Complexity Applications of Covering
Rules in P Systems

Jost M. SEMPERE

Departamento de Sistemas Informaticos y Computacién
Universidad Politécnica de Valencia
Camino de Vera s/n 46020 Valencia, Spain
E-mail: jsempere@dsic.upv.es

Abstract

In this paper we use covering rules to explore several complex-
ity aspects of P systems. First, we study the effect of covering
rules over the description complexity of any P system. Then, we
will use covering rules to introduce a speed-up time complexity
result. Finally, we introduce a new problem that arises from the
use of covering rules and we will define new complexity classes
based on such problem.

M. J. Pétez-Jiménez et al. (Eds.): Recent Results in Natural Computing, pp 277-291
© The Authors (©) Fénix Editora

278 Complexity Applications of Covering Rules in P Systems

1 Introduction

Membrane Computing [4] is a rapidly increasing research area motivated
by some aspects of the biology of the cell and how these aspects canbe |
adapted to formalize universal computational models that show high
parallelism, distributed and cooperative computation and formal lan- §
guage (or r.e. number sets) acceptance or generation.

Several variants of P systems (as the main membrane computing §
model) have been proposed along the time. For instance, the impor- |
tance of the catalysts on the evolution rules, the symport/antyport be- |-
havior of the membranes and the use of promoters/inhibitors have §{
been studied, among other aspects, in order to produce different uni-
versal models of computation. We refer to [5, 3] for some of those vari-
ants.

A P system consists of a hierarchical finite set of regions where there
are an undefined number of objects that react according to a previously
defined set of rules. The reactions take part in every region in a parallel
nondeterministic manner and the result of the reactions can be commu-
nicated to other regions by allowing the pass of objects from one region |{
to a closest one through the membranes. In a previous work [9], we in-
troduced some aspects about the influence of the external environment
over the behavior of a P system. We proposed some differences be-
tween persistent and nonpersistent environments depending on the way
in which the external information was introduced in the outer region
(through the skin membrane). In the same work, we introduced a new
kind of rules that could manage an undefined number of objects com-
ing from the external environment every time unit. We named those
rules covering rules.

In this work we initiate a study of the use of covering rules regard-
ing to complexity aspects of P systems. Mainly, we will make use of
covering rules to manage description complexity and time complexity
of P systems,

The structure of this work is as follows. First, we will give the ba-
sic definitions and notation to be used in the sequel. We will formally
define the notion of covering rule. Then, we will study the description
complexity of P systems and how it can be reduced by using cover
ing rules. This will be formalized under the Kolmogorov complexity

J. M. SEMPERE 279

framework. Finally, we will study the time complexity of P systems
and we will provide a speed-up time result together with the defini-
tion of new complexity classes related to the membership problem of
covering rules.

72 Basic Definition and Notation

Here, we will introduce some basic concepts from formal language the-
ory according to [1, 7], and from membrane computing according to

[4].

An alphabet X is a finite nonempty set of elements named symbols.
A string defined over ¥ is a finite ordered sequence of symbols from 3.
The infinite set of all the strings defined over X will be denoted by X~
The empty string will be denoted by A and £ will denote %~ — {A}. A
language L defined over ¥ is a set of strings from X.. L can be empty,
finite or infinite. The number of strings that belong to a language L is

its cardinality.
Now, we will introduce some basic concepts about P systems. A

general P system of degree m, according to [4], is a construct
11 = (‘/n T, Ca oy W1,y o s Wi (Rh pi)a R (Rm: pm): 7:0)7
where:

e V is an alphabet (the objects),

o T C V (the output alphabet),

e C CV,CNT =0 (the catalysts),

e 1 is a membrane structure consisting of m membranes,

e w;, 1 <i < misastring representing a multiset over V associated
with the region i,

o R;, 1 < i < m is a finite set of evolution rules over V associated
with the ith region and p; is a partial order relation over R; spec-
ifying a priority.

An evolution rule is a pait (u,v) (or u — v) whete u is a string
over V and v = v’ or v = v'§, where ¢’ is a string over

280 Complexity Applications of Covering Rules in P Systems

{aherea Qout Ain; i acV, 1< 7 < m}

and ¢ is an special symbol notin V (it defines the membrane dissoly-
ing action). From now on, we will denote the set {here, out,iny : |

1 < k < m}bytar.

e % is a number between 1 and m and it specifies the output mem- |
brane of II (in the case that it equals to oo the output is read out- |

side the system).

The language generated by II in external mode (ig = o) is denoted |
by L(II) and it is defined as the set of strings that can be defined by |
collecting the objects that leave the system by arranging them in the §
leaving order (if several objects leave the system at the same time, then
permutations are allowed). The set of numbers that represent the ob-

jects in the output membrane iy will be denote by N(II}). Obviously,

both sets L(II) and N(II) are defined only for halting computations. We

suggest to the reader Paun’s book [4] to learn more about P systems.

3 Covering Rules

Now, we will introduce a variant of P systems by defining a new kind
of evolution rules that we will name covering rules. Observe that in

general P systems, as described in the previous section, different rules

can manage identical objects (e.g., @ — bcand a — de will transform
a objects into objects b, ¢, d, and e). Here, the application of a covering

rule can manage the objects in an exclusive manner. The term covering
refers to the situation in which the rule covers an undefined number of
objects.

In addition, we can see that general P systems are systems with
covering rules in which the languages used in the right and left parts
of the evolution rules are composed only by languages with cardinality
equal to 1.

We provide the formal definition of covering rules, as follows.

Definition 1. Let ITbe a P system. We will say that r is a covering rul?
ifr: L, — Lyorr : L, — L,0, where L,, C V*and L, C (V x tar)
and ¢ implies membrane dissolving.

J. M. SEMPERE 281

Now, we will show how covering rules manage the objects of the
region.

Example 1. Let ab* — (Cpere)™ be a covering rule and abab be the set of
objects of its region. Then, after applying the rule, we will obtain the
set of objects accc.

In the previous example we have managed the objects in a conserva-
tive manner. That is, the number of objects after applying the rule does
not decrease. The non conservative choice implies that the result of the
rule application could be @, ac, acc, or acce, given that the object a or
the objects b could be substituted by A (which belongs to c*), so they
disappear.

Example 2. Let the following covering rules be in the same region: 71 :
abt — (Cpere)® and 7o : ab? — (dpere)*. Let us suppose that the objects
in the region before applying the rules are aabbb. If we manage the
rules in the exclusive mode, then the result will be accee or adddd (both
in conservative mode). That is, the selected rule r; or r2 covers all the
objects b.

If we apply the rules in non exclusive manner, then the combina-
torics increase the number of results: we can obtain ccedd or ceddd or
accce or adddd depending on the number of objects b that every rule
covers.

We can combine different ways of application of every rule (exclu-
sive vs. non exclusive together with conservative vs. non-conservative).
Furthermore, in the case that the rules are applied in non-conservative
manner we can arrive to an extremely non-conservative mode. So, in ex-
ample 3.1 the rule can be applied in a non-conservative manner by
eliminating some objects, as explained before, or it can increase the
number of objects so an undefined number of objects are presented at a
given computation step.

All the mentioned ways of application of the covering rules imply
that a second degree of nondeterminism appears in P systems. Obviously,
general P systems are nondeterministic in the first sight. That is, when-
ever two or more rules can be applied at a given computation step,
then the election of the rules to work is made in a non-deterministic
manner, so all the combinatorics must be taken info account in order
to study the different computation sequences. Here, the covering rules

282 Complexity Applications of Covering Rules in P Systems

introduce a second degree of nondeterminism given that, first a ruleis
- nondeterministically selected and then, if it is a covering rule, the re-
sult of its application is again nondeterministically produced. Letus
illustrate this situation in the following example.

Example 3. Consider the rules 71 : ab — cd (non-covering rule) and?;
ro @ abt — et ftgT. Let us suppose that the objects in the region are -
aabbb. Then, if rule ry is selected twice, the result is ceddb, if rule ry
is selected and it works in the exclusive conservative manner, then the |
result can be aeefg or aef fg or aefgg. If rule r5 works in non-exclusive
manner the rule r; could be applied together with the covering rule. In -
the case that rule r; is applied in extremely non-conservative exclusive

manner, then an infinite number of results can be obtained.

We can summarize all the application modes by means of the fol-
lowing definition.

Definition 2. Let II be a P system, and 7 : @ — § a covering rule of the
system. We will say that P works in

(a) conservative mode if the application of 7 will never decrease the
number of selected objects in the system.

(b) non-conservative mode if the application of r can decrease the
number of selected objects in the system. -

(c) exclusive mode: if rule 7 is selected and applied, then it coversall -
the objects according to expression « and no object that belong o
o remains free.

(d) extremely non-conservative mode if the result of applying the
rule 7 is any string that belongs to § and the number of selected
objects can be increased.

Limiting the Nondeterminism: Indexed Covering Rules

As mentioned before, the introduction of covering rules in P systems
increases the non-determinism of the system. Now, we will introduce a
variant of covering rules that attempts to reduce this non-determinism
For example, let us take the rule abtct — (Chere) T (dpere) ™ (Enere) ™
There is no explicit correspondence between symbols of left-hand side

LR W e AN e g A 5 B A AR R

J. M. SEMPERE 283

and right-hand side. So, the objects abbcc could be transformed in cddee
or cecde or cdeee, etc. (always in the case that the conservative mode
be applied). That is, there is not knowledge to make correspondences
between every pair of symbols from left and right sides. In order 1o
control this situation we will introduce indexes to make this correspon-
dence explicit.

Definition 3. Let IT be a P system. We will say that r is an indexed
covering rule if 7 : Ly, — Ly o1 7 : Ly, — Lyd, where Ly, © (V x N)* and
Ly € (V X tar x N)¥, § implies membrane dissolving and domy (L) =
domn(Ly) .

Example 4. Let a3 bict — (Chere)T (dhere)d (éhere)a be an indexed cover-
ing rule. The meaning of the rule is that every object a is substituted by
at least one object ¢, every object b is substituted by at least one object d
and every object c is substituted by at least one object e.

Obviously, different objects can collapse to a single one: the rule
ai bf — (Cchere)1 means that one single object a together with an unde-
fined positive number of objects b are replaced by the object c. Observe
that the previous rule always works in non conservative mode.

4 Description Complexity

We will refer to the amount of information needed to describe a P sys-
tem as its description complexity. In order to analyze the description
complexity of any P system, some preliminary considerations will be
needed: First, we assume that the number of rules of a given I’ system
is a parameter of its description complexity. The membrane structure
and the initial objects in every region will be taken into account too.
The description of other components of the system, such as the output
region, the alphabets, etc. will depend on the previous ones and will
not be considered. We will study how covering rules influences the
decreasing of the information needed to describe the system.

We will analyze only the rules of the system. The membrane struc-
ture and the initial objects will not be affected by the use of covering

1Given L C (V x N)* or L C (V x tar x N)* we will denote by doma(L) the set of
positive integers that appear in the description of L.

284 Complexity Applications of Covering Rules in P Systems

rules. Given that different rules can be compressed into one single cov-
. ering rule, we can compress the information needed to describe the.
system, so we reduce its description complexity. First, we will show an
example. *

Example 5. Let the rules r1 and r5 be defined as @ — bjereChere and a —4*
dhere€here. The rules r1 and ro can be described as the indexed covermg
rule ajad — (brereChere)(dhereChere)s. Observe that in a conservative {
mode the effect of the covering rule is identical to the application of r; |
together with ry except for the multiplicities of the objects in the r1ght~
hand side of the rule.

Now, we wonder if the last transformation can be applied always
or thére is any requirement to apply so. Let us see the following lemma
that will answer this question

Lemma 1. Let 111 be a P system without covering rules. Then, there exists
P system Ily which is equivalent to I1y and which has a number of rules less
than or equal to the number of rules of 11;.

Proof. We will construct II; from II; by compressing several rules at
the same region into one single covering rule. Let us consider that in
region ¢ from II; there exists the following covering rules with the same
priority: r1 1oy — B, 12t — P, -, T ¢ 0 Bn. We will construct
the following indexed covering rule in Il with the same priority than
rs.

n s (@)i(az)z - (an)y — (B1)1(82)5 - (Bo)n,

We can observe that 71, produces the same result than the applica-
tion of the rules 7y, 7o, - -, r,, if IIs works in conservative mode: the
objects covered from 71, are the same than the ones covered by the set
of referred rules and the transformation of the objects are the same 100
(given that Il works in conservative mode). There is only one aspect
that makes the behavior of I, different from II;: whenever the rule rin
is applied, the objects from 3; could be multiplied an undefined num-
ber of times. The example 4.1 shows this behavior: if a — bpeeChere
applied then one symbol a is changed by two symbols b and ¢, while
a* — (DhereChere)” could change one symbol a by any pair of symbols
and c due to the conservative working mode. 0

-

U

j—y

J. M. SEMPERE 285

The last proof shows how covering rules help to decrease the num-
ber of rules in P systems. The problem concerned to the conservative
mode can be solved by introducing the primitive working mode which
will be defined as follows.

Definition 4. Let II be a I’ system, and r : @ — (3 a covering rule of
the system. We will say that r is primitive if there exists a finite set
of non covering rules which is equivalent to r (i.e. that produce the
same result). The non covering rules that originate the covering one
will be called constructors, We will say that P works in primitive mode
if the application of the primitive covering rules is equivalent to the
application of their constructors.

Obviously, the P system Il proposed in lemma 4.1 is equivalent

to II; if primitive mode is applied. The covering rules that we have
constructed are always primitives given that they are constructed from
non covering rules.
Example 6. Let r be the covering rule defined as atb" — (cd)T. We can
observe that r is not primitive. There is no set of constructors equivalent
to 7. The rule r changes at least one object a together with at least one
object b by objects ¢ and d. Observe that we cannot fix the relation
between the number of object a and b. That is, the non covering rule
ait! — (cd)* has not the same effect as the covering one.

We have showed that covering rules help to decrease the number
of rules in P, but the question about the information needed to describe
the system still remains open. The amount of information needed to
describe the set of covering rules could be even greater than the infor-
mation needed to describe non covering rules. We will analyze this
question by introducing a description complexity measure such as the

Kolmogorov complexity.

Introducing the Kolmogorov Complexity

Kolmogorov complexity [2] is a measure of the amount of information
needed to describe objects. Here, binary strings from previously en-
coded objects can be used in order to make comparisons between their
sizes. The main ingredient of Kolmogorov complexity is its algorith-
mic approach to describe the objects. Informally, the complexity of any
object is the size of the program that outputs any of its descriptions.

286 Complexity Applications of Covering Rules in P Systems

Kolmogorov complexity was used in a previous work to measure
* the description complexity of formal languages [8]. Here, we will use
it to study the effect of covering rules over the description complexity
of P systems. :
We will deal with the description complexity of multisets. Further-
mote, here we are concerned with the sets of numbers that multisets
represent. So, first, we assume that the Kolmogorov complexity of a -
multiset is the size of any description of the set of numbers that it rep- -
resents. For a given multiset M, the Kolmogorov complexity of M will .
‘be denoted by K(M). It can be defined as the size of the minimum
program that outputs the sequence of numbers represented by M. Ob-
viously, given that this set of numbers can be managed by P systems (if |
they are re.) we can define a Kolmogorov complexity version linked .
to P systems (instead of any other effective programming system). We -
propose the following definition to make so.

Definition 5. Let M be a multiset of objects over a previously defined :
alphabet T'. The Kolmogorov complexity of M related to P systems will
be denoted by Kp(M) and is defined as Kp(M) = min{|II| : N(II) =
N(M)}. Here, N(II) denotes the set of numbers computed by the P
system II, N(M) denotes the set of numbers related to the multiset M
and |11| denotes the size of the P system |

The size of any P system, as we have mentioned before, can be mea- ;
sure by the size of the initial objects at every region, its membrane struc-
ture size and the size of the rules at every region. We will analyze every
one of these aspects :

e The cardinality of the objects at every region in the initial config-
uration will measure its size. We will denote it as size(0Ob7).

¢ The size of the membrane structure can be measuzre by taking into
account the number of the regions. Let us suppose that m denotes
it.

o The size of the rules can be measure by taking into account their
radius and the size of the right-hand side. So, we propose the
following expression to give an effective size measure. We will
denote by R the set of rules in the system and by R; the set of
rules at region ¢

-
e

J. M. SEMPERE , 287

size(R) = Z (radius(u) + |v|)

(u—v)ER;

So, a first bound of the Kolmogorov complexity of any multiset M
can be stated as

K(M) < Kp(M) < size(Obj) +m + size(R) + O(1)

Now, we are concerned about the decreasing effect of covering rules
over the Kolmogorov complexity. Here, we will pay our attention to the
set of rules given that, as showed in lemma 4.1, neither the membrane
structure nor the alphabet is affected by them.

Let us suppose that the set of non covering rules 1 : o1 — B, ey,
. ay, — P is substituted by the covering rule 71, : ()i (a2)s -

Ty
(o) — (B1)7(B2)5 - (8y)%. The size of the set of non covering rules is

measured as

> (radius(cd) + |5il)

1<ign

which is an upper bound of the size of the covering rule. There are
cases where the size of the covering rule does not arrive to this upper

bound. Let us see an example

Example 7. Letry and r2 be non covering rules defined as @ — bpere and
@ — Chere. Then the covering rule 712 : a* — (be)i,,, is equivalent to 71
and ro if primitive working mode is used. Observe that the size of the
rules r1 and 7 is greater than the size of the rule 75 due to the fact that

we have summarized two objects a into one single object a.

We will denote the Kolmogorov complexity of a multiset M related
to P systems with covering rules as K pe(M). The following inequality

holds

K(M) <]C-PC(M) < KP(M)

288 Complexity Applications of Covering Rules in P Systems

5 Computational Time Complexity

Inspired by the classic result from complexity theory, which establishes

that a constant speed-up time factor can always be applied to recog-
nize any formal language (provided some initial conditions), we can

propose a similar idea for I’ systems.

Given a P system II, the computing sequence of the system, after n!
steps, is denoted by Cp = € = -+ = C,,, where C; is the description’
of the system at instant i. The description of the system at any given:
moment is defined by the membrane structure and the set of objects
and rules at every region. We can collect the set of objects in every.
region for every instant, so we have a language 1, that denotes the set
of objects in region r presented during n steps. In the same sense, we .
can denote by L’ the set of objects of the region r in the nth step. So,
the covering Iule L}, — LY summarizes in one step all the history of
the region r during n steps. In this sense, we are speeding-up the time ;
consumed by the system by a constant factor in a way similar to the -

classical result for Turing machines [1].

In order to formalize this idea we will propose a definition of the |
time complexity associated with P systems. Observe that complexity .
classes have been studied within these models and related to classical
parallel families such as NC [4]. We will study only some aspects of

time complexity without referring to other computation models.

Definition 6. We will denote by TTM Ep(f) the family of languages

processed by P systems in at most f(rn) steps, where n is the size of the

objects presented at the initial configuration in every region.

The last definition implies some assumptions that we made: we
consider that every computation step is made in one time unit (a dif-

ferent situation will be considered later) and we also consider that the
f is a function from integers to integers that measures the complexity
growth rate. Now we can see how covering rules help to the speed-up
time computation in P systems, at least when some types of rules are
applied.

We will say that the rule @ — (3 is pure recursive if all the objects that
appear in ¢ also appear in 3 with an increasing number of times. For
example, ab — aperelnereboutbous is pure recursive given that the objects
o and b in the left-hand side also appear in the right-hand side and the

les
’g-
an

J. M. SEMPERE 289

number of every object is increased. Given 8 = (a1)* (a2)™ - - - (an)*",
we will define p(8,7) = (a1)®)* (ag)®2)* ... (a,.n)(k")i

If a P system works only with primite rules, then we can speed-up
the time complexity by a constant factor: Let II be a P system accept-
ing L. We will set ¢ = [4+] where k will be defined as the number
of computation steps that we will summarize through covering rules.
The computing sequence of P in the first k steps is Cp = C1 = -+ =
Cy. Here we can summarize this sequences in just one single step
by introducing a covering rule o — (3 where « is defined by the lan-
guage {w’ w!, - w¥} such that w' is the string that represent the ob-
jects at step i in the current region and (3 is defined by the language
{4%, 9%, - ,y*} where ¥’ = (27)here- This transformation is applied to
every region of the system. Observe that now, the application of the
last covering rules summarizes the first k steps in just a single one.

Now, we will summarize the rest of the f(n) steps computation se-
quence as follows: for every pure recursive rule r : a — § we will
define the languages L,; = {a' : 1 < i < k}and L;s = {p(3,7) : 1 <
i < k} and the covering rule L,; — L;5. Observe that the previous rule
summarizes in one single step what rule r could perform in & steps.

So, we can summarize the first k steps by using the initial covering
rules and then, by using the rules L,; — L;» we can summarize the
rest of k steps. As a result of that, the time complexity of the system is

[f—gg—n)} which corresponds to ¢ - f(n), where cis a constant factor.

The Membership Problem Appears

One assumption that we have made before is not realistic when work-
ing with covering rules. We have assumed that every computation step
takes one time unit. Obviously, the application of non covering rules
can be measured in such sense, given that the only work to catry out is
checking the appearance of the objects of every rule in order to apply
their transformation and it can be performed in constant time.

The case of covering rules is quite different. If we take a covering
rule o — (3 then the application of the rule needs some additional time
in order to check if the objects of the region belong to the language
defined by «. Here, the status complexity of « is crucial in order to
measure the time needed to apply a computation step. For example, if o
is a regular language then only linear time is needed to check if the rule

290 Complexity Applications of Covering Rules in P Systems

can be applied. In the opposite case, if o is a NP-complete language,

then, probably, an exponential time will be needed to perform every
computation step. So, here the membership problem for the languages
involved in the covering rules is crucial to define the time complexity |

We will formalize this by introducing a new complexity definition

Definition 7. We will denote by TIM Ep(f, g) the family of languages:
processed by P systems in at most f(n) steps with covering rules with.
complexity g(n), where n is the size of the objects presented at the initial
configuration in every region. |

We can use families of functions instead of functions f and ¢. So, for :
example, I'I M Ep(poly, exp) will denote the family of languages which |
can be processed in polynomial time by using covering rules defined by .
languages of exponential complexity. So, TIMEp(C5,Cs) will denote |
the family of languages processed by P systems with functions f € C |
and g e Co. :

6 Conclusions

In this work we have used covering rules to give some results of the :
complexity of P’ systems. First, covering rules help to reduce the de-
scription complexity of P systems given that they can compress the -
information that the system holds. Second, covering rules help to te-
duce in a constant factor the time complexity of P systems. However, -
the use of covering rules implies a new problem concerning the com-
putational complexity of the membership problem associated with the
rules. Here, we have introduced a new definition of complexity classes
by taking into account that problem. In the future we will explore the
relationships between such complexity classes. ‘

Acknowledgement

Work partially supported by the Ministerio de Ciencia y Tecnologia un-
der project TIC2003-09319-C03-02.

28

]

J. M. SEMPERE 291

References

[1] Hopcroft, J.; Ullman, |. Introduction to Automata Theory, Languages
and Computation, Addison Wesley Publishing Co., 1979.

[2] Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and its
Applications, Springer-Verlag, 1993

[3] Martin-Vide, C.; Mauri, G; Paun, Gh.; Rozenberg, G.; Salomaa,
A. (eds.), Membrane Computing. International Workshop WMC-2003,
LNCS 2933, Springer-Verlag, 2004.

[4] Pdaun, Gh. Membrane Computing. An Introduction, Springer-Verlag,
2002.

[5] Pdun, Gh.; Rozenberg, G.; Salomaa, A.; Zandron, C. (eds.), Mem-
brane Computing. International Workshop WMC-CdeA 2002, LNCS
2597, Springer-Verlag, 2003.

[6] Rogers Jr, H. Theory of Recursive Functions and Effective Computability,
MIT Press, 1987.

[7] Rozenberg, G.; Salomaa, A. (eds.), Handbook of Formal Languages, vol.
1, Springer-Verlag, 1997.

[8] Sempere,]. M. A note on the equivalence and complemty of linear
grammars, Grammars, 6, 2 (2003), 115-126.

[9] Sempere,]. M. P systems with external input and learning strate-
gies, Proceedings of the Workshop on Membrane Computing WMCO03,
LNCS 2933, Springer-Verlag (2004), 341-356.

