Proc.
Lett., vol. 73, pp. 1–3, 2000.

[11] H. Fernau, “Learning tree languages from text,” in Proc. 15th Annu.
Conf. Computational Learning Theory, vol. 2375, 2002, pp. 153–168.

[12] D. López and S. España, “Error correcting tree language inference,” Pat-
tern Recognit. Lett., vol. 23, no. 1–3, pp. 1–12, 2002.

[13] D. López, J. Ruiz, and P. García, “Chapter Inference of k-piece-
wise testable tree languages,” in Pattern Recognition and String
Matching. Norwell, MA: Kluwer, 2003.

[14] K. S. Fu, Syntactic Pattern Recognition and Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1982.

[15] R. González and M. Thomason, Syntactic Pattern Recognition. An In-
troduction. Reading, MA: Addison-Wesley, 1978.

[16] E. Vidal, H. Rulot, J. M. Valiente, and G. Andreu, “Application
of the error-correcting grammatical inference algorithm (ECGI) to
planar shape,” in Grammatical Inference: Theory, Applications and
Alternatives. Essex, U.K.: Institut. Elec. Eng., 1993.

[17] N. Prieto, E. Sanchis, and L. Palmero, “Continuous speech under-
standing based on automatic learning of acoustic and semantic models,”
in Proc. Int. Conf. Spoken Language Processing, 1994, pp. 2175–2178.

[18] J. Ruiz, “Familia de lenguajes explorables: Inferencia inductiva y carac-
terización algebraica,” Ph.D. dissertation, Dept. Syst. Inform. Comput.,
Univ. Politécnica Valencia, Valencia, Spain, 1998.

[19] I. Torres and A. Varona, “k-TSS language models in speech recognition
systems,” Comput. Speech Lang., vol. 15, pp. 127–149, 2001.

[20] S. Y. Lu and K. S. Fu, “Error-correcting tree automata for syntactic
pattern recognition,” IEEE Trans. Comput., vol. C-27, pp. 1040–1053,
1978.

[21] D. López, J. M. Sempere, and P. García, “Error correcting analysis for
tree languages,” Int. J. Pattern Recognit. Artif. Intell., vol. 14, no. 3, pp.
357–368, 2000.

[22] D. López and I. Piñaga, “Syntactic pattern recognition by error cor-
recting analysis on tree automata,” in Proc. Joint IAPR Int. Workshops
SSPR SPR(S +, vol. 1876, 2000, pp. 133–142.

[23] D. Angluin, “Inference of reversible languages,” J. ACM, vol. 29, no. 3,
pp. 741–765, 1982.

[24] H. Fernau, “Identification of function distinguishable languages,” Theor.
Comput. Sci., vol. 290, pp. 1679–1711, 2003.

[25] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. (1997) Tree Automata Techniques and Applications.
[Online]. Available: http://www.grappa.univ-lille3.fr/tata

[26] F. Gécseg and M. Steinby, “Chapter tree languages,” in Handbook
Formal Languages. New York: Springer-Verlag, 1997, vol. 3, pp.
1–69.

[27] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages
and Computation. Reading, MA: Addison-Wesley, 1979.

LÓPEZ et al.: INFERENCE OF REVERSIBLE TREE LANGUAGES 1665

[28] U. Heuter, “Definite tree languages,” Bull. EATCS, vol. 35, pp. 137–142,
1988.

[29] , “Generalized definite tree languages,” in Proc. Mathematical
Foundations Computer Science, vol. 379, 1989, pp. 270–280.

[30] J. A. Brzozowski, “Hierarchies of aperiodic languages,” Inform. Theor.,
vol. 10, no. 8, pp. 33–49, 1976.

Damián López received the B.S. and Ph.D. degrees
in computer science from the Universidad Politéc-
nica de Valencia (UPV), Valencia, Spain, in 1995 and
2003, respectively.

He joined the Departamento de Sistemas Infor-
máticos y Computación, UPV, in 1996 and currently
teaches at the School of Industrial Engineering,
UPV. His current fields of interest include multidi-
mensional formal languages and their application in
syntactic pattern recognition tasks.

Dr. López is a member of the European Associa-
tion for Theoretical Computer Science (EATCS).

José M. Sempere received the B.S. and Ph.D.
degrees in computer science from the Universidad
Politécnica de Valencia (UPV), Valencia, Spain, in
1992 and 2002, respectively.

He joined the Departamento de Sistemas Infor-
máticos y Computación, UPV, in 1989 and currently
teaches at the School of Industrial Engineering, UPV.
His current fields of interest include computational
learning theory, formal languages, and pattern
recognition.

Dr. Sempere is a member of the European Associ-
ation for Theoretical Computer Science (EATCS).

Pedro García received the B.S. degree in physics
from the Universidad de Valencia, Valencia, Spain,
and the Ph.D. degree in computer science from
the Universidad Politécnica de Valencia (UPV),
Valencia, Spain, in 1976 and 1988, respectively.

He joined the Departamento de Sistemas Infor-
máticos y Computación, UPV, in 1987 and currently
teaches at the School of Industrial Engineering,
UPV. His current fields of interest include automata
theory and formal languages.

