Learning Linear Grammars from Structural
Information *

Jose M. Sempere and Antonio Fos

Departamento de Sistemas Informiéticos y Computacion
Universidad Politécnica de Valencia, Valencia, SPAIN.
email:jsempere@dsic.upv es

Abstract. Linear language class is a subclass of context-free language
class. In this paper, we propose an algorithm to learn linear languages
from structural information of their strings. We compare our algorithm
with other adapted algorithm from Radhakrishnan and Nagaraja [RN1]
The proposed method and the adapted algorithm are heuristic techniques
for the learning tasks, and they are useful when only positive structural
data is available.

1 Introduction

In this paper we present a method to infer linear grammais from positive struc-
tural examples (grammar skeletons). The method that we propose is inspired in
a previous work by Radhakrishnan and Nagaraja [RN1]. In their work, Radhaki-
ishnan and Nagaraja proposed an algorithm to infer even linear grammars [AP1]
from grammar skeletons under the grammatical inference paradigm [Anl). Learn-
ing of even linear grammars has been carried out by other methods from positive
and negative strings as in [SG1, Tal], while learning of context-free grammars
has been carried out from skeletons and tree automaton [Gal, RG1, Sal]. Learn-
ing of linear grammars has not been carried out from string because of the linear
grammar ambiguity problem. Anyway, we can apply the methods proposed in

[Gal, Sal] to learn directly linear languages as context-free grammars. What we.

propose in this paper is to learn linear languages as linear grammars. So, we
can obtain linear time parsers to carry out the test phase in opposite to those
obtained in [Gal, Sal]

2 Basic definitions and notation

In the first place, we are going to provide several definitions which help us to
understand the inference methods. The definitions of formal language theory have
been obtained from [HU1, Sa2]

Definition 1. Given a grammar G=(E4,Er,P,S), we will say that it is a linear
grammar if every production in P follows one of the forms

* Work partially supported by the Spanish CICYT under grant TIC-1026/92-CO2

127

— A =+ vBw, where A, B € B4 and v,w € E}
— Az, whete A€ E4 and z € BF

It is clear that, for every linear grammar, we can obtain an equivalent gram-
mar with its productions in the following forms

— A - aB, whete A,B € E4 and a € Ep
— A — Ba, where A,B € E4 and a € Ep
— A > a, where A € E4 and a € Ep U {A}

From now on, we will deal with linear grammars in the latter form.

Definition 2. Given a grammar G and a string w € L(G), we define a skeleton
for the string w in the grammar G as a derivation tree for the string, where the
internal nodes of the tree appear without labels

In Figure 1 you can see a skeleton for the string aaebb of the following gram-
mar

- 85 = add
— A— Sblad|b

a x=aaabb

Fig.1. An example of a skeleton for the string z=aaabb

Definition 3. Given a string w, we denote by Ter(w) the set of symbols that
appear in the string w.

128

In what follows, we are going to define several concepts that can distinguish
every internal node in the skeleton from the others So, we suppose that the
internal nodes of the skeleton are ordered, and every node is denoted by N;;.
For every internal node, we can associate the pair < z,y > or the singleton
< ¢ > depending on the number of sons that the node has. If it has two sons
then we associate to it the pair, otherwise the singleton. It is obvious that every
internal node has two sons or only one In Figure 2 we can see the different
situations that can be held. If the node has a single son, then it is a terminal
symbol and we associate to the internal node the singleton < a >, where a is the
terminal symbol label, otherwise the node has two sons, that is, a terminal symbol
and other internal node, and we associate to the node the pair < Ny41,a > or
< a,Njj41 > depending on the location of the terminal symbol label a.

i I Ni N
A Nij+1

a * Nij+1 a a

<a,Nij+1> <az <Nij+1,a>

Fig.2. Different situations for the succesors of an internal node.

Definition 4. Given an internal node N;; of an skeleton for the string z, we
define the left substring of the node, and we denote it by Isubst(N;;), as the
string formed as follows

1. Initially Isubst(N;;) = A (the empty string)
2. If N;; has the associated pair < a, N;; 41 >, then lsubst(N;;)=a(lsubst(Nyj41)).
3. If NV;; has the associated singleton < a > or the pair < Ny;41,a > then finish.

Definition 5. Given an internal node N;; of an skeleton for the string z, we
define the right substring of the node, and we denote it by rsubst(N;;), as the
string formed as follows

1. Initially rsubst(Ny;) = A (the empty string).

2. If Ny; has the associated pair < Nyjy1,a >, then 7 subst(Ny;)=(rsubst(N;;1))a.

129

3. If N;; has the associated singleton < a > or the pair < a, Nj;11 > then finish.
We denote by | z | the length of the string .

Definition 6. For every internal node N;; of an skeleton for the string z, we
define the set of left successors of the node, and we denote it by lsuce(Ny;) as
follows

— Initially lsucc(N;;) = @ (the empty set).

— If N;; has the associated pair < a, N1 > then Isuce(Nij)={Nij41} U
Isucc(Niji)-

— If N;; has the associated singleton < a > or the pair < N;j41,a > then finish.

Definition 7. For every internal node N;; of an skeleton for the string z, we
define the set of right successors of the node, and we denote it by rsuce(Nj;) as
follows

— Initially rsucc(N;;) = @ (the empty set).

— If N;; has the associated pair < Njjy1,a > then rsucc(Ny)={Nij41} U
rsuce(Ny41).

— If N;; has the associated singleton < a > or the pair < @, N;;41 > then finish.

From the definitions above, we can give a more global definition by summa-
rizing the left and the right substring into the context of the string.

Definition 8. Given an internal node V;; of an skeleton for the string z such
that V1 < k < j Ny; € lsuce(Niz) Ursuce(Nig), we define the context of the node
and we denote it by context(NV;;) as follows

— If the node has the associated pair < Njjy1,a >, then the context is defined
by the tuple context(N;;) =< Right, rsubst(N;;), Ter(rsubst(Ny)) >.

— If the node has the associated pair < @, N;j41 >, then the context is defined
by the tuple context(N;;) =< Left, lsubst(N;;), Ter{lsubst(Ny;)) >.

— If the node has associated the singleton < a >, then the context is defined
by the tuple context(N;;) =< Final,a,{a} >

Finally, we can define the projection functions m; of a tuple (21,22,...,2Zn)
as 7’(7‘((:131, Lo,y . .. ,.’En)) =&I;.

3 An adaptation of a previous algorithm

Our first approach to learn linear grammars has been done by adapting Rad-
hakrishnan and Nagaraja’s algorithm [RN1] The adaptation has been quite easy,
given that, from the linear skeletons we can obtain even linear ones, by creating
new right or left sons of an internal node. We have labeled these new nodes with
the special symbol * In figure 3, we can see an example of the transformation
applied to the original skeleton.

130

N1t N1l
? N1z S ST

NI3Z ¢ e ~N13 ¢
. S
rooms b Ni4 ¢
b 15

Nl\ b Ni1s *

Ni6 b /I\

* Nig b
i
? b

Fig.3. Skeleton transformation for the adapted algorithm

From this transformation, the application of the algorithm is made directly.
After applying the algorithm, we can obtain an even linear grammar with an spe-
cial terminal symbol *, which can be deleted in order to obtain a linear grammai.
Let us see an example of how to apply the learning algorithm.

Taking the following target linear grammar

S —+aB B = Cec C —=bD

D = bE | WC E— Fb F—=blc

The input sample is the set {(a((b(b((b))))c)), (a((b(B(B(b((c)6)))))¢))}, which
after be adapted to become even linear strings is {axbbxbbxxck, axbbbb*chxsxxck}

Then we can calculate all the sets defined in the algorithm [RN1]

Ny =<)\,)\, (a,b, C) > NS = {Nﬂ,Nzl} S] = {abbbc, abbbbcbc}
N12 =< a, A, (b, C) > NSZ = {ng,Ngg} 52 == {bbbc, bbbbcbc}
Nig =< a,c, (b) > NS; = {ng} Sz = {bbb}

Nig =< ab, C, (b) > NS, = {N14} Sy = {bb}

Nigx =< ab, be, (b) > NSy = {N15} Sy = {b}

Noy =< /\,}\, (a,b, C) > NSg = {Ngg} Sg = {bbbbcb}

Nyy =< a, A, (b, C) > NS; = {N24} S7 = {bbbcb}

Ny3 =< q,¢, (b, C) > NSy = {N25} Sy = {bbe}

Noy =< ab, c, (b,c) > NSQ = {Ngﬁ} Sg = {bcb}

Nas =< abb, c, (b, C) > NS = {Nzr} S1p = {Cb}

Nog =< abbb, ¢, (b, C) > NS = {NQS} S11 = {C}

Noz =< abbbb, c, (b, c) >

Nog =< abbbb, be, (b,C) >

After this process, the inferred even linear grammar obtained by the algorithm
is the following one

131

1 — a2« 4 — x5b 7 — b8 10 — 11b%

2 — 3¢ | #6¢ 5—b 8 — b9x 11—=c¢

3 — bdx 6 — b7« 9 — b10x

and, by deleting the special terminal symbol *, we obtain the linear grammar
1— a2 4 — 5b 7— b8 10 — 116

2 = 3c| 6c 5—b 8 —+ b9 11—=e¢

3 b4 6 — b7 9 — 510

4 An algorithm to learn linear grammars

In what follows, we are going to propose another algorithm to obtain linear
grammars from positive structural examples. The algorithm is inspired in that
proposed by Radhakrishnan and Nagaraja in [RN1], in the sense that we use
a similar notation and concepts like in their work. The basic idea is to observe
similar context nodes, to label them with the same nonterminal symbol and to
construct the grammar from the labeled skeletons or derivation tiees.

— Input A non empty positive sample of skeletons st
— OQutput A linear grammar that generalize the sample
— Method
e STEP 1 To enumerate the internal nodes of every skeleton according to the
following notation For the j-th skeleton, to start to enumerate every skeleton
by levels from the root to the last level Nj1, N2, ...
¢ STEP 2 To calculate the context of every node N;; according to definition 8.
s STEP 3 To define a 1elation between nodes = as follows N;; = Ny, iff
71 {context(N;;)) = m {context{Np,)) and ws(context(Ni;)) = w3 (context(Npg))
With the defined relation, to form the classes of nodes NS; by enumerating

the classes for k = 1,2, .. The nodes without context do not belong to any
class.

(Creation of nonterminal symbols of the grammar)

VYN Sk do

e STEP 4 If VN;; € NSi mi(context(Ny;)) = Final then N;; = Ao
e STEP 5 If NS, only contains a single node N;;, with | ma{context(Ni;)) |=m
then Nijyp = A ,V0<p<m-1
¢ STEP 6 If NS, contains more than one node then _
* STEP 6.1 To select N;; such that | ma(context(N;;)) |= m is minimal.
Then Nij+p = Ak,pVO S P S m—1
* STEP 6.2 To eliminate the node N;; of STEP 6 1 from the set NS It
NSy is a singleton then go to STEP 6.3, else go to STEP 6 1.
« STEP 6.3 Take the only node IV;; of the set NSk with | 7 (context{Ns;)) |=
n and take the value m of STEP 6.1. If n < m then Njj4, = Ap,pV0 <
p<n—1,else Nijjip = A (pym) Y0 < p < n — 1 (where pi|m denotes p
module m) '
¢ STEP 7 To rename the labels of all the skeleton roots as S, which will be the
axiom of the grammar
¢ STEP 8 To build a linear grammar as result of the derivation trees constructed
by putting labels to the nodes If the skeleton for the empty string belongs to
ST then to add the production S — A to the set P.

132

An example. _

Taking the following target linear grammar

S —aB B — Cc C —bD

D - bE | bC E — Fb F—oble

The input sample is the set {(a((6(b((5)b)))c)), (a{(b(b(B(b((c)b)))))c))} of fig-
ure 4.

NIk

&
Z
-
N
4

Z
N
]

N13Z e Nz o
]
S ™Naa I» N24
N] e
b NS b NZS
I]
N16 I b NZ6
1 b NZ7

Fig. 4. Input sample for the proposed algorithm.

We can calculate the contexts of every node in the following way

N1 =< Left, a, {a} > Niay =< Right,c, {C} > NS5 = {Nll,Ngl}
Nis =< Right, c,{c} > Nag =< Left,bbbb, {b}) > NS, = { Ny5. N}
Nis =< Left, bb, {b} > Nyr =< Right, b, {b} > NSy = {N13, N23}
N15 =< R%ght, b, {b} > N28 =< Final,c, {C} > NS4 = {N15,N27}

Nig =< Final, b, {b} > NSy = {le}
- Noy =< Left,a,{a} > NSg = {Nas}

After this process, the inferred linear grammar obtained by the algorithm is
the following one

S — aAg,o Ag,l -3 bA,;’o | bAg,Q AG,O — C
Ag,o — A37()C A4’0 — A5,Ob f Aa,ob
A3,0 — bA311 As’o — b

5 Acknowledgements

We would like to thank Professor G. Nagaraja’s interest and all the mail that we
have interchanged about this work We would like to thank Dr. Pedro Garcia’s

133

original contribution to the transformation of linear skeletons to even linear skele-

tons.

References

[AP1] Amar, V., Putzolu, G: On a Family of Linear Grammars Information and
Control 7 (1964) 283-291

[Anl} Angluin, D, Smith, C : Inductive Inference : Theory and Methods. Computing
Surveys 15 No. 3 (1983) 237-269.

[Gal] Garcfa, P.: Learning K-Testable Tree Sets from positive data. Technical Report
DSIC-11/46/93. Universidad Politécnica de Valencia. (1993)

'HU1] Hopcroft, J, Ullman, J.: Introduction to Automata Theory, Languages and
Computation Addison-Wesley Publishing Company. (1979)

[RN1] Radhakrishnan, V., Nagaraja, G.: Inference of Even Linear Grammars and its
Application to Picture Description Languages. Pattern Recognition 21 No. 1
(1988) 55-62.

[RG1] Ruiz, J., Garcia, P: The Algorithms RT and k-TTI : A First Comparison.
Lecture Notes in Artificial Intelligence. Proceedings of the Second International
Colloquium on Grammatical Inference ICGI94. Ed. Springer-Verlag. (1994)
180-188

[Sal] Sakakibara, Y.: Efficient Learning of Context-Free Grammars from Positive
Structural Examples Information and Computation 97 (1992) 23-60.

[Sa2] Salomaa, A : Formal Languages Academic Press (1973)

[SG1] Sempere, J., P. Garcia, P.: A Characterization of Even Linear Languages and
its Application to the Learning Problem. Lecture Notes in Artificial Intelligence.
Proceedings of the Second International Colloquium on Grammatical Inference
ICGI%94. Ed. Springer-Verlag. (1994) 38-44

[Tal] Takada,Y.: Grammatical Inference of Even Linear Languages based on Control

Sets Information Processing Letters 28 No.4 (1988) 193-199.

