
Vol.:(0123456789)

New Generation Computing (2019) 37:325–337
https://doi.org/10.1007/s00354-019-00052-4

123

Modeling of Decision Trees Through P Systems

José M. Sempere1

Received: 12 October 2018 / Accepted: 31 January 2019 / Published online: 14 February 2019
© Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2019

Abstract
In this paper, we propose a decision-tree modeling in the framework of membrane
computing. We propose an algorithm to obtain a P system that is equivalent to any
decision tree taken as input. In our case, and unlike previous proposals, we formu-
late the concepts of decision trees endogenously, since there is no external agent
involved in the modeling. The tree structure can be defined naturally by the topology
of the regions in the P system and the decision rules are defined by communication
rules of the P system.

Keywords  Decision trees · Membrane computing · P systems with communicating
rules · Classification methods

Introduction

Decision trees are tree-structured classification models that have been widely used
in different application domains such as bioinformatics, pattern recognition and data
mining, among others [14]. This is one of the most used classifiers in the field of
machine learning. Furthermore, it is the base classifier used to produce random for-
est in the framework of ensemble classification methods [16]. Several learning algo-
rithms have been proposed that allow the inference of representations of decision
trees from classification examples [9]. In this paper, we propose a modeling of deci-
sion trees using P systems. P systems are the models that support the computing par-
adigm known as membrane computing [11]. One of the biggest advantages of using
this paradigm to model decision trees lies in its massive parallelism that allows effi-
cient implementations to work with a large amount of data that can be classified into
complex decision trees. In fact, it has been possible to show the plausibility of the
implementation of the P systems through technology based on GPUs which makes it
an affordable technology in most cases [3, 8, 17].

 *	 José M. Sempere
	 jsempere@dsic.upv.es

1	 Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-019-00052-4&domain=pdf

326	 New Generation Computing (2019) 37:325–337

123

The definition of P systems to model decision trees has been previously
approached in different works. For example, Díaz-Pernil et al. [4] proposed recog-
nizer P systems to define decision trees. Their proposal is based on a non-determin-
istic search for structures that are compatible with examples of the classification that
the decision tree must carry out. Wang et al. [15] proposed the use of tissue-like
P systems with tree-like objects. They applied evolutionary strategies to explore a
searching space using non-deterministic P systems. In our approach, we model deci-
sion trees using basic concepts provided by the P systems: on one hand, the tree
structure is defined immediately through the tree-like structure of the regions of a
cell-like P system, and on the other hand, the definition of the rules of the decision
tree can be defined by communicating rules in the P system in a very simple way.
Therefore, we believe that our proposal is better adapted to the use of P systems in a
more natural way than the proposals referred to above. In addition, in our approach,
the implementation in parallel hardware platforms is achieved more easily by elimi-
nating the non-determinism and using a more simple and comprehensible encoding
of the data to be classified.

The structure of this work is as follows: first, we introduce basic concepts about
decision trees, then, we define the main components of the P systems, and we pro-
vide a description of how these systems work. We propose an algorithmic scheme
to translate decision trees to cell-like P systems with communicating rules, and we
solve the classification task with the proposed system. Finally, we describe some
works in progress related to this topic.

Basic Concepts

In this section, we introduce basic concepts of decision trees from [9, 14] and basic
concepts about P systems and membrane computing from [10, 11].

Decision Trees

In the following, we consider objects with a finite set of discrete value attributes
A = {a1, a2,… , am, c} , where c is a special attribute that designates the class of the
object. Every attribute ai or c can take a value from a finite set. The set of values that
can be assignated for the attribute ai is {vi1 ,… , vij} , while the set of values for the
attribute c is defined by {vc1 ,… , vcp} . For the case of continuous-valued attributes, it
is an additional task to define thresholds for the intervals that allow the discretiza-
tion of numerical values. Therefore, for example, if we define two thresholds c1 and
c2 with c1 < c2 and we assign the label ‘low’ for the values lower than c1 , ‘medium’
for the values greater than c1 and lower than c2 and ‘ high’ for the values greater than
c2 , then, we can assign discrete values (‘low’, ‘medium’, or ‘high’) to the integer val-
ues to be considered in the task. The choice of thresholds should favor the attribute
selection criterion in the construction of decision trees from a machine-learning
point of view [5].

327New Generation Computing (2019) 37:325–337	

123

For every set of attributes A = {a1, a2,… , am, c} , we can define the regular
expression1 Areg as follows:

A decision tree over A is a tree, where every node is either a leaf (with a value
for the attribute c) or an internal node with a label from {a1,… , am} . Every internal
node, with label ai , denotes a test over the attribute, and every descending branch
from node ai means that the attribute fulfills a logical statement constructed by the
relational operators over the attribute values. We consider the set of relational opera-
tors {=,>,<,≠,≥,≤} . Let us see the following example that illustrates this concept.

Example 1  Let us consider the following set of attributes with their respective val-
ues that corresponds to an adaptation of the protein–protein interaction prediction
problem taken from [6]. The attribute Interaction is the class attribute.

Attribute Values

Expression correlation (EC) {0.1, 0.3, 0.7, 0.9}
Shared location (SL) {Yes, No}
Genomic distance (GD) {Yes, No}
Shared function (SF) {Yes, No}
Interaction {Yes, No}

Let us consider the threshold value {0.7} for the attribute EC. In this case, this
threshold produces the discrete values {EC≤0.7, EC>0.7} . The regular expression
defined from the set of attributes and values is the following one:

In Fig. 1, we show a decision tree over the set of attributes previously defined. We
have drawn the nodes of the class attribute as ellipses and the rest of attributes as
boxes

Any decision tree for a given classification object receives as input a tuple of val-
ues for the attributes, and outputs a value for the class attribute. The main problem
from the point of view of machine learning is to find the best decision tree that fits
the input data according to a pre-established criterion (which is usually established
in terms of information measures or benefits in the classification of new examples).
Over time, various learning algorithms on decision trees have been proposed. From
our point of view, the best known algorithms are Quinlan’s ID3 and C4.5 [12] and
the CART algorithm for classification and regression trees [1].

(v11 + v12 +⋯ + v1i1)(v21 + v22 +⋯ + v2i2)⋯ (vm1 + vm2 +⋯ + vmim).

(EC≤0.7 + EC>0.7)(SLY + SLN)(GDY + GDN)(SFY + SFN).

1  A regular expression is a classical concept from formal language theory that, in this case, represents a
sequence of values obtained by selecting a value of each set defined for the sum of values within a pair of
parentheses.

328	 New Generation Computing (2019) 37:325–337

123

P Systems with Evolution and Communication Rules

In the following, we introduce basic concepts about P systems from [10] and [11],
and we define cell-like P systems with communication rules.

First, we define multisets as follows: let D be a set. A multiset over D is a pair
⟨D, f ⟩ , where f ∶ D ⟶ ℕ is a function. The size of a multiset M is the number of
elements that it contains and it is denoted by |M|, that is

Any multiset ⟨D, f ⟩ where D = {a1,… , an} can be represented by the finite
sequence af (a1)

1
⋯ a

f (aN)
n that is the representative string of the multiset.

Basically, a P system is defined as a finite set of regions separated by membranes
and organized hierarchically, so that it can be defined by a tree-like structure. Within
each region, there is a multiset of objects over a previously defined alphabet. In each
region, there is a finite set of rules that transform objects (evolution rules) or rules
that send objects from one region to an adjacent region (communication rules). The
whole system is encompassed in a special region delimited by a skin membrane and
the outside environment provides new objects to the system and picks up the objects
that the system expels outside the region of the skin.

We provide a formal definition of the P systems as follows.

Definition 1  A P system with evolution and communication rules of degree m ≥ 1 is
defined by the tuple Π = (O,H,�,w1,w2,… ,wm,R, i0) , where

1.	 O is the alphabet of objects. O∗ denotes the set of all the strings defined over O.

|M| =
∑

a∈D

f (a).

Fig. 1   Decision tree for the set of attributes adapted from [6]

329New Generation Computing (2019) 37:325–337	

123

2.	 H is the alphabet of labels for membranes.
3.	 � is the membrane structure, of degree m, with all membrane labels from H. A

membrane with label h is represented by []h.
4.	 w1,w2,… ,wm are strings over O that define the multisets of objects in every

region of �.
5.	 R is a finite set of rules of the following types:

(a)	 [v → w]h with v,w ∈ O∗ (evolution rules).
	  The objects denoted by the multiset v are transformed into the objects

denoted by the multiset w in the region delimited by the membrane with
label h.

(b)	 v[]h → [w]h with v,w ∈ O∗ (‘in’ communication rules).
	  The objects denoted by the multiset v are transformed into the objects

denoted by the multiset w and they are sent into the internal region bounded
by the membrane with label h.

(c)	 [v]h → w[]h with v,w ∈ O∗ (‘out’ communication rules).
	  The objects denoted by the multiset v are transformed into the objects

denoted by the multiset w and they are sent out the region bounded by
the membrane with label h. If the membrane h is the skin membrane, the
objects denoted by w are sent out to the environment; otherwise, the objects
are sent out to the region that contains the membrane with label h.

6.	 i0 ∈ {0, 1,… ,m} is the region where the result of a computation is obtained (0
represents the environment).

The rules of the P system are applied in a non-deterministic maximally parallel
manner. Maximal parallelism means that the rules should be used in parallel to the
maximum degree possible. That is, for any rule that can be applied more than once
simultaneously, the rule is applied the maximum number of times that allows the
objects that enable the execution. Non-determinism is a classic concept in comput-
ability theory, which, in this case, means that if several rules can be applied over the
same objects, the selection of the rule to apply is non-deterministic. That is, in sev-
eral identical situations, the rules that are applied may be different. The computation
of the system finishes whenever no rule can be applied.

A system configuration at time t is defined by the multisets in each region of the
structure defined by � . The initial configuration of the system is defined by the mul-
tisets w1,w2,… ,wm . The configuration during a computation at time t is defined by
the multisets wt

1
,wt

2
,… ,wt

m
.

From Decision Trees to P Systems

In this section, we propose an algorithm that obtains P systems with communication
rules from decision trees.

330	 New Generation Computing (2019) 37:325–337

123

Let T be a decision tree defined for a set of attributes, and let A = {a1, a2,
… , an, c} be the set of attributes in a preorder enumeration according to the tree
structure, with c as the class attribute. Let ̂ =  − {c} , and ̂reg denotes the regu-
lar expression associated to ̂.

We propose a P system ΠT = (OT,HT,�T,w1,w2,… ,w|A|−1,R, 0) , where

1.	 The alphabet of objects is defined from the set of values for every attribute in ̂  .
Therefore, aij ∈ OT if the attribute ai can take the value vj . Observe that, for any
numerical attribute, we define a set of values according to a previously defined
set of intervals according to the decision tree. Every value for the class attribute
defines an object in O.

2.	 The set of membrane labels is the set of attributes with the exception of the class
attribute, that is HT = ̂ .

3.	 The membrane structure �T is defined to be equivalent to the decision-tree struc-
ture. If the attribute aj is a son of the attribute ai in the tree T, then the substructure
[[]j]i is defined in �T.

4.	 Initially, all the multisets of objects are empty, wi = � for 1 ≤ i ≤ m.
5.	 The set of rules R are defined from the decision tree T using the algorithms of

Fig. 2.
	  The algorithm CreateInternalRules(T,A) deals with the creation of rules cor-

responding to the branches of the decision tree. In this way, based on the fact that
the set of values to be evaluated are those of the attribute ai , which are found in
the region with membrane ai , we replicate the behavior of the decision tree by
moving the remains of attribute values to the region b which will correspond to

CreateInternalRules(T,A)

/* Let ai ∈ A be the (internal) attribute of the root of T */

(1) For every branch with value vj that goes to (internal) attribute b in
preorder traversal

(1.1) For every string x ∈ (Â − {ai})reg
(1.1.1) add the rule [aijx[]b]ai → [[x]b]ai

/* Let Tb be the subtree of T rooted in the attribute b */

(1.2) CreateRules(Tb,A− {ai})

(2) For every branch with value vj that goes to class attribute c with
value ck

(2.1) For every string x ∈ (Â − {ai})reg
(2.1.1) add the rule [aijx]ai → []aick

CreateClassificationRules(A)

(1) For every attribute a ∈ A
(1.1) For every value ck of the class attribute c

(1.1.1) add the rule [ck]ai → []aick

Fig. 2   Two algorithms to obtain P system rules from the decision trees and the set of attributes

331New Generation Computing (2019) 37:325–337	

123

the next attribute to be evaluated according to the decision tree. Note that the rules
defined in point (2.1.1) allow to obtain the value of the class attribute according
to the decision tree. The algorithm CreateClassificationRules(A) deals with the
creation of the rules that move the class attribute through the system regions and,
finally, send it to the environment.

Example 2  Let us consider the classification task of Example 1 and the decision tree
of Fig. 1. Initially, ̂reg is defined as follows

We define the following P system

that is equivalent to the referred decision tree, where

•	 OT = {EC≤0.7, EC>0.7, SLY, SLN, GDY,GDN, SFY, SFN, YES,NO}

•	 HT = {EC, SL,GD, SF}

•	 �T = [[[]GD]SL []SF]EC . The structure is showed in Fig. 3.
•	 wEC = wSL = wSF = wGD = � (the empty multiset)
•	 R is defined as follows.
	  For the case that EC is less than or equals to 0.7, we must evaluate the SL

attribute first, and then the rest of attributes. It is carried out using the following
rules:

1.	 [EC≤0.7SLYGDYSFY[]SL]EC → [[SLYGDYSFY]SL]EC.
2.	 [EC≤0.7SLYGDYSFN[]SL]EC → [[SLYGDYSFN]SL]EC.
3.	 [EC≤0.7SLYGDNSFY[]SL]EC → [[SLYGDNSFY]SL]EC.
4.	 [EC≤0.7SLYGDNSFN[]SL]EC → [[SLYGDNSFN]SL]EC.
5.	 [EC≤0.7SLNGDYSFY[]SL]EC → [[SLNGDYSFY]SL]EC.
6.	 [EC≤0.7SLNGDYSFN[]SL]EC → [[SLNGDYSFN]SL]EC.

(EC≤0.7 + EC>0.7)(SLY + SLN)(GDY + GDN)(SFY + SFN).

ΠT = (OT,HT,�T,w1,w2,… ,w|A|−1,R, 0)

Fig. 3   Membrane structure for
the decision tree of Fig. 1

332	 New Generation Computing (2019) 37:325–337

123

7.	 [EC≤0.7SLNGDNSFY[]SL]EC → [[SLNGDNSFY]SL]EC.
8.	 [EC≤0.7SLNGDNSFN[]SL]EC → [[SLNGDNSFN]SL]EC.

	  Once we have evaluated the attribute EC, for the case that the attribute SL
is positive we must evaluate the GD attribute. It is carried out using the fol-
lowing rules:

	 	 9.	 [SLYSFYGDY[]GD]SL → [[SFYGDY]GD]SL.
	 10.	 [SLYSFYGDN[]GD]SL → [[SFYGDN]GD]SL.
	 11.	 [SLYSFNGDY[]GD]SL → [[SFNGDY]GD]SL.
	 12.	 [SLYSFNGDN[]GD]SL → [[SFNGDN]GD]SL.

	  The rules needed to evaluate the attribute GD, and set the value for the
class of the object are the following, according to the decision tree:

	 	 13.	 [SFYGDY]GD → []GDYES.
	 14.	 [SFNGDY]GD → []GDYES.
	 15.	 [SFYGDN]GD → []GDNO.
	 16.	 [SFNGDN]GD → []GDNO.

	  For the case that EC is greater than 0.7, we must evaluate the SF attribute
first, and then the rest of attributes. It is carried out using the following rules:

	 	 17.	 [EC>0.7SLYSFYGDY[]SF]EC → [[SLYSFYGDY]SF]EC.
	 18.	 [EC>0.7SLYSFYGDN[]SF]EC → [[SLYSFYGDN]SF]EC.
	 19.	 [EC>0.7SLYSFNGDY[]SF]EC → [[SLYSFNGDY]SF]EC.
	 20.	 [EC>0.7SLYSFNGDN[]SF]EC → [[SLYSFNGDN]SF]EC.
	 21.	 [EC>0.7SLNSFYGDY[]SF]EC → [[SLNSFYGDY]SF]EC.
	 22.	 [EC>0.7SLNSFYGDN[]SF]EC → [[SLNSFYGDN]SF]EC.
	 23.	 [EC>0.7SLNSFNGDY[]SF]EC → [[SLNSFNGDY]SF]EC.
	 24.	 [EC>0.7SLNSFNGDN[]SF]EC → [[SLNSFNGDN]SF]EC.

	  The rules needed to evaluate the attribute SF, and to set the value for the
class of the object are the following, according to the decision tree:

	 	 25.	 [SLYSFNGDN]SF → []SFNO.
	 26.	 [SLYSFNGDY]SF → []SFNO.
	 27.	 [SLYSFYGDN]SF → []SFYES.
	 28.	 [SLYSFYGDY]SF → []SFYES.
	 29.	 [SLNSFNGDN]SF → []SFNO.
	 30.	 [SLNSFNGDY]SF → []SFNO.
	 31.	 [SLNSFYGDN]SF → []SFYES.
	 32.	 [SLNSFYGDY]SF → []SFYES.

	  Finally, the necessary rules to expel to the environment the value of the
classification attribute are showed. Observe that rules (37) to (40) are use-

333New Generation Computing (2019) 37:325–337	

123

less given that the object configuration required to execute the rule will never
appear during the computation time:

	 	 33.	 [NO]EC → []ECNO.
	 34.	 [YES]EC → []ECYES.
	 35.	 [NO]SL → []SLNO.
	 36.	 [YES]SL → []SLYES.
	 37.	 [NO]GD → []GDNO.
	 38.	 [YES]GD → []GDYES.
	 39.	 [NO]SF → []SFNO.
	 40.	 [YES]SF → []SFYES.

Objects’ Classification

Suppose that we have a finite set of objects to be classified using a decision tree. For
each object, we have the values of its attributes and we want to obtain the value of
the class attribute that is the only one that is unknown. The classification of objects
according to a decision tree specified in a P system can be carried out in two ways:
first, we can carry out a sequential classification, that is, we provide the P system
with only one example each time, and the P system returns the value for the class
attribute through the environment. Alternatively, we can carry out a classification
in parallel, where we provide the P system with all the objects to be classified,
and the P system returns a value of the class attribute for each object through the
environment.

We will describe each of these possibilities separately.

Sequential Classification

We consider the classification of only one object every time. In this case, we have a
value for each attribute of the object, and initially, we place them in the skin region
of the P system. In this way, we consider a set of attributes A , and a set of attribute
values X = {x1, x2,… , x|A|−1} , where we do not include a value for the class attrib-
ute. Then, the P system is defined as ΠT = (OT,HT,�T,w1,w2,… ,w|A|−1,R, 0) ,
where w1 = x1x2 ⋯ x|A|−1 , and the rest of the elements are defined according to the
proposal explained in the previous section.

The classification is carried out by means of the execution of the rules of the P
system. Note that, in this case, only one rule is executed in each computation step,
and we can consider that the system is sequential. The object that is received in the
environment of the system is the classification value for the object whose attributes
we have initially placed in the skin region.

Next, we will see an example that illustrates the mechanism of action that we
have just described.

334	 New Generation Computing (2019) 37:325–337

123

Example 3  Let us consider the P system defined in Example 2 for the classification
task of Example 1, according to the decision tree of Fig. 1. Let us classify an object
with the set of attribute values {EC≤0.7, SLY, SFN, GDY}.

The sequence of rules to be applied in the P system is the following: let us con-
sider the rule enumeration of Example 2. First, we apply rule number (3), and the
objects SLY , SFN , and GDY are sent to the region SL. Then, inside region SL, rule
number (11) is applied and the objects SFN and GDY are sent to the region GD. In
region GD, the rule number (14) is applied, and the classification of the object is
carried out as the object YES. This object is moved through the system using rules
(36) and (34), and finally, it is expelled from the system to the environment.

In Fig. 4, we can see graphically the computation steps that are carried out in the
P system and that produce as output the classification object YES that is collected
in the environment. It means that, for the object with the initial attributes, there is a
protein–protein interaction.

Parallel Classification

In this case, by starting from a set of attributes A , we consider that we have a set
of objects X = {x1, x2,… , xp} , where each object has assigned values for each
attribute (except for the class attribute). For example, given the object xi , we
denote the set of its attributes as {xi

1
, xi

2
,… , xi|A|−1} . The rules of the P system are

replicated by renaming their objects according to the object-value notation that
we have just established. For example, if we have two objects x1 and x2 and the
rule a11a21 ⋯ ap1[]h → [a21 ⋯ ap1]h , then the pair of rules a1

11
a1
21
⋯ a1

p1
[

Fig. 4   Sequential classification of objects

335New Generation Computing (2019) 37:325–337	

123

]h → [a1
21
⋯ a1

p1
]h and a2

11
a2
21
⋯ a2

p1
[]h → [a2

21
⋯ a2

p1
]h are produced. This allows us

to process the attributes of each object in parallel, although independently, even
though the attributes of different objects are placed in the same region during
any computing step.

The P system is defined as ΠT = (OT,HT,�T,w1,w2,… ,w|A|−1,R, 0) , where
w1 = x1

1
x1
2
⋯ x1|A|−1 ⋯ x

p

1
x
p

2
⋯ x

p

|A|−1 , the objects and the rules of the system are
replicated according to our previous explanation, while the set of membrane
labels and the membrane structure is defined as in the sequential case. Note that,
in this case, different rules can be executed in each computation step, and the
system runs in parallel. The objects that are received in the environment during
the computation time are the classification values for every object, whose attrib-
utes we have initially placed in the skin region. Observe that we can collect the
classification results at different computation steps (depending on the number of
rules that are needed to carry out the classification), and every class attribute is
labeled with the object identification.

We will see an example that illustrates the mechanism of action that we have
just described.

Example 4  Let us consider the P system defined in Example 2 for the classifica-
tion task of Example 1, according to the decision tree of Fig. 1. Let us classify
two objects with the set of attribute values x1 = {EC1

≤0.7
, SL

1

Y
, SF

1

N
, GD

1

Y
} , and

x2 = {EC2

>0.7
, SL

2

Y
, SF

2

N
, GD

2

N
}.

In this case, we have replicated all the rules that have defined in Example 2. The
replicated rules that are used for the classification task are the following:

•	 [EC1

≤0.7
SL

1

Y
GD

1

Y
SF

1

N
[]SL]EC → [[SL1

Y
GD

1

Y
SF

1

N
]SL]EC

•	 [SL1

Y
SF

1

N
GD

1

Y
[]GD]SL → [[SF1

N
GD

1

Y
]GD]SL

•	 [SF1

N
GD

1

Y
]GD → []GDYES

1

•	 [YES1]SL → []SLYES
1

•	 [YES1]EC → []ECYES
1

•	 [EC2

>0.7
SL

2

Y
SF

2

N
GD

2

N
[]SF]EC → [[SL2

Y
SF

2

N
GD

2

N
]SF]EC

•	 [SL2

Y
SF

2

N
GD

2

N
]SF → []SFNO

2

•	 [NO2]EC → []ECNO
2.

The application of the rules is similar, as we have described in Example 3.
Observe that, in this case, at every computation step, more than one rule is applied
simultaneously, to manage each sequence of objects independently. In Fig. 5, we
can see graphically the computation steps that are carried out in the P system and
that produce as output the classification objects YES1 for the object x1 , and NO2 for
the object x2 . They are collected in the environment at computation steps 3 and 5.
It means that, for the object x1 with the initial attributes, there is a protein–protein
interaction, while for the object x2 , the interaction does not exist.

336	 New Generation Computing (2019) 37:325–337

123

Final Comments and Future Research

In this paper, we have proposed a modeling of decision trees through P systems.
The advantage of using this computation model lies basically in its high parallel-
ism that allows the processing of large volumes of data efficiently. In addition, its
implementation with GPU-based technology makes us believe that it is a plausi-
ble solution for solving problems that are of great strategic interest in the big data
processing framework.

One of the most important aspects when working with decision trees is how to
build them. Usually, this task is approached through machine-learning techniques
(i.e., [12]). Although this aspect is outside the scope of this paper, we would
like to point to a solution based on machine learning of decision trees integrated
within the framework of the P systems. Our approach is based on the design of
rules for membranes creation and object communication that would be executed
according to an information theory criterion, such as the decrease in entropy of
the system [13]. This, without a doubt, will be one of the aspects that we will
approach in our future works.

The parallel processing version that we have proposed opens up new scenar-
ios to be considered. In this case, we could enable different decision trees that
operate simultaneously. The decisions of each tree (in this case, of each P sys-
tem) would be sent to an additional P system that would evaluate the classifica-
tion objects and make a final decision, as it is done in ensemble methods based
in decision trees. The formalization of this type of systems would be done in a
framework of tissue P systems [7] or multi-environment P systems [2]. Actually,
this is part of our work in progress.

Fig. 5   Parallel classification of objects

337New Generation Computing (2019) 37:325–337	

123

References

	 1.	 Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman &
Hall, Boca Raton (1984)

	 2.	 Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.,
Sanuy, D.: A computational modeling for real ecosystems based on P systems. Nat. Comput. 10(1),
39–53 (2011)

	 3.	 Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J.: Simulation of P systems with active membranes on CUDA. Brief. Bioinform. 11(3),
313–322 (2010)

	 4.	 Díaz-Pernil, D., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: Self-constructing Recognizer P Sys-
tems. In: Proceedings of the Thirteenth Brainstorming Week on Membrane Computing. Fénix Edi-
tora, pp. 137–154 (2014)

	 5.	 Fayyad, U.M., Irani, K.B.: On the handling of continuous-valued attributes in decision tree genera-
tion. Mach. Learn. 8, 87–102 (1992)

	 6.	 Kingsford, C., Salzberg, S.L.: What are decision trees ? Nat. Biotechnol. 26(9), 1011–1013 (2008)
	 7.	 Martín-Vide, C., Păun, Gh, Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theor. Comput. Sci.

296, 295–326 (2003)
	 8.	 Martínez-del-Amor, M.A., García-Quismondo, M., Macías-Ramos, L.F., Valencia-Cabrera, L.,

Riscos-Núñez, A., Pérez-Jiménez, M.J.: Simulating P systems on GPU devices: a survey. Fund. Inf.
136(3), 269–284 (2015)

	 9.	 Mitchell, T.: Machine Learning. McGraw-Hill, New York City (1997)
	10.	 Păun, Gh: Membrane Computing, An Introduction. Springer, Berlin (2002)
	11.	 Păun, Gh, Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing.

Oxford University Press, Oxford (2010)
	12.	 Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, Burlington (1993)
	13.	 Sempere, J.M.: A View of P systems from information theory. In: Proceedings of the 17th interna-

tional conference on membrane computing (CMC 2016) LNCS vol. 10105. Springer, pp. 352–362
(2017)

	14.	 Sammut, C., Webb, G.I. (eds.): Encyclopedia of Machine Learning. Springer, Berlin (2011)
	15.	 Wang, J., Hu, J., Peng, H., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Decision tree models induced by

membrane systems. Rom. J. Inf. Sci. Technol. 18(3), 228–239 (2015)
	16.	 Zhang, C., Ma, Y. (eds.): Ensemble Machine Learning, Methods and Applications. Springer, Berlin

(2012)
	17.	 Zhang, X., Wang, B., Ding, Z., Tang, J., He, J.: Implementation of membrane algorithms on GPU. J.

Appl. Math. 2014, 7 (2014)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations

José M. Sempere  is an Associate Professor at the Universitat Politècnica de València (UPV), where he
teaches and makes scientific research since 1989. He holds a Doctorate in Computer Science from the
same university. His areas of interest include membrane computing, biomolecular computing, machine
learning, and bioinformatics. He has published numerous international works on the subjects referred to
above and he is a member of several scientific organizations such as the European Association for Theo-
retical Computer Science (EATCS) and the ACM Special Interest Group on Bioinformatics, Computa-
tional Biology, and Biomedical Informatics (SIGBio). He currently coordinates the Spanish Thematic
Network in Biomolecular and Biocellular Computing (REDBIOCOM) and the research group in formal
language theory, computability, and cryptography at UPV.

	Modeling of Decision Trees Through P Systems
	Abstract
	Introduction
	Basic Concepts
	Decision Trees
	P Systems with Evolution and Communication Rules

	From Decision Trees to P Systems
	Objects’ Classification
	Sequential Classification
	Parallel Classification

	Final Comments and Future Research
	References

