A Note on the Equivalence and Complexity of
Linear Grammars

JOSE M. SEMPERE

Departamento de Sistemas Informdticos y Computacion, Universidad Politécnica de Valencia,
Camino de Vera s/n 46022 Valencia, Spain.
E-mail: jsempere@dsic.upv.es

Abstract. Linear languages can be characterized by regular-like expressions (linear expressions)
according to a previous work. In this paper, we consider some equivalence properties of linear
expressions in order to obtain a characterization of reversal and Kolmogorov complexity of linear
languages. First, we introduce the relationship between regular expressions equivalence properties
and linear expressions equivalence properties. Then, we define permutation and compression equi-
valence properties in order to handle linear expressions to obtain shorter equivalent ones. The study
of reversal and Kolmogorov complexities associated to linear grammars is performed in the rest of
the paper. We obtain a speed-up theorem for reversal complexity. Finally, we define a Kolmogorov-
like complexity associated to linear grammars and we deduce upper bounds for such complexity
measure.

Key words: formal languages, linear grammars, equivalence properties, reversal complexity, Kolmo-
gorov complexity

1. Introduction

Regular-like expressions have been proposed by different authors in order to
describe formal language classes. We can refer some works in such direction
(Gruska, 1971; Yntema, 1971; Hashiguchi and Yoo, 1990; Yoo and Hashiguchi,
1991; Hashiguchi, 1994). In a previous work (Sempere, 2000), a class of regular-
like expressions (linear expressions) has been proposed in order to describe the
languages generated by linear grammars. So, linear expressions are regular-like
expressions that take into account the structural information of linear grammars.
Any linear expression denotes the set of strings that belong to a given linear gram-
mar together with the way in which every string is derived from the axiom. Here,
the derivation of a string is quite simple, given that, in any sentential form, there
can only be a single auxiliary symbol, and the relevant information is defined in
terms of linear changes from right to left (left to right) during the derivation steps.

We can study some aspects of linear languages by taking advantage of linear
expressions. In this work we will focus on two different complexity measures of
linear languages: reversal and Kolmogorov complexities. Reversal measure can be
defined as the number of changes that occur in any derivation sequence in any
grammar that generates a language, while Kolmogorov complexity is the minimum
size of any program which describes the linear language generated by the grammar,
together with the way in which every string is obtained. Both measures can be

;“ Grammars 6: 115-126, 2003.
“ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

116 J.M. SEMPERE

easily related to linear expressions. So, given that in any linear expression we can
observe how the linear changes occur then we can calculate its reversal complexity.
By the other hand, any program that writes the linear expression of a given linear
grammar denotes an upper bound of the Kolmogorov complexity of its language.

This work is structured as follows. First, some basic concepts concerning linear
expressions and some equivalence properties are proposed. We use a normal form
for linear expression in order to obtain a short description which will allow us
to study the reversal and Kolmogorov complexities. Then, we focus on the study
of some aspects of reversal complexity and Kolmogorov complexities. We study
the reversal complexity of any linear grammar in normal form. Here, we will re-
late the reversal complexity of any linear grammar with the time complexity of
regular languages. From the upper bound obtained before, we deduce a speed-up
theorem based on linear expressions. Finally, we propose some results about the
Kolmogorov complexity of linear languages from previously transformed linear
grammars.

2. Basic Concepts and Linear Expressions

In this section, we review an extension of regular expressions in order to define
the languages generated by linear grammars. This extension can be used to define
regular languages as a particular case. Most of these concepts and results can be
viewed in Sempere (2000).

DEFINITION 1. Let A = {ay,a3,--- ,a,} and ¥ = {by, by, --- ,b,} be two
alphabets. We define the alphabet A indexed by X, denoted by Ay, as the set
{all’l) al],z’ Ty al],m s T T an],l s TN anhm }

Given any alphabet I', the set of all strings over I" will be denoted by I'*. Given
any string x € I'* the reverse of the string x will be denoted by x" and its length
by |x|. The empty string will be denoted by A.

DEFINITION 2. Let G = (N, X, P, S) be a grammar. G is linear if every pro-
duction in P is in one of the following forms:

1. A— aBB,where A, B e Nanda, 8 € X%,
2. A — a,where A e Nand o € X*.

For every linear grammar, we can obtain an equivalent grammar in the following
normal form:

1. A— aB | Bawhere A,Be Nanda € Z,
2. A— A where A € N.

From now on, we will work with linear grammars in the previously defined normal
form. We will say that the language L is linear if there exists a linear grammar G
such that L = L(G). We will denote the class of linear languages by LJAN .

A NOTE ON THE EQUIVALENCE AND COMPLEXITY OF LINEAR GRAMMARS 117

DEFINITION 3. Let X be an alphabet and A = X; ;. Given a string x over A,
we define the image of x in X, denoted by imyx (x), through the following rules:

1. If x = A, thenimyg(A) = A.
2. If x = a; -w, withw € A*, thenimyx(a; - w) =a -ims(w).
3. If x = ag - w, withw € A*, then imyx (ag - w) = imsg(w) - a.

As a generalization of these rules, if L € A* then imy (L) = {img(x) : x € L}.
Now, we will define regular-like expressions for linear languages.

DEFINITION 4. Let A = X, gy be an indexed alphabet. A linear expression over
A is defined in an inductive way by the following rules:

1. ¥ and A are linear expressions,

2. foralla € ¥, a; and ay are linear expressions,

3. if r is a linear expression then so is (),

4. if r and s are linear expressions, then » + s, rs and r* are linear expressions.

Observe that any linear expression can be viewed as a regular one over X g, and
it defines a regular language L(r). By the other hand, any linear expression r over
>1,ry denotes a language imyx (r) which is defined as follows:

imy (0) is the empty language,

ims (1) = {A},

ims(ap) = img(ag) = {a},

ims((r)) =ims(r),
img(r+s)=img(r)Uimg(s),

imy(rs) = {imyx(xy) :x € L(r),y € L(s)}!,
ims(r*) ={AYUims (rr*).

AN e

Observe that if we consider a linear expression r over X, g}, then L(r) # imx(r).
That is, the language that r denotes as a regular expression is different from the
one that it denotes as a linear expression.

THEOREM 1. (Sempere, 2000) Let X gy be an indexed alphabet. Then L C ¥*
is a linear language iff there exists a linear expression r over ¥ gy such that
ims(r) = L.

We give the following example of linear languages and linear expressions.

EXAMPLE 1. (a) The linear expression (ap bgrbg)* denotes the linear language
defined by the set {a'b* :i > 0}.

(b) The linear expression (aragr + bpbg)* denotes the linear language defined
by {ww” : w € (a + b)*}.

118 J.M. SEMPERE

3. Equivalence Properties

We have shown the relationship between linear grammars in normal form and linear
expressions. Now, we will provide some equivalence properties in order to obtain
some results on complexity.

DEFINITION 5. Let r and s be linear expressions over X, ry. We will say that r
and s are regular-equivalent, and we will denote it by r =gg¢ s, iff L(r) = L(s).
We will say that r and s are linear-equivalent, and we will denote it by r =,y s,
iffims(r) = ims(s).

PROPERTY 1. Let r and s be linear expressions over Xy, gy. If ¥ =ggg s then
r =LIN S.

Proof. Let r and s be regular-equivalent linear expressions over Xy g;. Obvi-
ously, x € L(r) iff x € L(s). Now, let us suppose that x € imyx(r). Clearly,
there exists X € L(r) such that imy(xX) = x. So, X € L(s) given that r =ggg s
and x € imyx(s). The result from imy(s) can be proved in a similar way, so
ims(r) =imx(s) and r =y 5. O

EXAMPLE 2. The converse result of Property 1 is not true in general. Observe
that a;bg = ;v bray While apbgr #rrc bray.

Now, we will provide some equivalence properties between linear expressions that
do not preserve the regular-equivalence.

3.1. PERMUTATION

Permutation attempts to produce an order between the symbols of any linear ex-
pression. Here, the result will produce that, in any string, the symbols indexed by
R appear later than the symbols indexed by L. We will formalize this operation
with the function ¥ : £, p, — X, g, defined as follows:

1. y(L) = A,
2. Va e £)(Vx € Z{*L’R}) Y(agx) = ¥ (x)ag,
3. Va e X)(Vx € Z{*L’R}) Y(apx) = apy(x).

Obviously, if x € X7} g, then ¥(x) € X7,X%,. Then, for every string x, we
can set ¥ (x) = x;x, where x| € EfL} and x, € EFR}. Now we can define the
transformation ¢ : E{*L’ R E{*L’ R) @S follows:

(Vx € Z(p g ¢(x) =x1x5 with ¥ (x) = x1x2.
We can formulate equivalence properties based on the function ¢ as follows.

PROPERTY 2. Letx € Z{*L’R}, then x =,y ¢ (x).
Proof. We will prove the property by induction over the length of every string x.
First, we will take A as our induction basis. Obviously, ¢ (A) = Aand x =, ;5 ¢ (x).

A NOTE ON THE EQUIVALENCE AND COMPLEXITY OF LINEAR GRAMMARS 119

Next, we enunciate an induction hypothesis such that for every string x of length
upton x =p;n ¢(x).

Finally, we will take x with length n + 1. We can consider two different cases.
First, let x = a;x. Here, ¢(x) = ar¢p(X), and imx(¢p(x)) = a - imxg(p (X)) =
a-ims(x) =imx(x).

By the other hand, let x = azx. Then ¢(x) = X (X2ag)” = X1ag(x,)" with
X € Ez and X) € Z; So, lmz(d)(x)) = ll’}’l}:(fl) . img(aR(fz)’) = l.m):(fl)l'mz
((x¥2)")a =ims(p(X))a =ims(X)a = imsz (x). O

Now, once we have proved the previous property we can extend the function ¢ to
act over sets of strings. So, let L be a language defined over X, g} and ¢(L) =
{¢(x) | x € L}. We can define the function ¢ over linear expressions as follows:

1. ¢p(0) =0,

2. p(A) = A,

3. ¢(ag) = ag and ¢(ay) = ay,

4. for every linear expression r, ¢ ((r)) = (¢ (r)),

5. for every pair of linear expressions r and s, ¢ (r + s) = ¢ (r) + P (s),

6. for every pair of linear expressions r and s, ¢ (rs) = {¢(xy) : x € L(r),y €

L(s)},

7. for every linear expression r, ¢ (r*) = (¢ (r))*.

From the previous rules and Property 2, we can deduce the following result.

COROLLARY 1. Let r and s be linear expressions. Then, the following equival-
ence properties hold:

Lr4+s=py o)+ o),
2. rs =y ¢(rs),
3. r* =pn ()"

EXAMPLE 3. Letr = apbra; + (agrap +brbg)*. Then r is equivalent to ¢ (r) =
ararbg + (apag + brbg)*.
Lets = agagrbj . Then, s is equivalent to ¢ (s) = bj agag.

3.2. COMPRESSION

Compression attempts to reduce the number of indexes in any linear expression.
Here, we will obtain a more economic expression where the symbols with equal
index are joined into a single word. It will be especially useful to fix an upper
bound of the Kolmogorov complexity of any linear language. We will formalize
this operation with the function ¢ as follows:

(Vx € 2 g ¢) =lims(x)]L [ims(x2)lg, Wwith @(x) = x1x2.

120 J.M. SEMPERE

Observe that the function ¢ makes a representation change and its result is defined
in terms of strings with at most one index L or R. We can define { X"}z, as the set
of strings of X with the unique index L. In the same way, we define {¥*} g as the
set of strings of X with the unique index R. We will define the function imy to act
over ¢ as follows:

(Vx € 7 g) imz(p(x)) = ims(x))ims(xz) with ¢(x) = x1xo.

Now, we can obtain the following equivalence properties with respect to the
function ¢.

PROPERTY 3. Letx € Z{*L,R}, then x =, ;v ¢(x).

Proof. We will prove this statement as in Property 2, that is through an induction
process over the length of every string x.

First, let us take x = A. Here, ¢(A) = A and imx(A) = imx (p(L)). So, x =y
P(x).

Let us make enunciate an induction hypothesis such that for every string x of
lengthupton, x = ;n @(x).

Now, we will take strings of length n + 1. First, let us take x = a;x. Then
p(arx) = [a -imx(x1)][ims (x2)]g. Here, the following equalities hold:

ims([a-ims(x)]Llims(x2)]gr) =a-ims(x1)ims(x2) =a-ims(X) =imyx (x).
By the other hand, let us take x = azx. Here, the following equalities hold:
plagx) = [ims (x)]Llims(arx2)lr = [ims (x)]Llims(x2) - alg.
So, img(¢(arx)) = ims(x1)imsz(x2) - a = imyg(agx) = img(x). 0

Now, once we have proved the previous property we can extend the function ¢ to
act over sets of strings. So, let L be a language defined over X, g} and ¢(L) =
{o(x) | x € L}. We can define the function ¢ over linear expressions as follows:

L. o@) =0,

2. (1) = A,

3. ¢(ag) = ag and p(ar) = ar,

4. for every linear expression r, ¢((r)) = (¢(r)),

5. for every pair of linear expressions r and s, ¢(r +5) = @(r) + @(s),

6. for every pair of linear expressions r and s, ¢(rs) = {@(xy) : x € L(r),y €

L(s)},

7. for every linear expression r, ¢ (r*) = (¢(r))*.

From the previous rules and Property 3, we can deduce the following result.

COROLLARY 2. Let r and s be linear expressions. Then, the following equival-
ence properties hold:

A NOTE ON THE EQUIVALENCE AND COMPLEXITY OF LINEAR GRAMMARS 121

L. r+s=pv o) + @),
2. rs =pn @(rs),
3. r* =pv ()™

EXAMPLE 4. Letr = aybra; + (agrar +brbg)*. Then r is equivalent to ¢ (r) =
(aa) bg + (arag + (bb)g)*.
Lets = ay(brarby)*by. Then s is equivalent to ¢(s) = ar ((ab) br)*by.

4. Reversal Complexity of Linear Languages

The deterministic reversal complexity of a language (Wagner et al., 1986; Chen
and Yap, 1991) is defined as the maximum number of tape head reversals during a
deterministic Turing machine computation (i.e., the maximum number of direction
changes that the tape heads of a deterministic Turing machine make during the pro-
cessing of any input string). Let DREVERSAL; (f) be the class of languages accep-
ted by k-tape deterministic Turing machines which make at most O (f(n)) tape re-
versals on inputs of length n. We will denote by DREVERSAL(f) = |, DREV-
ERSAL,(f). We can give a similar definition for nondeterministic Turing ma-
chines, so NREVERSAL;(f) denotes the class of languages accepted by k-tape
nondeterministic Turing machines which make at most @ (f(n)) tape reversals on
inputs of length n. It has been proved that LIN = NREVERSAL,(1) (Wagner et
al., 1986).

Here, we study the reversal complexity related to linear grammars. Obviously,
there exists a strong connection between the linear changes that a Turing machine
performs during its computation and the linear changes that a linear grammar
carries out during a derivation process.

In order to define the number of linear changes from left to right (right to left)
in a derivation process, we will focus our attention to the subscripts (L or R) of
every symbol in a linear expression. Here, the subscripts give enough information
to deduce the reversal complexity of a linear language generated by a given linear
grammar.

DEFINITION 6. Let G be a linear grammar. We will define the reversal complex-
ity of L(G) as the maximum number of changes (left to right and right to left) that
occur whenever x € L(G) is derived from the axiom of the grammar. Obviously,
this complexity is defined as a function that goes from positive integers (i.e., the
length of any string x € L(G)) to positive integers (the number of changes).

We will denote the family of linear grammars in normal form by gV . So, REV-
ERSALg v #(f) will denote the family of languages that can be generated by linear
grammars in normal form with reversal complexity f(n).

EXAMPLE 5. (a) Let G be the linear grammar defined by the rules S — aAlA;
A — Sb. Then, L(Gy) = {a"b" : n > 0}. Then L(G) can be described by the
linear expression (a;bg)* and, obviously, L(G) € REVERSALg y 5 (n).

122 J.M. SEMPERE

(b) Let G, be the linear grammar defined by the rules S — aS|bA; A — DAJA.
Then, L(G;,) = {a"b™ : n > 0,m > 1}. Then, L(G,) can be described by the
linear expression (ar)*by (by)* and L(G;) € REVERSALg v+ (0).

Given that any linear grammar can be described by a linear expression, we can
deduce the reversal complexity of the grammar as the number of L and R index
changes in the expression. So, we can define the reversal language of a linear
expression as im (., gy(r) according to the following rules:

1. im gy(9) is the empty language,

imyp gry(A) = {A},

imy gy(ar) =L,

img gy(agr) = R,

imyp gy((r)) = imy gy(r),

im gy(r +s) =imq gy(r) Uimy gy(s),

imp gy(rs) = {im gy(xy) : x € L(r), y € L(s)},
8. imy gy(r*) = (imyy gy(r))*.

NNk L

For any linear expression, every string of its reversal language will be called a
reversal word. Any derivation process in a linear grammar has a reversal word
associated, and it describes the number of linear changes that occur during the
derivation process.

EXAMPLE 6. (a) Letr = (a;brbg)*, then img gy(r) = (LRR)*.
(b) Lets = (arag + bpbg)*, then im{L,R}(s) = (LR)*.
(c)Lett = apbray + (agray +brbr)*, then im{L,R}(t) = LRL+ (RL+ RR)*.

THEOREM 2. Letr be a linear expression over Xy gy. Thenimyy gy (r) is regular.
Proof. We will construct a (right linear) regular grammar for every linear ex-
pression.
l.r=9¢
Here the regular grammar ({S}, {L, R}, ¥, S) generates the empty set.
2.r=A
The grammar ({S}, {L, R}, {S — A}, S) generates the language {\}.
3.r=ag
The grammar ({S}, {L, R}, {S — L}, S) generates {L}.

4. r = ap
The grammar ({S}, {L, R}, {S — R}, S) generates {R}.
5..r=s+t

Let us suppose that regular grammars G, = (N, {L, R}, P, Sy) and G, =
(N;, {L, R}, P, S;) exist such that L(GS):I'I’H{L’R}(S) and L(G,) :im{L,R}(t)
with N; N N, = . The grammar (N, UN, U{S,}, {L, R}, P;U P, U{S, — S, |
S/}, S») generates the reversal language im; g (r).

6. r =st
Again, the regular grammars G, = (N, {L, R}, P;, S;) and G, = (N,, {L, R},

A NOTE ON THE EQUIVALENCE AND COMPLEXITY OF LINEAR GRAMMARS 123

P;, S;) generate imz gy(s) and imy gy (t) respectively with Ny N N, = (). The
grammar (N; U N,, {L, R}, P U P,, S;) where P/ is defined by the rules:
(@) VA,BeN;) YVae{L,R,A\}))A—aBe P,=A — aB e P|,
(b) YVAe N;) YVae{L,R,A\}))A—>aec Py,=A—aS, € P,
generates the reversal language im; gy (7).
7.r =s*
Here, G, = (N, {L, R}, Ps, S;) generates imqz gy(s), and the grammar G, =
(Ns U{S,},{L, R}, P,U{S, — S; | A} U P/, S,) where P/ is defined by the
rule:
(VA eN;) YVae{L,R,A})A—aec Pi=A—as, € P,
generates the reversal language im; gy (7). O

Now, we present a result related to the reversal complexity of linear languages.

THEOREM 3. LJN C REVERSALg y 5 (n).

Proof. The proof is easily deduced from Theorem 2. Observe that the reversal
language of a linear expression is regular. So, any reversal word can be tested in
linear time and the number of changes is linear too. Hence, the function f(n) =
n. |

Obviously, all linear languages share the upper bound stated in the previous the-
orem. Anyway, the regular grammars have reversal complexity that equals 0. That
is, there is no direction changes during a derivation process in any regular gram-
mar. It is confirmed by the linear expressions associated to regular grammars. The
reversal language that can be obtained for the regular case is a subset of L* or R*
(if we use right or left linear grammars, respectively).

4.1. A SPEED-UP THEOREM FOR REVERSAL COMPLEXITY

Our goal is to reduce the number of derivation changes in linear grammars. For
every linear grammar in the normal form, we can obtain an equivalent one such
that the number of reversals is reduced by a constant factor. In this case, we will
use linear expressions to analyse the reversal complexity decrease. We will use the
equivalence properties that we have described in Section 3.

First, we will define the reversal complexity of a linear expression as the num-
ber of index changes that, at most, occurs in any word of the expression. So,
REVERSAL p¢x»(f) will denote the class of languages denoted by linear expres-
sions with reversal complexity f(n).

THEOREM 4. Let L be a linear language. Then for every constant ¢ such that
O<c <L Le REVERSALigxgp(C . l’l)

Proof. We can easily construct a linear expression with no linear changes, in
the case that L be finite. So, let L be infinite and let r be a linear expression for

124 J.M. SEMPERE

L. We can obtain an equivalent expression ¢(r) for L. Let us observe that in any
linear expression ¢, we can apply the equivalence property t* =gpg (A + 1t + tt +
oo 4 5710 So let us take any subexpression in ¢(r) that is affected by the
closure operator (i.e., s) and let us apply the previous equivalence property with
k =T1/c]. Giventhats =;;5 (A + s+ 55 +--- + s¥~1)(s%)*, then it is equivalent
to (@A) + @(s) + - - - + @ (s* 1)) ((s5)*). Now let us fix our attention to ¢((s¥)*).
We can apply the following equivalence property (s =pv (esh)*. Tt is
easy to prove that in (¢(s¥))* only a linear change is needed every k symbols. Con-
sequently, the reversal complexity is reduced & times (i.e., it is augmented c times).
So, if we apply the latter equivalence transformation to all the subexpressions in
@(r) affected by the closure operator, then we can reduce the number of changes
needed for their strings. The rest of subexpressions that are not affected by closure
operators can be transformed trivially, in order to reduce the number of reversals. O

EXAMPLE 7. Letr = (arbg)*. We can speed-up the previous expression within
a factor of 2 by introducing the following equivalent expression:

(A +arbg)((aa)(bb)gr)".
We can speed-up r within a factor of 3 by introducing the equivalent expression:

(A +arbg + (aa) (bb)g)((aaa) (bbb)g)".

Obviously, the previous result can be enunciated for linear grammars (not in
normal form) by using the equivalence properties between linear grammars and
linear expressions. So, the reversal complexity of any linear language can be inde-
pendently analysed by using linear grammars or linear expressions.

5. Kolmogorov Complexity of Linear Languages

Kolmogorov complexity (Li and Vitanyi, 1993) measures the amount of informa-
tion needed to describe objects. Here, we are interested in Kolmogorov complexity
of linear languages, that is the number of bits needed to describe them. We can
define the Kolmogorov complexity of a linear language as the Kolmogorov com-
plexity of a linear grammar that generates the language. Obviously, given that linear
grammars of different size can generate the same language, the Kolmogorov com-
plexity of a linear grammar gives an upper bound of the Kolmogorov complexity
of the language that it generates.

Another interest in measuring the Kolmogorov complexity of a linear language
is that it can be considered as an infinite string. So, the language can be viewed
as an infinite string with some repeated symbols (i.e., the separators). Then, if
L = {x1, xp, - -+ }, it can be viewed as the string < L >= x#x,#---. Under this
point of view, linear languages are non random given that they can be compressed
by describing one of its linear expressions.

A NOTE ON THE EQUIVALENCE AND COMPLEXITY OF LINEAR GRAMMARS 125

First, we give some formal definitions in order to fix the notation that we will
use. Then, an upper bound for the Kolmogorov complexity of any linear language
will be obtained.

Given any program p, we will denote by |p| its length and we will denote by
out (p) its output.

DEFINITION 7. Let x be a sequence over X, then its Kolmogorov complexity
is defined as K (x) = min{|p| : out(p) = x}. That is the size of the minimal
program that writes x.

Now, we can give a definition in order to work with linear languages.

DEFINITION 8. Let L be a linear language, then its Kolmogorov complexity, by
using linear expressions, is defined as K., (L) = min{|r| : imx(r) = L}. That is
the size of the minimal linear expression r such that r denotes L.

Then, the Kolmogorov complexity of any linear language will be upper-bounded
by the Kolmogorov complexity of a linear expression that generates it. So, we
will denote by J((r) the complexity of describing a linear expression that can be
considered as a string over a predefined alphabet (that contains single symbols,
operators, indexes and parentheses).

In any linear expression we must specify: (1) a set of strings according to an
alphabet X (the generators), (2) a set of indexes to define the linear changes (L
and R), and (3) a sequence of closures, products and unions that appear in the
expression. So, any linear expression r can be defined by 7,,(x1y,X2y, - - Xy,)
where xi, - -, x,,, are the generators, y = y;y,---y, € {L, R}* are the indexes
for linear changes and n gives the order in which every operator appears in the
expression. We can give the following upper bound for K, (L):

Kiexp(L) < K(r) < K(x))+---+ K(xn) + K(y)
+J<(77m(x1y1 e 'xmy,,,)) +0(),

with imx(r) = L and r = n,,(x1y, - - - Xpy,). Now, we can deduce a new expres-
sion for describing n,,. Here, the important data is the place where every operator
appears and the operators themselves. So, the upper bound for describing 1,, can
be the following one:

Jc(nm(-xlyl o '-xmym)) < lOg(|X1|) +--+ lOg(|Xm|) + (9(1)

We can apply some equivalence properties in order to obtain a new upper bound
as follows.

THEOREM 5. Let L be a linear language over ¥ and r be a linear expression
such that L = imx (r). Then Kiexp(L) < K(@(r)) < K(r).

Proof. Obviously, the first inequality holds given that we can describe L by
describing ¢ (7). The second inequality can be deduced by the following facts:

126 J.M. SEMPERE

1. The number of subscripts L and R in ¢(r) is less than or equal to the number
of subscripts in r.

2. The number of product operators in r is greater than (or equal to) the number
of product operators in ¢(r). So, the term 7 can be reduced. O

Finally, we can relate reversal and Kolmogorov complexity. Here, our result states
that whenever the reversal complexity is decreased then the Kolmogorov complex-
ity is augmented.

THEOREM 6. Let L be a linear language over ¥ and r be a linear expression
such that imx,(r) = L. Let ¢ be a constant value such that 0 < ¢ < 1 and r. be
a linear expression for L such that the reversal complexity of L according to r is
decreased [1/c] times. Then K (r) < K (rc).

Proof. Let r, be a linear expression for L obtained from r by applying Theorem
4. Obviously, we can observe that r. has more generators than r. In addition, r. has
more operators (i.e., unions and concatenations) than r. So, it can be deduced that
we spend more bits in describing r, than in describing r. O

Notes

1 Given that r and s are linear expressions, they are regular expressions over Xy gy. Here L(r)
and L(s) are regular languages and x and y are strings over X;, gj.

2 Observe that the size of any linear expression can be defined as its length by taking into account
the number of indexed symbols, the number of operators and the number of parenthesis symbols.

References

Chen, J. and C. Yap. Reversal complexity, SIAM Journal on Computing 20(4): 622-638, 1991.

Gruska, J. A characterization of context-free languages, Journal of Computer and System Sciences
5:353-364, 1971.

Hashiguchi, K. The infinite 2-star height hierarchy of extended regular languages of star degree at
most two, Information and Computation 114: 237-246, 1994.

Hashiguchi, K. and H. Yoo. Extended regular expressions of star degree at most two, Theoretical
Computer Science 76: 272-284, 1990.

Li, M. and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Springer,
Berlin, 1993.

Salomaa A. Formal Languages. Academic Press, New York, 1973.

Sempere, J.M. On a class of regular-like expressions for linear languages, Journal of Automata,
Languages and Combinatorics 5(3): 343-354, 2000.

Wagner, K. and G.Wechsung. Computational Complexity. Reidel, Dordrecht, 1986.

Yntema, M.K. Cap expressions for context-free languages, Information and Control 18: 311-318,
1971.

Yoo, H. and K. Hashiguchi. Extended automata-like regular expressions of star degree at most (2,1),
Theoretical Computer Science 88: 351-363, 1991.

