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Summary. By considering various encodings of the spike train generated by a spiking
neural (SN) P system, several related languages are obtained. A few proposals on how to
define such a family of languages, some preliminary results, and a series of suggestions
for further research are briefly presented.

1 Basic Definitions, Basic Problems

The reader is supposed to be familiar with SN P systems (in general, with mem-
brane computing area), so that we pass directly to introducing the families of
languages mentioned above.

The idea is simple: to take the binary language L1(Π) generated by an SN
P system Π (the set of all binary strings – also called spike trains – describing
halting computations of Π: a symbol 0 is associated with a step when no spike is
sent to the environment, and a symbol 1 is associated with a step when at least
one spike is sent to the environment, until the system halts), and to encode blocks
of k digits, for various natural numbers k, in such a way that various languages
Lk(Π) are obtained.

Of course, we have to take care of the case when the spike train is not of a
length which is a multiple of the considered k. In this case, we add symbols 0 so
that the obtained binary string is of a length divisible by k.

More formally, let B = {0, 1} be the binary alphabet, let k ≥ 1 be a natural
number, and Vk be an alphabet. Consider a mapping ϕk : Bk −→ Vk. For each
string w ∈ B∗ we consider the string kw = w0t, where t = min{n ≥ 0 | |w0n| is a
multiple of k}.
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The string kw can be written in the form kw = x1x2 . . . xs, such that |xj | = k
for all j = 1, 2, . . . , s. Then, ϕk can be extended to (Bk)∗ in the natural way:
ϕk(y1y2 . . . yt) = ϕk(y1)ϕk(y2) . . . ϕk(yt) for all yi ∈ Bk, 1 ≤ i ≤ t, t ≥ 0.

Thus, for an SN P system Π and an encoding ϕk as above, we can define the
language

Lϕk
(Π) = {ϕk(kw) | w ∈ L1(Π)}.

This language depends on the encoding ϕk, hence a family of languages can be
associated with Π by varying k and the mapping ϕk.

Already at this very general level there appear several research issues. Consider
classes of mappings ϕk with various properties and investigate the properties (size,
closure, decidability, etc.) of the corresponding families of languages generated by
SN P systems. How these properties depend on the SN P systems? Following
suggestions and importing notions and questions from the grammar forms area (a
very active research area some decades ago, starting with the pioneering paper [2]
– see also the corresponding chapter from the first volume of [5]) can be useful.

2 The One-to-one Case

Actually, the present research idea occurred in a framework related to classical
communication channels with encoded information, where with every SN P system
different languages can be associated that depend on a parameter that fixes a time
window to analyze the spikes train at the output.

A natural possibility is to order in a precise way, e.g., lexicographically, the
strings in Bk, and to associate with each of them a distinct symbol from an al-
phabet Σk with 2k elements.

The fact that the encoding is one-to-one is rather restrictive: the passing from
the binary language L1(Π) to a given Lk(Π) (we omit mentioning the mapping ϕ)
can be done by means of a sequential transducer (a gsm, in the usual terminology,
[5]). Conversely, the passage from Lk(Π) to L1(Π) is done by an one-to-one (non-
erasing) morphism, which implies that the converse passage is done by an inverse
morphism.

This observation is interesting enough to be formally formulated:

Proposition 1. If L1(Π) ∈ FL, where FL is a family of languages closed under
gsm mappings or under inverse morphisms, then Lk(Π) ∈ FL, for all k ≥ 1. If FL
is closed under non-erasing morphisms and Lk(Π) ∈ FL, then also L1(Π) ∈ FL.

Families as FL above are REG,LIN,CF in the Chomsky hierarchy, hence
if L1(Π) is regular/linear/context-free, then also all languages Lk(Π) are
regular/linear/context-free, respectively, and conversely.

This means that each family F (Π) = {Lk(Π) | k ≥ 1} contains only languages
of the same type in the Chomsky hierarchy (for instance, it is not possible to
have a context-free non-regular language Lk(Π) together with a regular language
Lj(Π), for some k �= j.
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Of course, if L1(Π) is finite, then all languages Lk(Π) are finite, hence the
family F (Π) is finite, up to a renaming of symbols of alphabets Σk.

If, instead, L1(Π) is infinite, then F (Π) can be an infinite family, because the
alphabet of Lk+1(Π) might be larger than the alphabet of Lk(Π).

This is the case, for instance, for the SN P system Π generating L1(Π) =
{1n01m | n,m ≥ 1} (which is an infinite regular language).

This assertion seems to be true (conjecture) for all SN P systemsΠ with infinite
L1(Π).

3 The Non-injective Case

The previous type-preserving Proposition 1 does not hold in the case of using
encodings which are not one-to-one.

Here is an example: Consider Π such that L1(Π) = {1n01n | n ≥ 1} (SN
P systems are universal, [4], hence any language can be taken as the starting
language). Of course, L1(Π) is context-free non-regular.

Consider the encoding ϕk : Bk −→ {a, b} defined by ϕk(w) = a if |w|0 ≤ 1,
and ϕk(w) = b if |w|0 ≥ 2. We get

Lk(Π) = a+ ∪ a∗b, for k ≥ 4,

and
Lk(Π) = a+ ∪ a+b, for k = 2, 3.

Clearly, the languages Lk(Π), k ≥ 2, are regular, in spite of the fact that L1(Π)
is (context-free) non-regular.

The properties of the encoding is crucial for the properties of the obtained
language families (this is true in other frameworks, see, e.g., [3] and its references),
hence this issue deserves further research efforts.

4 Final Comments

The idea of associating a family of languages with a given P system is rather
natural. We have illustrated it here with the case of SN P systems, but the same
strategy can be applied for any type of P systems producing a language (such that
cell-like P systems with external output, SN P systems generating trace languages
[1], etc.).

A more systematic study of this idea is of interest, starting with relevant ex-
amples, continuing with “standard” formal language theory questions, and ending
with possible applications of this approach (as languages generated by the same
P system are “genetically” related, maybe in this way one can capture biological
connections/dependencies or other types of relationships).

Of course, further ways to associate a family of languages to a given SN P
system, to a given P system in general, remain to be found.
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