
A R T  
 W-C  ∗

José M. Sempere
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
jsempere@dsic.upv.es

Abstract

Watson-Crick finite automata were first proposed in [1] inspired by for-
mal language theory, finite states machines and some ingredients from DNA
computing such as working with molecules as double stranded complemen-
tary strings. Here, we will give a representation theorem for the languages
accepted by those machines in any arbitrary form. We will establish that
any language (in the upper strand or complete molecule versions) can be ex-
pressed as the intersection of a linear language with an even linear one (to-
gether with homomorphisms and other operations if upper strand language
is defined).

1 Preliminaries and basic concepts
Watson-Crick (WK) finite automata [1] is a good example of how DNA biological
properties can be adapted to propose computation models in the framework of
DNA computing. The WK automata model works with double strings inspired
by double-stranded molecules with a complementary relation between symbols
(here, inspired by classical complementary relation between nucleotides A-T and
C-G).

First, we will introduce some basic concepts from formal language theory
according to [2, 4] and from DNA computing according to [3].

An alphabet Σ is a finite nonempty set of elements named symbols. A string
defined over Σ is a finite ordered sequence of symbols from Σ. The infinite set of
all the strings defined over Σ will be denoted by Σ∗. Given a string x ∈ Σ∗ we will

∗Work partially supported by the Ministerio de Ciencia y Tecnología under project TIC2003-
09319-C03-02

© Bulletin of the EATCS Number 83 pp 187-191. 2004

jsempere@dsic.upv.es

denote its length by |x|. The empty string will be denoted by λ and Σ+ will denote
Σ
∗ − {λ}. Given a string x we will denote by xr the reversal string of x. A language

L defined over Σ is a set of strings from Σ.
A grammar is a construct G = (N,Σ, P, S) where N and Σ are the alphabets

of auxiliary and terminal symbols with N ∩ Σ = ∅, S ∈ N is the axiom of the
grammar and P is a finite set of productions in the form α → β. The language
of the grammar is denoted by L(G) and is the set of terminal strings that can
be obtained from S by applying symbol substitutions according to P. Formally,
w1 ⇒

G
w2 if w1 = uαv, w2 = uβv and α → β ∈ P. We will denote by

∗
⇒
G

the
reflexive and transitive closure of⇒

G
.

We will say that a grammar G = (N,Σ, P, S) is right linear (regular) if every
production in P is in the form A → uB or A → w with A, B ∈ N and u,w ∈ Σ∗.
The class of languages generated by right linear grammars coincides with the class
of regular languages and will be denoted by REG. We will say that a grammar
G = (N,Σ, P, S) is linear if every production in P is in the form A → uBv or
A→ w with A, B ∈ N and u, v,w ∈ Σ∗. The class of languages generated by linear
grammars will be denoted by LIN . We will say that a grammar G = (N,Σ, P, S)
is even linear if every production in P is in the form A → uBv or A → w with
A, B ∈ N, u, v,w ∈ Σ∗ and |u| = |v|. The class of languages generated by even
linear grammars will be denoted by ELIN . A well known result from formal
language theory is the following inclusion

REG ⊂ ELIN ⊂ LIN

A homomorphism h is defined as a mapping h : Σ → Γ∗ where Σ and Γ
are alphabets. We can extend the definition of homomorphisms over strings as
h(λ) = λ and h(ax) = h(a)h(x) with a ∈ Σ and x ∈ Σ∗. Finally, the homomorphism
over a language L ⊆ Σ∗ is defined as h(L) = {h(x) : x ∈ L}.

Given an alphabet Σ = {a1, · · · , an}, we will use the symmetric (and injective)
relation of complementarity ρ ⊆ Σ × Σ. For any string x ∈ Σ∗, we will denote by
ρ(x) the string obtained by substituting the symbol a in x by the symbol b such
that (a, b) ∈ ρ (remember that ρ is injective) with ρ(λ) = λ.

Given an alphabet Σ, a sticker over Σ will be the pair (x, y) such that x = x1vx2,
y = y1wy2 with x, y ∈ Σ∗ and ρ(v) = w. The sticker (x, y) will be denoted by
(

x
y

)

. A sticker
(

x
y

)

will be a complete and complementary molecule if |x| = |y|

and ρ(x) = y. A complementary and complete molecule
(

x
y

)

will be denoted as
[

x
y

]

. Obviously, any sticker
(

x
y

)

or molecule
[

x
y

]

can be represented by x#yr where

< Σ. Here, we will use x#yr instead of x#y due to the grammar construction that

we will propose in the next section. Furthermore, inspired by DNA structure x#yr

represents the upper and lower nucleotide strings within the same direction 3′ − 5′

(or 5′ − 3′).
Formally, an arbitrary WK finite automata is defined by the tuple M = (V, ρ,Q,

s0, F, δ), where Q and V are disjoint alphabets (states and symbols), s0 is the initial

state, F ⊆ Q is a set of final states and δ : Q ×
(

V∗

V∗

)

→ P(Q) (which denotes the

power set of Q, that is the set of all possible subsets of Q).
The language of complete and complementary molecules accepted by M will

be denoted by the set Lm(M), while the upper strand language accepted by M
will be denoted by Lu(M) and defined as the set of strings x such that M, after

analyzing the molecule
[

x
y

]

enters into a final state.

2 A Representation Theorem
Now, we give the basic representation theorem.

Theorem 2.1. Let M = (V, ρ,Q, s0, F, δ) be an arbitrary WK finite automata.
Then there exists a linear language L1 and an even linear language L2 such that
Lm(M) = L1 ∩ L2.

Proof. We will provide an algorithm to construct a linear grammar G1 such that
L(G1) = L1 and an even linear grammar G2 such that L(G2) = L2.

First, the grammar G1 = (N,V, P, s0) where N = Q, s0 is the axiom of the
grammar and P is defined as follows

• If q ∈ F then q→ # ∈ P

• If p ∈ δ(q,
(

x1

x2

)

) then q→ x1 p xr
2 ∈ P.

Now, we will prove that if M analyzes
(

x
y

)

and enters into a state s then s0
∗
⇒
G1

x

s yr. The proof can be performed through an induction process over the number
of transitions that M carries out.

Induction Basis. If M only applies one transition movement such that s ∈

δ(s0,

(

x
y

)

) then s0 ⇒
G1

x s yr as a consequence of the construction that we have

proposed for G1.

Induction Hypothesis. Let us suppose that if M applies up to n transition

movements for analyzing
(

x
y

)

and arrives to state s then s0
∗
⇒
G1

x s yr

Induction Step. Now, M applies n + 1 transition movements for analyzing
(

x
y

)

and enters into state s. We will suppose that
(

x
y

)

=

(

x1x2

y1y2

)

, M enters into state

s′ after analyzing
(

x1

y1

)

during the first n steps and, finally, s ∈ δ(s′,
(

x2

y2

)

). Then,

by induction hypothesis, s0
∗
⇒
G1

x1 s′ yr
1 and, by construction, s′ → x2 s yr

2, so

s0
∗
⇒
G1

x1x2 s yr
2yr

1 = x s yr.

We can observe that if M enters into a final state s, after analyzing
(

x
y

)

, then

x#yr ∈ L(G1) (given that s0
∗

⇒
G1

x s yr
1 ⇒G1

x # yr).

The language L2 is defined by the grammar G2 = ({S },V, P, S) where P is
defined as follows

• S → # ∈ P

• For every pair of symbols a, b ∈ V , such that (a, b) ∈ ρ, S → aS b ∈ P

It can be easily proved that L(G2) = {x1#xr
2 ∈ V∗ : |x1| = |x2| and ρ(x1) = x2}.

That is, L2 can be established as the set of complete and complementary molecules
[

x1

x2

]

in the form x1#xr
2.

From L1 and L2 it is clear that L1∩L2 is the set of complete and complementary
molecules accepted by M in the form x#yr proposed in the previous section. �

In order to characterize the upper strand language we will provide the follow-
ing result

Corollary 2.1. Let M = (V, ρ,Q, s0, F, δ) be an arbitrary WK finite automata.
Then Lu(M) can be expressed g(h−1(L1∩L2)∩R) with L1 being a linear language,
L2 an even linear language, R a regular language and g and h homomorphisms.

Proof. Let us take L1 and L2 as in the previous theorem. Then, L1∩L2 is composed
by strings in the form x#yr. In order to isolate the upper strand x we will apply an
homomorphism h such that for any symbol ai ∈ Σ h(i1) = h(i2) = ai and h(#) = #.
Then h−1(L1 ∩ L2) = {x1#y1 : x1 ∈ h−1(x) and y1 ∈ h−1(y)}. Now, let us define

the regular language R = V∗1#V∗2 where V1 = {i1 : ai ∈ Σ} and V2 = {i2 : ai ∈ Σ}.
Finally, the homomorphism g is defined for all possible value i as g(i1) = ai,
g(i2) = λ and g(#) = λ. It can be easily proved that Lu(M) = g(h−1(L1 ∩ L2) ∩ R).

�

References
[1] R. Freund, G. Păun, G. Rozenberg, A. Salomaa. Watson-Crick finite automata In

Proceedings of DNA Based Computers III DIMACS Workshop (June, 1997), pp 297-
327. The American Mathematical Society. 1999.

[2] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison Wesley Publishing Co.,1979.

[3] G. Păun, G. Rozenberg, A. Salomaa. DNA Computing. New computing paradigms.
Springer. 1998

[4] G. Rozenberg, A. Salomaa (Eds.). Handbook of Formal Languages Vol. 1. Springer.
1997.

	Preliminaries and basic concepts
	A Representation Theorem

