— i — . e s

Journal of Automata, Languages and Combinatorics 5 (2060} 3, 343-354
© Otto-von-Guericke-Universitit Magdeburg

ON A CLASS OF REGULAR-LIKE EXPRESSIONS
FOR LINEAR LANGUAGES!

JOSE M= SEMPERE
Departamento de Sistemas Informdticos y Computacidn

Univer sidad Politécnica de Valencia, E-4607! Valencia, Spain
e-mail: jsempere@dsic.upv.es

ABSTRACT

Regular expressions define regular languages, so, there exist algorithms that can solve
some important problems concerning regular languages such as finite automata syn-
thesis or analysis by using regular expressions. In this work, we propose an extension
of regular expressions to characterize a larger language class, linear languages. Linear
languages form a class which is properly included ir the context-free language class and
which also properly includes the regular language class. From the definition proposed
in this paper, an algorithm which obtains linear grammars from linear expressions (and
vice versa) is formulated in a way similar to the one for tegula: expressions. We also
review some problems concerning linear grammars such as the equivalence and the
structural equivalence problem. '

Keywords. Formal languages, linear languages, regular expressions, representation the-
orems

1. Introduction

Conventionally, regular languages have been defined by finite automata, right (left)
linear grammars or regular expressions as presented in any basic book on formal
language theory such as [6] Some of these concepts have been extended and/or mod-
ified in order to define larger classes of languages. Therefore, pushdown automata
and context-free grammars are able to define context-free languages. New (regular-
like) expressions have been proposed for diflerent (zegular and non regular) language
classes, and some works have taken such direction. So, YOKOMORI [15] proposed an
extension of regular expressions to define context-free languages for inductive infer-
ence purposes HASHIGUCHI and Yoo [4, 5, 16] proposed regular-like expressions to
characterize bounded star degree languages. GRUSKA [3] introduced the operation of
symbol iteration and defined the context-free class in terms of union, product and sym-
bol iteration operations, he proposed context-free expressions by using the previous
operators. YNTEMA [14] proposed the cap operator and introduced cap expressions to

'Full version of a submission presented at the First International Workshop on Descrip-
tional Complezity of Automata, Grammars and Related Structures held in Magdeburg, Germany,
July 20-23, 1599

344 J M. SEMPERE

characterize context-free languages through cap, concatenation and union operators.
More on regular-like expressions for context-free languages can be found in SALO-
MAA's book [13] Here, we focuse on the structural information of linear grammars in
order to propose regular-like expressions to characterize them.

The definition of a descriptive formal language such as formal expressions, opens
up the possibility of proposing effective algorithms in order to obtain grammazrs from
formal expressions and vice versa. Furthermore, this definition can help to easily
study some problems related to formal grammars such as descriptional complexity
and 1eversal complexity, in the linear case.

‘This work is structured as follows. First, some basic concepts concerning regular
expressions and some transformations related to obtaining finite automata are pre-
sented. 'Then linear grammars are defined and we propose an extension of regular
expressions to define linear languages. From the definition of linear expressions, we
propose some algorithms which obtain linear grammars from expressions and linea:
expressions from grammars We relate this work to other problems such as the equiv-
alence and the structural equivalence for linear grammars. Finally, we present the
conclusions of this work and some guidelines for future works

2. Some Basic Concepts About Regular Languages

In this section, we provide some basic concepts about the definition of regular lan-
guages and we present several transformations on these. The definitions have mainly
been obtained from classical works on the formal language theory presented in [6, 13].
The concepts that we provide a1e basically focused on the relationship between regular
grammars (finite automata) and regular expressions.

Definition 1 Let ¥ be an alphabet without the parenthesis symbols. A regular ex-
pression over ¥ is defined in an inductive way as follows:

1. § and A are regular expressions,

2. for alla € X, a i3 a regular ezpression,

3 if r 15 a regular then so is (1),

4 let r and s be regular expressions, then v+ s, rs and r* are regular eLpPressions
The only regular expressions are those defined according to these rules

- Any regular expression r denotes a language L(r) which is defined as follows

L() is the empty language,
L(A) = {A},
Ya € X L{a) = {a},

R e

5 L{r+s)=L{r)UL(s),
6. L(rs) = L{r)L(s),
7. L(rm) = (L{r})”

e ——— s

e L T e —

On a Class of Regular-Like Expiessions for Linear Languages 345

It has been formally proved that any regular language is defined by a regular
expression and vice versa. Specifically, the synthesis problem is defined as the problem
of finding a regular grammar (finite automata) which is equivalent to a given regular
expression, while the analysis problem is defined as the opposite one, that is, finding
a regular expression that denotes the language defined by a regular grammar (fnite
automata).

Different solutions have been proposed to solve the synthesis problem, such as the
solutions proposed in [10] and [1} and, more recently, the proposal by HROMKOVIE et
al. [7]. The method proposed here to solve the synthesis problem for linear grammars
is highly related to the method of derivatives of regular expressions proposed by
BRrozozowsklI [1] Therefore, we are going to provide a basic definition which is
related to this method.

Definition 2 Let L be a language defined over the alphabet T and z be a string over
the same alphabet. The right quotient of L with respect to x is denoted by 7L and
18 defined to be the set {u € " : zu € L} This set is known as the derivative of L
with respect to x and can also be denoted by der.(L).

It has been shown by NERODE’s Theorem that, given a regular expression over
the alphabet ¥, the different derivatives of the regular expression with respect to
every string form a finite set. In the same way, from the set of different derivatives
obtained from the regular expression, a deterministic finite automata (DFA) can be
constructed which is equivalent to the regular expression as shown in {1]. The method
for obtaining a DFA from a regular expiession is known as the derivative method.

The analysis problem has 1eceived different solutions as well Some of them can be
found in [2]. Specifically, there exists a method which is based on systems of linear
equations where the coefficients and variables of the system are denoted by regular
expiessions. ‘Thus, the resolution of the system obtained from a regular grammar
(finite automata) gives the desired regular expression as shown in the same book [2].
This method can be adapted in much the same way as the derivative method in order
to work with the extension over regular expressions.

3. Extensions of Regular Expressions: Linear Expressions

In this section, we propose an extension of regular expressions in order to define the
languages generated by linear grammars. This extension can be used to define regula
languages as a particular case. Throughout this section, we will provide definitions
and results which will make easier the subsequent methods for solving the analysis
and synthesis problems related to linear languages. |

Definition 3 Let A = {ay,0s,...,a,} ond T = {b1,b2,.. ., b} be two alphabets.
We define the alphabet A indezed by X, denoted by Asx, as the set {ai,,,01,,, -,

a‘lbm 3o)a‘nbl 3o 5anbm }

Definition 4 Let G = (N,X, P,S) be a grammar. G is linear if every production in
P 15 1n one of the following forms.

346 : J M. SEMPERE

1. A= oBg, where A,B€ N and o, 3 € T,

2. 1 5%, where 4 N and @ € &*

For every linear language, we can obtain the following noimal form for & %’E"ammar
that generates it.

1. 4 =+ aB | Ba where A, B¢ Nandac¥,

2. 41— Awhere 1 € N.

From now on, we will deal with linear grammars in the previously defined normal
form.

Definition 5 Let A = Y11,y be an indexed alphabet. Given a string x over A, we
define the image of x in X, denoted by imx(z), through the following rules:

L. sf z = A, then img(A\) = A,

2. ifz=ay w, withw € A*, then ims(ay - w) =a- iy (w),

3. fz=ar w, withw € A*, then ims;(ar - w) = imp(w) -a.
As an extension of these rules, if L C A* then imy(L) = {ims(z) : z € L}.

Now, we can give a definition for the extended regular expiessions that we call
linear expressions.

Definition 6 Let A =X, R} be an indexed alphabet. A linear expression over A is
defined in an inductive way by the following rules:
L. @ and A\ are linear expressions,
2. for alla € ¥ ay, and ag are linear ezpressions,
3. if r is a linear expression then so is (r),
4. if r and s are linear expressions, then v+ s, rs and r* are linear eLPTESSLOnS.
Observe that any linear expression can be viewed as a regular one over L my

Any linear expression r over ¥, g} denotes a language imsx (r) which is defined as
follows

1. imz () is the empty language,
2. imx(A) = {A},

3. img(ar) = ims(ag) = {a},

1 imz((r)) = imx(r)

ims(r + 5) = img(r) U imgs (s),
img(rs) = {img(zy) : 2 € L(r), y € L(s)} (see Definitions 1 and 5),
ime (r*) = {A} Uimg(rr*). '

~ o o

On a Class of Regular-Like Expressions for Linear Languages 347

Observe that if we consider any linear expression 1 over Xy gy then L(7) can be
different from ims(r). So, the language that the expression 1 denotes as a regular
expression is different from the one that it denotes as a linear expression.

Example 1 (a) The linear expression (arbrbr)* denotes the linear language defined
by the set {a'db?' : i € N},

(b) The linear expression (azag + brbr)* denotes the linear language defined by
{fww” :w e (a+b)*}

Theorem 1 Ifr is a linear expression over the indezred alphabet 3¢ gy, then imx(r)
15 @ linear language

Proof. We will perform the proof as an induction process over the number of opera-
tions (unions, concatenations and closures) that appear in the linear expression in a
way similar to Kleene’s Theorem for regular expressions [10]. This means that we will
provide an effective method for obtaining linear grammars in normal form for every
linear expression.

Induction Basis 1If v = {), then the linear grammar ({S},%,8,5) generates

img(0) = 0
If 7 = A, then the linear grammar ({S}Z,{S = 1},5) generates the language
ims(A) = A

Va € X, if r = ag, the corresponding linear grammazr is as follows
({8, A}, {a},{S = ad; 4 > AL S)
Va € 3, it r = ap, the linear grammar is given by

({8, A} {a}, {S = da; A = 1}, 9).

Induction hypothesis Let 1 be a linear expression that contains a maximum number
of n operations of unions, concatenations or closures with n > 0. Then there exists a
linear grammar G, that generates the language img(r).

Induction step Let ¢ be a linear expression that contains -+ 1 operations of unions,
concatenations or closures. Let us analyse the different cases that can appear in ¢:

Case 1: t=r +s, with v and s being linear expressions that contain a maximum
number of n operations. In this case, by induction hypothesis, there exist linear
grammars G, = (N,,E, F,,S,) and G, = (N,, %, Ps, S;) that generate the languages
ims{r) and imy(s) respectively We can assume, without loss of generality, that
Ny M Ng = 0. Thus, the linear grammar G, = ({S¢} UN, UN,, X, P S,) with P =
{St=a:5 sac Plu{S;—pB:8 =8¢ Fs} U P, U P, generates the language
ims(r) U imy (8) = img(2).

Case 20 t = rs, with 7 and s being linear expressions that contain a maximum
number of n operations. As in the previous case, by induction hypothesis, the lin-
ear grammars G, = (N,, X, P,,5,) and G, = (N, %, Py, Ss) generate the languages
img(r) and imx(s), respectively. Again, we can assume that N, NNy = 0. We propose
the following grammar that generates imsy (t) = img(rs)

Gy = (N, UN,,Z,PPUP,,S,)

318 J M. SEMPERE

wheie P/ is defined by the following rules:

o if {—saB €kl then 1 aB e P,
o if 1> Bac P, then 4> Bae P,
eIf 1> Ac P, ,thenVa:S+aecP; 4—ac P

Case 3: t = r*, with r being a linear expression that contains a maximum
number of n operations. Again, by induction hypothesis, the linear grammar
G, = (N,, X, P, S,) generates the language imyx(r). We propose the following linear
grammai to generate imy (t) = img{r*):

Gy =(N,,Z, P, U{S, -+ A}UP,S,)
where P! is defined by the set

{id=2a:(d=22€eP)A (S, 2 ac P)} O
Example 2 From the proof of Theorem 1, we are going to construct a grammar that
generates the language defined by the image of the linear expression (arbrbgr)*. The

grammar will be defined step by step according to the application of every operation
in the expression.

1. ar:

S —ad A=A
2. bg:

5 = A'b Ay X
3. arbg:

S —ad A=A
S — A’ A = A
The production S’ — 4'b can be deleted since it is useless
4 GLbRbR:

S a4 A= 4 A= 4
S AYp AT 5 A

As in the previous case, the production S — A"} is useless and can be deleted
5. (arbrbr)™:

S—ad] A 4 - 4D
A= 4" A" = A ad

Obviously the last grammar generates the language {a’h?' : i € N}, which is the
image of the linear expression (apbgrbg)*.

e O

On a Class of Regular-Like Expressions for Linear Languages 349

Now we are £0Ing to propose a solution for the analysis problem. Given a linear
glammar, the problem ig finding a lineay expression whose Image denotes the language
generated by the grammar. The algorithm to apply in the resolution of this problem
is based on a reduction of the linear grammar to a regular one and the subsequent
resolution of the regular grammar using well known methods (2, 6]. Finally, the regular
expression gives the desired linear expression We provide the following definition
which will help us to carry out this task

Definition 7 fet ¢ = (N2, P,S) be a linear grammar wn normal form. We de-
fine the extended regular grammar of G gnd we denote it by G, as the tuple
(N, E{L”R},P’,S), where P’ is defined by the following rules:

L ifd—orep, then 4 — X e P,
2. if 4= aB €P, then 1 3 q,B ¢ P
3 ifd = Bac P, then 1\ - qpB e P’

Lemma 2 Let G be g linear grammar in normal form and G,, be its extended reqular

grammar. Then x € L(G,,), if and only i ims(z) € L(G).

Proof First, we will see that z € L(G,,) implies that img(x) € L(G) The derivation
sequence of z in G, will have the following form:

) [a) (%] n g
S = x4 = r1z24, = = Tir2.z, A, Z Tt Ty =
=t L4 "y “y o“r

where every production a; takes the form A;, — z;4; Therefore, by choosing the
productions in G that define €very «;, which we denote by o}, we can obtain the
following derivation sequence in G:

' '
Fno a,

? "}’n‘—l--‘ln%lqbn—i "—2 Tn@n

oll2

oAy

where v, ¢, € T* for ; — 1, ..,n, and it €asy to prove that -;¢; = wns () .. @)
fori=1, . .n Therefore, we can conclude that +,¢, = imy(z) and S % imy (z).
Thus, ims(z) € L(G) as was previously stated.

The other implication to be proved, ims(z) € L(G) = ¢ ¢ L(Ger), can be per-
formed as before. 0

QAN

an’
S §>1 T A1

Example 3 Given the linear grammar defined by the following rules

S —ad|bB, A= da| 8B,
B - aoC'| Bb, C = A

its extended regular grammar is defined by the tollowing productions

S — aLA l bLB, A — arA , bLB,
B—)aLCIbRB, C = X

s oz

350 J. M. SEMPERE

b Z (L, R}

Linear grammar] (Extended regular grammar

G J Regular t Ger
transformation
.
Equivalence Systems of
linear equations
Linear language } (Linear expression
im_ (r)=L(G)
2 J image { r

3 2 (L, R}

Figure 1: A scheme to obtain the language generated by a linear grammar

Theorem 3 For every linear grammar G, there exists a linear expression r such that

L(G) = ims (1)

Proof By applying the scheme of Figure 1, we can obtain a linear expression for the
given linear graminar.

We construct the extended regular grammar G, from G. Then, by the methods
shown in {2], we can calculate a regular expression r to denote L{G,,). This expiession
is a linear expression that denotes imy (L(()) as established in Lemma 1. O

Example 4 Given the extended regular grammar of Example 3, its linear expression
can be obtained by solving the following equation system:

S=ari+b.8
A =agA+b.B
B=ar(C +brB
C=A

The linear expression associated to this equation system is obtained from the solutions
of the system which are the following:

C=A

B =brayp,

A =apbrbrar,

S =aragpbrbpar + brbrar

i 5

On a Class of Regular-Like Expressions for Linear Languages 351

4. Another Synthesis Algorithm

guages, we introduce a different method to solve the synthesis problem which is based
on the derivative method proposed by BROZOZowsK] [1]. So, we propose a method
tor obtaining linear grammars from the derivatives of linear expressions with respect
to any string in the indexed alphabet

with z ¢ E?L,R}:

dery(t) = a- der 4q, (1),
dery, (t) — deryan(t) - a,
Ifhe wng (dery (£)) then der, (t) — A

Example 5 Given the linear expression (azbgpbp)*, the set of all the different deriva-
tives with respect to {a,b}, R} is calculated as follows
dery((arbrbp)*) = (arbrbg)*,

dera; ((arbpbp)*) = brba(arbpby)*,

dery, ((apbrbg)*) = g,

der'aﬂ((aLbRbR)*) = @,

deryy, ((arbrbr)*) = 0,

dera,a; ((anbrbg)*) = ¢,

dera b, ((apbpbg)™) = 2,

derg; o, ((aLbRbR)*) =0,

derai‘bn ((GLbRbR)*) = bR(aLbRbR)*a
erarbna; ((arbrbp)*) = ¢,
derarsns. ((arbrbp)*) =0,

eTarbnan((aLbrbg)™) = g
derarbnor((apbrbr)) = (arbrbg)*

From these derivatives, a linear glammar which is equivalent to the linear ex-
pression is obtained using the auxiliary symbols § = dery((arbrbr)*), A =
der%((aLbRbR)*) and B = der,, br((aL0rbR)*). The productions of the grammar
are the following:

S —adl|, A — Bb, B — 5b

352 J M. SEMPERE

5. Equivalence and Structural Equivalence for Linear Grammars

From linear expressions, we can offer a different point of view to the resolution of
some problems which are related to linear languages such as the equivalence problem
between linear grammars [12] or the structural equivalence problem for linear gram-
mars [8, 9, 11] The first problem was proved to be unsolvable by ROZENBERG [12],
50 we cannot make any progress related to this. However, we can provide a different
method for solving the second problem which, unfortunatelv, maintains its level of
complexity.

First, let us consider a result which relates the equivalence problem for linear
grammars to the results presented in this work. This relation is established in the
following theorem.

Theorem 4 The equivalence problem for linear expressions 15 unsolvable. That is,
given two different linear ezpressions 1 and s, there does not exist an effective proce-
dure to establish whether imx(r) = ims/{s)

Proof The equivalence problem for linear grammars was proven to be unsolvable by
ROZENBERG [12]. It is easy to reduce the equivalence problem for linear grammars
to the equivalence problem for linear expressions. Consequently, the problem stated
in the theorem is also unsolvable. : O

The structural equivalence problem for linear grammazis is stated as follows: Given
two linear grammars G and G, the solution consists of determining whether the set
of derivation skeletons of Gy (the set of derivations of G1 where the auxiliary symbols
are not distinguished) is equal to the set of derivation skeletons of (5. This problem
was proved to be PSPACE-complete [8, 9, 11]. We can reduce the structural equiva-
lence problem for linear grammars to the equivalence problem for regular ones The
equivalence problem for regular grammars was also proved to be PSPACE-complete [8].

Given two linear grammars G and &, the structural equivalence problem can be
established from the equivalence problem between G,, and Gl,.

Theorem 5 Let G and G be linear grammars in normal form and G,, and G., be
their corresponding extended regular grammars Then G is structurally equivalent to
G if and only if Ge, is equivalent to GL,

Proof. Trivial from the proof of Lemnma 1. D

We can extend the last result to linear grammars as follows
Theorem 6 Let Gy and G5 be linear grarnmars. Then there exist linear grammars
in normal form Gy and GY which are equivalent to Gy and Ga respectively, such that
(a) if Gy is structurally equivalent to Gy then G s structurally equivalent to GY,

{(b) if G} is structurally equivalent to G4 then G| s equivalent to Gs.

On a Class of Regular-Like Expressions for Linear Languages 353

Proof. Let us obtain G and G from G and G- as follows: For every production in
G (o1 Gy) in the form 4 — ai.. apBby .. b, substitute it by the set of productions
A=adn, 4, o an By and By — Byb,,, . , B — Bb,. For everv production
in the form 4 — g . .Gy substitute it bv the set of productions 4 -+ a;d;, .
An1 - ap A4, and 4n = A The productions 4 — ay . apnB and 4 = Bb; b,
are transformed in a similar way-

(a) Suppose that G, is structurally equivalent to G,, then trivially so are G
and G5 .

(b) On the other hand, if G is structurally equivalent to G4 then G is (not
necessarily structurally) equivalent to G2 The factorization of the production ruleg
to obtain G| and GY, obviously, is not an injective mapping. O

6. Conclusions and Future Work

Throughout the present paper, we have presented linear expressions as a new for-
malism for defining linear languages. This proposal has allowed us to establish new
methods for solving the analysis and synthesis problems which are related to lin-
ear grammars. Finally, we have proposed a new method for solving the structural
equivalence problem for linear grammars.

Future work related to this paper can be summarized as follows:

1. We can apply indexed alphabets to define other language classes such as context-
free ones. In this case, it would not be enough to use an indexed alphabet such
as Xy, R}, since, in general, the structural relationships between the auxiliary
symbols in the grammar are more complex than in the linear case. Ther efore, we
should use a different indexed alphabet to take into account some relations such
as precedence between symbols and the number of symbols in every production.

2. If we turn our attention to studying only the structural aspects of the grammar,
then we can use the same indexed alphabet, Lir,R}, but we need to define an
image over {L, R} We could also study some aspects of linear grammars such as
the number of linear changes from left to right (right to left) that are carried out
during the derivation of any string in the grammar (i e its reversal complexity).
From this study, we might be able 0 impose new normal forms on the structure
of the grammar

Acknowledgements

The author is grateful to ERKKI MAKINEN and PEDRO GARCIA for helpful comments
and discussion on this work. Also, he is grateful to SHENG YU for nice comments and
suggestions made during the Workshop on Descriptional Complezity of Automata,
Grammars and Related Structures in Magdeburg, July 1999, Sharp remarks and
suggestions made by the anonymous referees are also acknowledged.

R ——"

354 J M SEMPERE

References

[1] 1. BROzOzZOWSKI, Derivatives of Regular Expressions Journal of the Association
Jor Computing Machinery 11 (1964) 4, 481-494

(2] J Cuirrorr, D. LoNG, Theory of Finite Automata. Prentice-Hall, 1989

(3] J. GRuskA, A Characterization of Context-free languages. Journal of Computer
and System Sciences 5 (1971), 353-364.

4] K Hasuicuchi, H. Y00, Extended regular expressions of star degree at most
two. Theoretical Computer Science 76 (1990), 272-284.

[5] K HasHIGUCHI, The Infinite 2-Star Height Hierarchy of Extended Regular Lan-
guages of Star Degree at Most Two. Information and Computation 114 (1994),
237-246.

(6] J. HOPCROFT, J ULLMAN, Introduction to Automata Theory, Languages and
Computation Addison-Wesley Publishing Company, 1979.

71 J HrROMKOVIG, S. SEIBERT, T. WILKE, Translating Regular Ezpressions into
Small e-Free Nondeterministic Finite Automata. In: R. REISCHUK, M. MORVAN
{eds.), Proc 14th Annual Symposium on Theoretical Aspects of Computer Science
(STACS97). LNCS 1200, Springer-Verlag, 1997, 55-66.

(8] H. Hunr III, D. ROSENKRANTZ, T, SZYMANSKI, On the Equivalence, Contain-
ment, and Covering Problems for Regular and Context-Free Languages. Journal
of Computer and System Sciences 12 (1976), 222-268.

9] H. Hunr III, D. ROSENKRANTZ, T SZYMANSKI, The covering problem for b
linear context-free grammars. Theoretical Computer Science 2 (1976), 361-382.

[10] S.C. KLEENE, Representation of Events in Nerve Nets and Finite Automata. In:
C.E. SHANNON, J. McCARTHY (eds.), Automata Studies Princeton University
Press, 1956, 3-41.

(11] M. PauLt, S. UNGER, Structural Equivalence of Context-Free Grammars. Jour- o
nal of Computer and System Sciences 2 (1968), 427-463 I

[12] G. ROZENBERG, Direct Proofs of the Undecidability of the Equivalence Prob-

lem for Sentential Forms of Linear Context-Free Grammais and the Equivalence
Problem for 0L Systems. Information Processing Letters 1 (1972), 233-235.

(13] A. SatoMaa, Formal Langueges. Academic Press, 1973.

T T v e

[14] M K Yn TEMA, Cap Expressions for Context-Free Languages. Information and
Control 18 (1971), 311- 318,

[15] T. YoxoMorr, Inductive Inference of Context-free Languages Based on Context-
free Expressions. International J Computer Math. 24 (1988), 115-140.

116! H. Yoo, K. HasHIGUcHI, Extended automata-like regular expressions of star
degree at most (2,1). Theoretical Computer Science 88 (1991), 351-363.

1
=
i
5

b

(Received: September 2, 1999; revised: February 11, 2000)

