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Abstract 

We present a McCulloch-Pitts neural net to recognize even linear languages. The language class is studied in order to 
define the net topology. Finally, the equivalence between the language class and the languages recognized by the net is 
proved. 
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1. Introduction 

The Even Linear Language class introduced by 

Amar and Putzolu [ l] is a subclass of the linear 
language class, a proper subclass of the context-free 
language class [ 31. Typically, the definition of these 
classes has been done by providing grammars that can 
generate the language class. Another way of defining 
these classes has been done by providing abstract ma- 
chines that can accept the classes (i.e. finite automata, 
pushdown automata, and so on). 

This paper presents a neural net that accepts an Even 
Linear Language, that is, an abstract device which, 

given a string of an even linear language, accepts the 
string. Specifically, we take McCulloch-Pitts neural 

nets [ 41 to define this class. McCulloch-Pitts nets was 
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introduced in 1943 in order to modelize neural pro- 
cesses. The characteristics of these processes, as Mc- 
Culloch and Pitts modelized, are significantly related 
to finite state machine processes. In this sense, a for- 
mal proof of the equivalence between the languages 
accepted by McCulloch-Pitts nets and the regular lan- 
guage class [ 31 can be viewed in [ 41, and a recent 
study of its complexity can be viewed in [ 21. What 
we present in this paper is a topology for these nets 
in order to be able to accept even linear languages. 
This paper is organized as follows: in the first place 
we formally define the Even Linear Language class 
and the McCulloch-Pitts nets. Other definitions are 

given to establish some results. Afterwards, we present 
an equivalence between these concepts based on the 
topology we propose. In this way, a constructive algo- 
rithm to obtain McCulloch-Pitts nets from even linear 
grammars is proposed. A theorem that formally proves 
the equivalence is provided too and we present some 
conclusions for future works. 
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2. Basic concepts and notation 

The main definitions we use about formal languages 
can be found in [ 31 and [ 41. Given an alphabet _X, we 
denote the set of all strings over this alphabet as _X*, the 
empty string as A, and the length of a string w as [WI. 
A grammar is a tuple G = (2, N, P, S), where _Z is an 
alphabet of terminal symbols, N is a set of nonterminal 
symbols, P is a set of productions of the grammar and 
S is the nonterminal start symbol (the axiom). Given 
a grammar G, a relation between strings of symbols 

can be defined. So, we will denote that a string j? can 
be obtained from a string a, by making a production 
substitution in the grammar G, with (Y +o p. If the 

number of production substitutions is greater or less 
than one, then we denote it by (Y +z p. 

Finally, given a set C, we will denote the power set 
of C by P(C). 

Definition 1. An even linear grammar (ELG) , G = 

(2, N, P, S), is defined with the following produc- 

tions: 
a A + xBy, where A, B E N and x,y E .Z* with 

Ix/ = IYI? 
l A+x,whereAENandxE_V. 

An even linear language L is the language generated 
by an even linear grammar G and it is denoted as L = 
L(G). Every even linear grammar can be put in the 
following standard form as established in [ I] : 
l A + aBb, where A, B E N and a, b E 2, 

l A-+a,whereAENandaEsU{A}. 

Definition 2. Given an even linear grammar in the 
standard form G = (2, N, P, S), we will say that this 
grammar is deterministic if A + aBb E P and A + 

aCb E P imply that B = C. 

From now on, we will deal with deterministic even 
linear grammars, given that their equivalence with the 

complete class can be found in [ 51. Amar and Putzolu 
[ 1 ] proved that every even linear language is charac- 
terized by a quasi-congruence finite index relation. A 
quasi-congruence relation is similar to a congruence 
relation in the sense that, given two strings, its equiv- 
alence implies the equivalence of the strings obtained 
by including the previous strings in right and left equal 
length contexts. Another characterization of even lin- 
ear languages can be found in [5], where Sempere 
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Fig. 1. A cell of a McCulloch-Pit& net. 

and Garcia defined a finite index relation by taking 

pairs of strings as the relation space. Finally, Takada 
[6] presents a reduction of the learning problem for 
even linear languages to the learning problem for reg- 
ular languages. 

Definition 3. A McCulloch-Pitts net is a tuple M = 

(C, X,6, p, I, F), where C is a set of cells of the net, 
2 is an input alphabet, 6 : C + P(C) is a transition 
function, p : 2 -+ P(C) is an external activation 

function, I E C is the initial cell and F E C is the 
final or acceptance cell. 

An extension of the function 6 to act over a set of 
cells D 2 C is defined as 

S(D) = u S(c). 
CED 

Every cell of the net has input lines, output lines and 
an activation integer value Ti, called its threshold. The 
input lines can be activated or not, and if the number 
of active input lines is greater or equal to the threshold 
value, then the cell and the output lines are activated. 
We take the value 1 for active states or lines and the 
value 0 for nonactive states. In Fig. 1, we can see a 

scheme of a McCulloch-Pitts cell. The activation of 
the cell Cj maintains the following function 

1 
F(Cj) = 

if f: Ci,j > Tj, 
i=l 

0 otherwise. 

The initial cell is active before processing a string 
and initially it is the only active cell. A string is ac- 
cepted by the net iff the final cell is active after pro- 
cessing all its symbols. If we take a threshold value 
2, the activation of a cell is reduced to receiving only 
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two active input lines, and we can define a function (p, its extremes to its center. Thus, the parsing or analysis 
which can establish which cells of the net can be acti- of any string with any abstract machine or grammar 

vated after the analysis of any input string. The defini- can be carried out following the generation process. 

tion of q is based on the functions 6 and ,u as follows: In this sense, we will define a McCulloch-Pitts net by 

40 : 2 x C --f P(C), where (p(a,c) = ~(a) n S(c). adapting the original net of Definition 3. With the new 
An extension of this function over a set D C C is net, the analysis process of any string is performed as 
defined as we have described above. 

qo(a,D) = u co(a,c) 
CfD 

and, finally, an extension of this function over strings 
is easy to do as follows, 

The new net has two subnets for analyzing the right 
and left extremes of the string. In addition, a subnet 
is needed to control the analysis of the center of the 

string and performs the acceptance or rejection of it. 
This net is formally defined as follows. 

$9(X1X2.. .x,,D) = ~4x2.. .x,,Q)v 

where ~1x2 . . .xn E 2, D g C and Q = S(D) fl 

/-4x1 ). 
We can define the language accepted by a 

McCulloch-Pitts net M, and we denote it by L(M), 
as the following set: 

L(M) = {X E Z* 1 FE (0(x,1)}. 

Definition 4. An Extended McCulloch-Pitts neural 

net (EMP) is a tuple M = (C, Z,6, ,x, I, F), where C 
is a set of cells and is organized in subsets R,, L, and 
F corresponding to the right, left and final subnets, 2 
is an input alphabet, 6 : C -+ P(C) is a transition 
function, lu. : (2 U {A}) --) P(C) is an external 
activation function, I C C is a set of initial cells and 
F G C is a set of final or acceptance cells. 

In Fig. 2, we can see an example of a McCulloch- 
Pitts net. Note that the cells have threshold values of 
2. The net has been obtained by taking the original fi- 
nite automaton that accepts the language and applying 
the algorithm that transforms a finite automaton to a 
McCulloch-Pitts neural net 141. 

3. Equivalence between even linear languages 
and languages accepted by McCulloch-Pitts nets 

If we take 2 = {at,. . . ,u,}andC=R,UL,UF, 
with R, fl L, n F = 8, then the subnets are defined 

as R, = {cur, . . . ,c,,}, L, = (~11,. . . ,c,,l} and F = 

(Clllf9.. . ,c(,,+,)(,+~)(,+~)~}. The set of initial cells 
is defined as I = {ctl, ~1~). The extension of the func- 

tion 6 to act over sets of cells is defined as in the 
previous section. Every cell of the net has a threshold 
value of 2, except the cells of subnet F that have a 
threshold value of 3. In Fig. 3, we can see the scheme 
of an EMP. 

The definition of function p is as follows: 
In this section we are going to establish the for- 

mal equivalence between the Even Linear Language 
class and the languages accepted by McCulloch-Pitts 

nets. In the first place, we will have to redefine the 
McCulloch-Pitts nets. Once we have the new nets, we 
will define an algorithm to construct a McCulloch- 
Pitts net from any deterministic even linear grammar. 
We will prove the formal equivalence between the lan- 
guage classes. 

P : (XU {A}) + P(C), 

C{ Cil3Cir9Cjikf 11 6 j,k < n+ 1) 

1(L(X) = 

if X = Ui, 

{cj(n+r)kf I 1 < j, k < n + I} 

if x = A. 

3.1. Extension of the McCulloch-Pitts nets 

The generation of strings in any even linear gram- 
mar in standard form adds two terminal symbols in 
each generation step, that is, a string is generated from 

The definition of function 6 has some restrictions by 
which cells of a subnet can affect cells of other subnets. 
So, we will impose the following two restrictions: 

l a(cil) > {cijkf I’v’~ < j,k <n+ I}, 

l 8(Ckr) > {Cijkf I Vl < i, j < ?I + 1). 
The extension of S to act over a set of cells D is 

like in the standard net, that is, 
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S(D) = u 6(c). 
cED 

J.M. Sempere, D. Lhpezllnformation Processing Letters 56 (1995) 201-208 

a 

Fig. 2. A McCulloch-Pitts net to accept the language t-(n + b) ( (a + b) (a + b) ) *i. 
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Lc 

Subnet 

Rc 

External input 

Fig. 3. An Extended McCulIoch-Pit& net. 

We will denote the set 6(D) nL, as al(D), S(D) n 
R, as 6,(D), and 6(D) n F as Sf(D). In the same 
sense, we will define the following sets: 

@(D) = u 6(c), 6’(D) = u S(c), 
cEDnL, CEDf-lR, 

Sf(O> = u S(c). 

cEDnF 

We can define the function 9, as in the standard 
net, in order to establish which cells can be activated 

after the analysis of a string. The function is defined 

Initial cell 
Clr 

as q3 : (ZU {A}) x C --+ P(C), where qu(a,c) = 
~(~)fl6~(c)rlS’(c) withaE L$U{A}.Anextension 
to act over a set of cells D is 

CED 

and finally, to act over strings is 

$4X1X2 * * .x,,D) =4~(~2...+1,&), 

where ~1x2.. .x,~_Z:*andn>2,DC_CandQ= 

(4(D) nk4Xl)) U (4(D) nfi(x,)). 
We can define the language accepted by an EMP 

M, and we denote it by L(M), as the following set: 

L(M) = {X E 2’ 1 F n rp(x,Z) # S}. 
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3.2. Constructive algorithm 

In this section, we propose an algorithm which ob- 
tains an EMP from a deterministic ELG. Given that 
the string analysis in this net is the string generation 
process in the grammar, we need a method to start the 
analysis from the extremes of the string to its center. 
In this sense, we will use the initial cells of subnets L, 
and R, to start the analysis from the left and right ex- 
tremes. This process is performed to arrive to the cen- 
ter of the string. At that moment, the final cells con- 

trol which pair of symbols are the last to be analyzed. 
So, the subnet F controls the arrival to the center of 
the string. When this has happened, then two different 
situations can be performed. If the length of the ana- 
lyzed string is even, then an external activation with h 
is needed for the F net. Otherwise, the last symbol to 
be analyzed will be the external input to a final cell. 

The proposed algorithm in Fig. 4 performs this task 
by analyzing every production of the grammar in two 
parts. That is, if A --f aBb E P then the subnet L, 
analyzes the part A -+ aB and the subnet R, analyzes 
the part A --+ Bb. Finally, if a nonterminal symbol has 

a terminal production, that is A -+ a, and it appears 
in the rightside of other production, that is B -+ bAc, 
then an external input will activate a final cell. 

In order to make the analysis more clear, we will 
bind every string with two special symbols t- and -1, 
which will be the only symbols that will excite the 

initial cells. After the analysis of these symbols, the 
rest of the string will be analyzed. The language that 
we associate to any even linear language with these 
special symbols is defined as follows. 

Definition 5. Given a language L C JY, we define 
the extreme bounded language of L as the set kLi = 
{~u-i~u~L}with~,-i~Z(. 

Let us look at an example of application of the al- 
gorithm proposed in Fig. 4. Given the following gram- 
mar: 

AI -+ alAla I al&al I A 

A2 -+ alAla I m&a2 I al I a2 

the associated EMP is the following one: 

Input: A deterministic ELG in standard form 

G=(P,N,F:S) with Z={al,..., a,}, 
N = {AI,. , A,,,} and S = Al. 

output: An EMP M = (C, Z’, 8, CL, I, F) 
with C = R, U L, U I U F, 
such that L(M) = bL( G) -1. 

Method: P’={ao,at,...,a,,a,+t} 
with no = k and a,,+, = -I 

RC = {czar, . . ..cnmr.qn+t.,} 
L = {cor.cllr.....Cnnd) 

F = ~alof~~~~ .C(n+l)(n+l)(n+l)f) 

Ano) = {CO/) 

/.4%+1) = {qn+l)r) 

/.4ai) I {Cik/,Cikr I 1 < k < m} 1 < i < n 

&co/) 2 {ciu I 1 G i < a) U{COI) 

&C(,+I~) 2 {c;I~ I 1 < i < n) U {ccn+~jr) 

ifAt-+AEPthen 

6(CO/) 2 {co(n+l)("+l)f) 

&C(n+l)r) 2 tCO(n+l)(n+l)f) 

P(A) 2 {CO(n+l)(n+l)f) 

VA1 + a; E P do 

G(cO/) 2 {cOi(n+l)f) 

~(C(n+l)r) 2 ICOi(n+l)f) 

P(Q) 2 {cOi(n+l)f) 

VAi --t atAla, E P do 

a(cki/) > {Chj/ 1 1 < h < n} 

s(Cpir) > {Chjr 1 1 < h < n} 

VAi -+ QAjQ E P do 

if Aj - A E P then 

s(cki/) > {Ck(n+l)pf} 

s(cpir) > {Ck(n+l)pf) 

P(A) 2 {Ck(n+l)pfI 

endMethod. 

Fig. 4. The proposed algorithm to obtain EMPs from EL&. 
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2’ = (1, al 9 a29 -1) 

& = {Cl Ir, Cl2rr C2lr, C22n c3,) 

L = {COL Cl IIT Cl219 c211, c221) 

F = {Goof, aolf, . . . 9 C332f 9 C333f )I = {Co/, C3r) 

Pu(k) = {COI) 

A-U = (c3r) 

/-da1 ) > {Cl II9 Cl21> Cllrt C12r) 

Aa2) > {c211, c2219 C2lr7 C22r) 

&CO/) 2 {CllI~C2119 CO/} 

&c3,) > {Cllr, C2lrt C3r) 

A, +A 

6(co/) 2 (CO33f) 

&c3r) 2 (CO33f) 

IdA) > (C033f) 

AI + ~1.41~2 A1 + aA2a1 

NClll) > {CllI,C211) &Clld > {Cl21,C22[} 

&C2lr) 2 {Cllr, C21r) S(Cll,) 2 (C12n C22r) 

A2 --f QAIUI A2 + ~2.42~2 

&Cl21) > {CIII~C211) S(c221) > (c121, c221) 

S(Cl2r) > {Cllr9CZlr) &C22r) > (C12nC22r) 

A, -+ u,Alu2 A AI -+ A A1 + ulA2ul A A2 --+ a1 

&CllL) > (C132f) 

&C21r) > (C132f) 

p(h) > (Cl32f) 

Al --+ ulA2ul A A2 

&cllr) > (C12lf) 

&Cllr) > (C121f) 

da2) > (C121f) 

A2 +ulAlul’AAl 

&Cl21) > (Cl3lf) 

&C12r) > (C131f) 

p(A) > (C13lf) 

&Clll) > {Clllf} 

&Cllr) > {Clllf} 

Pu(@) > {Clllf} 

a2 

h A2 + u2A2u2 A A2 

&c221) > (C212f) 

WC22r) > (C212f) 

/-da) > (C212f) 

a1 

A2 + u2A2u2 A A2 --+ u2 

S(c221) > (C222f) 

6(c22r) > (C222f) 

Aa2 > (C222f) 

In Fig. 5, we can see the scheme of the EMP of the 
example. 

After this, we will enunciate several results that 
prove the equivalence between the language accepted 
by the EMP that the algorithm outputs and the lan- 
guage generated by the input ELG. 

Lemma 6. Given an ELG G and its associated EA4P 

M, if Al +E XAiy +G UAhv, then there exist cells 

ckil, Cpi, which will be active afterprocessing the string 
tuvi. 

Proof. The result will be proved as an induction pro- 

cess over the number of derivation steps. 
Induction base. k US take At +o UkAiUp +G 

UkUk’AhU&, with Uk,Uk’,Up,Upf E 2. Then A1 + 
UkAiUp and Ai + Ukl AhUp J E P. SO a(ckll) 2 {Cjil I 

1 6 j < n) and &c~I,) 2 {Cjir I 1 6 j 6 n}. BY 
construction 6(cul) 2 {ck]l 1 1 6 k 6 n} U {cog} and 

&c(,+~),) 2 {cplr I 1 6 P 6 n} U {qn+ljr}. 
SO, ~(~~k~k~~,d,i,~) = $O(UkUkfU,d,,,T) = 

qz$uk~u,~,Q) = W, where 

l T = (4(Z) n p(k)) u (&(I) n ,4-O) = 
(co19 c(,+l)r} = 1, 

.Q = (al(I) fl ,dUk)) u (b(I) fl /‘(Up)) = 

{CkhCplr I* 

l w = (4(Q) n /-dUk’)) U (h(Q) n CL(+t)) = 
{ Ck'il 1 Cp’ir 1. 

It is clear that in the case of Al +o uk, Aha,,, then 
x = y = A and Al = Ai. SO, (o(kuklupfdqZ) = 

q( &IUD/, T) = W, where 

T = (4(z) n PO-)> u (&(I) n i-0)) = 
{cor9 C(n+l,r} = 1, 

w = (&(I) n ,dUkd) u (&(I) II ,dUpd) = 

{CkWv Cp’lr 1, 

Induction hypothesis. A1 ‘2 XAiy Jo UAhV in 
n - 1 derivation steps and we take, as hypothesis, that 

Cp(t-UVi, 1) > {Ckilv Cpir}. 

Induction Step. Now we take Al +i XAiy +o 

u&v in n derivation steps, so AI +E wA,z +G 
XAiy +G UAhv with u = Wak&’ and v = upulpz and 
A, -+ UkAiUp E P and Ai --+ uklAhUp’ E P. 
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Fig. 5. An Extended McCulloch-Pins net for l-L(G)4 

Then q( hmkak’ap~apz~, 1) = (O(aktap~, T), 
where {ckyl, cpqr} C T by induction hypothesis. By 

construction, 8(ckq[) > {chir 1 1 6 h < n} and 

a( c,,q ) 2 {c/k I 1 < h 6 n}. 
SO P(UktUpj,T) = @r(T) n P(ukd) U (h(T) fJ 

,~(a~~)) and, finally, it contains {ckri[, Cp’ir}. 0 

Theorem 7. For every deterministic ELG G, there 

exists an EMP M that accepts the extreme bounded 

language of L( G) . 

Proof. Once we have proved Lemma 6, we can easily 
prove that if any string belongs to L(G) then its ex- 

treme bounded string belongs to L(M) . We will prove 
that if A1 +-; w, then ~(kw-i, Z) n F # 8. Let us 
study the following cases: 

Case 1: Ai *G A. ‘men &car) 2 {c~(~+l)(~+~)f}~ 

&q,+l)r) 2 {CO(n+l)(n+l)f}~ ad pu(A) 2 

{c~(~+,)(~+~)~). SO, (~w4 = 6w = 0) n 

6'(z) nSr(z) = { CO(~+I)(~+I)~) and F-I E L(M). 
Case 2: Al JG ai. Then ~(COI) > {COi(n+l)f}, 

a(c(,+l),) 2 {cOi(n+l)f} and p(ai) 2 {coi(n+l)f)* 

SO rp(bUii,Z) = q(Ui,Z) =p(Ui) n&(Z) nsr(Z) = 

{coqn+l)f} and tad E L(M). 

Case 3: Al +E w. We can study two different cases 
depending on the size of w. 

w has an even length. 

Then A1 +E XAiy +G XUkAjU,y +G Xuku,y = 

W. SO Ai + UkAjU, E P and Aj -+ h E P. 

As we have proved before, q(kxq&y+, Z) = 
p(A) n@(T) n 6’(T) and T 2 {Cki[,cpir}. In this 

case, s(Ckil) 2 {Ck(n+ljpf}, 6(Cpir) 2 {Ck(n+ijpf} 

and P(A) 2 {Ck[n+l)pf). so, idA) n S’(T) f-7 

S’(T) 2 {Ck(n+l)pf} and t-w-! E L(M). 
w has an odd length. 

Then AI 32 XAiy JG XUkAjUpy +G XUkuqupy = 

W. SO Ai -+ UkAjU, and A, + a4 E P. 

As we have proved before, q( kxaka,‘$,y+, Z) = 
qo(a,,T) = ,u(uq) rl 6’(T) n S’(T) and T 2 

{Ckil,Cpir}. In this Case, S(Cki/) > {Ckqpf}, 

a(Cpir) 2 {Ckqpf} and p(q) 2 {Ck&}- So, 

p(aq) rl 6’(T) n S’(T) 2 {cbpf} and kw-l E 
L(M). Cl 

Let us take notice that the converse results of 
Lemma 6 and Theorem 7 are easy to prove by fol- 
lowing the induction process that we have carried out 
before. So, we can conclude that the language class 
accepted by EMPs, with the cell connection restric- 
tions of the proposed algorithm, is the Even Linear 
Language class. 
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4. Conclusions 

We have presented a neural net to recognize a for- 
mal language class. We think that McCulloch-Pitts 
neural net can be extended to recognize other classes 
by making new topologies. In this sense, future works 
can be directed in the following two ways: 

l To study language classes in order to define finite in- 
dex relations that imply new topologies. This work 
is of great interest in other areas like computational 

learning and pattern recognition, given that deal- 
ing with finite index families is easier than nonfinite 
families in these two areas. 

l To propose new topologies for McCulloch-Pitts 
nets and to characterize the families that these new 

nets accept. The computability of this net has spe- 
cial advantages like its great parallelism as opposed 
to other devices like finite automata or pushdown 
automata. So, we think that this device is better for 
tasks like pattern matching and string accepting. 

Our interest in McCulloch-Pitts nets has other goals 

such as establishing a formal equivalence between fi- 
nite state machines and other neural nets like percep- 
tron, Bolzmann Machines or recurrent neural nets. We 
think that the problem of computational learning with 
these nets has disadvantages like the initial structure 
of the net. If the formal equivalence could be proved, 
then learning with these devices would avoid the great 
amount of a priori information currently needed. 
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