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Abstract We present a procedure leading to efficient splitting schemes for the time
integration of explicitly time dependent partitioned linear differential equations arising when
certain partial differential equations are previously discretized in space. In the first stage we
analyze the order conditions of the corresponding autonomous problem and construct new
6th-order methods. In the second stage, by following a procedure previously designed by
the authors, we generalize the methods to the time dependent case in such a way that no
order reduction is present. The resulting schemes compare favorably with other integrators
previously available.

Keywords Splitting methods - Time-dependent problems - Geometric integrators
Mathematics Subject Classification (2000) 65L05 - 65P10 - 65Z05
1 Introduction

The evolution of many physical systems is usually described by an ordinary differential
equation (ODE)

x'=f(), x(ty) =x0 R, (1
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whose formal solution can be written as

x(t) = @i (x0) = exp((t — 10) Dy)xo.

Here D stands for the Lie derivative associated with f(x),i.e. Dy = f(x) - V. Describing
the physical problem at hand requires then to formulate an appropriate mathematical model
in this setting. In other words, a suitable function f(x) such that (1) can reproduce the most
salient features of the real system. In this respect, since the real system often involves one
or more symmetries and these symmetries can be mathematically formulated in terms of Lie
groups, a necessary condition is that the Lie derivative Dy possesses the appropriate Lie
algebraic structure.

Of course, one is also interested in solving (1), but with the exception of a very few simple
cases, only numerical approximations are usually obtained. Generally speaking, standard
numerical integrators (Runge—Kutta formulae, linear multistep methods) produce approxi-
mate solutions that do not take into account the special algebraic structure of f and therefore
do not preserve the corresponding symmetries. In consequence, much effort has been devoted
during the last two decades to the design of numerical integrators preserving those quali-
tative (geometric) properties of the exact solution. Examples of such algorithms include
symplectic integrators, volume preserving methods, Lie group integrators, variational meth-
ods in mechanics, etc. [13,14,20]. All of them are now put into the more general category
of geometric numerical integrators. In geometric integration, in fact, it is crucial to identify
significant (geometric) properties of the dynamical system (1) and construct numerical inte-
gration algorithms that preserve those features. In addition, of course, one is interested in
building efficient methods with the usual properties of accuracy and stability.

Although research in geometric numerical integrators for differential equations has expe-
rienced a tremendous boost during the last decades, it is fair to say that this has been mainly
restricted to autonomous problems, whereas nonlinear systems of the form

x'=fx, 0,  x(t) = xo € RY, )

i.e., when time appears explicitly in the formulation of the problem, have been up to some
point disregarded. In the linear case X’ = A(r)X, with A and X n x n matrices, several
options have been widely explored and indeed the Magnus expansion has shown to be an
extremely useful device to get analytical as well as numerical approximations [7].

A usual procedure in the numerical analysis of explicitly time-dependent problems con-
sists in transforming (2) into an autonomous differential equation by the introduction of a
new variable,

x/ = f(-x7 xt)
=
or, equivalently,
Y =F. o) = (xo,10) € R, @)

and F(y) = (f(x, x;), 1). Notice that formulation (3) introduces the auxiliary variable x;
aimed at eliminating the explicit time dependence, so that numerical integrators designed
for (1) can, in principle, be used in this setting. This process exhibits, nevertheless, several
drawbacks. First, the algebraic structure of Dy and Dr may differ, so that methods specifi-
cally designed for (1) cannot simply be used for the integration of the new enlarged system
(4). Second, even when they can be applied, very often their efficiency reduces consider-
ably. For this reason, during the last years, the authors have analyzed different procedures
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to adapt effective splitting schemes when the system is explicitly time-dependent without
losing their efficiency (see, e.g., [1,3,9]). In the particular but important case of the linear
differential equations arising from the space discretization of the Schrédinger equation, it is
shown in [3] how to generalize methods previously designed in [11] when an explicit time
dependency is introduced. The results achieved in [3] motivates the search of new and more
powerful integration methods for time independent systems especially designed to be used
in the non-autonomous case. The goal of the present paper is precisely this: to carry out a
systematic analysis of the order conditions to be satisfied by splitting methods when inte-
grating partitioned linear systems to which the techniques exposed in [3] are subsequently
applied to render schemes also valid in the time dependent case.

The plan of the paper is as follows. In Sect. 2 we briefly review some of the available
techniques to adapt splitting methods designed for autonomous problems to the explicitly
time dependent case. In Sect. 3 we focus the treatment on partitioned linear systems of dif-
ferential equations arising, in particular, in the time integration of the Schrodinger equation
previously discretized in space. There we present a procedure to get and solve the resulting
order conditions for methods of order < 6 to which the approach presented in [3] is applied to
construct efficient splitting schemes in the time dependent case. The validity of the treatment
is then illustrated in Sect. 4, where the performance of a new 6th-order method constructed
along these lines is compared with other standard integrators.

2 Splitting methods and their generalization to non-autonomous systems
2.1 General treatment

Although splitting methods have been used for a long time in the numerical treatment of dif-
ferential equations, they have experienced a revival with the advent of geometric integration.
In fact, a good deal of geometric integrators are based on the idea of splitting. The idea is
fairly simple: suppose f in Eq. (1) can be decomposed as f(x) = f [AT(x) + £IB1(x) in such
a way that systems

¥ =MW, = ) 3)

can either be solved in closed form or accurately integrated. Then one combines these partial
solutions into an approximate solution for (1), often of high accuracy. To make this sentence
precise, let us denote by

oM =exp((t —10)Da), 9" =exp((t — 10)Dp)
the flows corresponding to Eqgs. (5), where D 4 and D g represent the Lie derivatives associated
with 141 (x) and f1B1(x), respectively. Then one considers the composition
— [A] [B] [A] [B] [B] [A]

Vh = Papi i © P © Panh © Poy1h © " © Pin © Parh (6)
with appropriately chosen real coefficients a;, b; to ensure that ¥, is an approximation to the
exact solution ¢y, up to order O (h?) with respect to the time step &, i.e. Y, = @5 + O(h? 1.
A great deal of methods of this class exists in the literature, of different orders and tailored for
different structures of the vector field: general separable problems, systems arising from sec-
ond order differential equations x” = g(x), near-integrable systems, etc. (see [5,13,15,17]
and references therein). One could say that the performance of the different splitting meth-
ods strongly depends on the particular problem at hand, so that a previous analysis is highly
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recommended to select the most appropriate scheme for its numerical treatment [5]. The
non-autonomous separable problem

x' = A0+ Bl ) (7

is indeed a case in point.
One might think of two procedures to adapt scheme (6) in this setting. The first one con-
sists in replacing the maps ¢ aA,g <pb h by the maps associated to the exact flow defined by the

equatlons

x' = AN x, 1), telto+cih, to+ (ci +ai)h] (8)
x' = B, 1), telto+dih, to+ (di +bi)h]. )

Here ¢; = Zj—o aj,di = Zi‘;lo bj, a9 = 0,by = 0, and the initial conditions are given
by the solution obtained from the previous flow. This approach can be considered as a
time-average on each stage of the composition. Obviously, obtaining the exact solution of
the non-autonomous equations (8) and (9) is by no means trivial due to the explicit time-
dependence. In any case, the formal solution can be obtained by using the Magnus expansion,
as shown in [7].

The second procedure is perhaps simpler. It consists in taking the maps <p i h, gol[JBh] in (6)
as the (a;h)-flow and (b; h)-flow associated respectively to the autonomous equations

x' = fIx, 19+ dih), 1€ lto+cih, 1o+ (ci +ai)h) (10)
x' = B, 19+ cih), telto+dih,to+ (d; + bi)h]. (11)

Notice that the coefficients ¢;, d; appear interchanged in the vector fields with respect to (8)
and (9).

These two strategies, which could be dubbed ‘averaging’ and ‘frozen’ techniques, respec-
tively, may differ considerably both in the accuracy reached by the methods and also in
their computational cost. Let us illustrate them on a simple but important example arising in
applications.

2.2 Linear non-autonomous separable systems

When discretizing in space the time dependent Schrédinger equation involving a time depen-
dent potential V (¢) (for instance, with a pseudospectral method), the following system of
ODEs arises:

iv' = H(t)u, (12)

where u € CV and H is a real symmetric matrix. If the real and imaginary parts in u are
considered, u = g + ip, the N-dimensional linear complex system (12) can be written as the
2 N-dimensional real system

g =H@Mp, p'=-H(g. (13)

These, in fact, can be interpreted as the classical Hamilton equations corresponding to the
Hamiltonian

1 1
H(g, p.t) = EpTHmp + EqTqu. (14)
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Although we limit ourselves to this problem, most of the discussion is also valid with minor
modifications for the more general system

g =M@)p, p' =Ngq, s)

forq € R%, pE R%, Equation (15) arises, in particular, when the Maxwell equations are
discretized in space [19].
Equations (13) can be written in the compact form

7 = (A@t) + B(1))z, (16)

where z = (g, p)T and

wo=(070). mo=(_32)

Let us consider first the autonomous problem, i.e., when H does not depend explicitly on ¢,
in which case the corresponding equations

g =Hp, p =-Hq (18)
possess the formal solution
z2(t) = e"“ATBz(0). (19)

Typically, as aresult of the discretization in space, the value of N is large, and thus the exact
computation of the exponential is exceedingly costly. In consequence, it makes sense to con-
struct approximations requiring a much reduced computational effort. This can be achieved
when the scheme only involves the computation of Hq and H p in a particular sequence and
only a few times per step. But this is precisely what splitting methods effectively do, as it is
evident if one writes the composition (6) for this particular problem:

K(h) = eham+|AehmeehamA . ehb]BehalA (20)

_ (1 hap 1 H I 0\ ( I O\(IhaH
“\o 1 —hbuH 1 —wyHI)\O 1 )

The scheme requires m matrix-vector products Hg and Hp (the last product at each step
can be reused in the first stage at the following step) and is referred as an m-stage method.
Although any of the splitting methods for separable systems collected in [13,15,17,18] can be
used for carrying out numerical integrations here, Eq. (16) in the autonomous case possesses
the following crucial simplifying property:

[A,[A,[A, B]ll = [B, [B,[B, A]ll =0, 21

where [, -] stands for the usual commutator: [A, B] = AB — BA. This feature allows one
to build very efficient methods indeed [2,3,11]. Moreover, it has been shown that any non-
symmetric method for this problem is conjugate to a symmetric method [4], so that one may
restrict the analysis to symmetric compositions, i.e., when a,,+2—; = a;, by4+1—; = b;. The
resulting scheme is sometimes referred to as an ABA composition. Since the role of A and
B can be naturally interchanged, BA B compositions are not separately studied.

Let us turn our attention now to the time dependent case. As is well known, the Magnus
expansion allows one to formally write the solution of (16) as

2(t) = e 7(0), (22)
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where £2(¢) is given by an infinite series involving A(¢), B(t), multivariate integrals and
nested commutators with a finite radius of convergence [7,16]. Although it is indeed pos-
sible to derive numerical integration algorithms from the Magnus expansion [8], they still
require the computation of the exponential of a full matrix of high dimension involving iterate
integrals and commutators. We apply instead the two procedures pointed out in Sect. 2.1.

The first one (the ‘averaging’ technique) uses composition (6) with maps corresponding
to the exact solutions of (8)—(9), which for this particular problem read (taking ty = 0)

t+ciy1h
<p£f,§](q,p)= q+ / H(t)dtp, p
t+cih
23
t+dit1h 3
ol p)=aq.p - / H(t)dtq
t+dih

Notice that the resulting scheme can be seen as the composition method (6) applied to the
autonomous Hamiltonian

1 1
H(q, q1. 92, P> P1> P2) = (*PTH(CII)P + Pl) + (*qTH(qz)q + pz) =A| + By,

2 2
24
where we have considered time as two different additional coordinates.
On the other hand, with the ‘frozen’ technique (10) and (11) one has
[Az2] _ H(d:h [B2] _ — H(cih 25
P @, p)=(q+Hihp, p), ¢, @, p)=1(q, p (cihq), (25)

and the corresponding scheme, as before, is nothing but composition (6) applied to the
Hamiltonian

1 1
H(q, q1, 92, Ps P15 P2) = (EPTH(CD)P + p1) + (EqTH(cn)q + Pz) = Ay + Bo.
(26)

Now the Hamilton equations are no longer linear and, moreover,
{Ai, {A;, {Ai, Bi}}} #0, (B, {Bi,{Bi,Ai}}} #0, i=1,2

in terms of the Poisson bracket. In consequence, the highly efficient schemes of type (20)
designed for systems verifying (21) lose their appealing accomplishments when applied in
the non-autonomous case.

Another possibility is suggested in [9]. One might consider a combination of (24) and
(26) in the form

1 1
H(g, q1,q2, P, p1, P2) = (EPTH(‘II)P + 171) + (EqTH(ql)q + pz) 27

or equivalently

1 1
H(g, q1, p, p1) = (EPTH(‘II)P + Pl) + (EqTH(CII)CI) = A3 + Bs, (28)
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with associated maps

t+ciy1h
dan=|a+ [ Hoawp|. dian=ap-Hano. @)
t+cih

Now {Bs, {B3, {B3, A3}}} = 0 so that Runge—Kutta—Nystrom methods can be used (even
with modified potentials) [5], and thus significant improvements in the efficiency with respect
to the previous choices can be achieved.

3 A new class of splitting methods for non-autonomous linear systems

Our purpose here is to generalize the ‘averaging’ technique (23) by using the Magnus expan-
sion and formulate directly splitting methods of the form (20) in terms of the new maps in
such a way that the resulting schemes do not suffer from a degradation in their performance.
More specifically, the new methods have the form (for a time step of size &)

2t +h) ~ eAn+ieBugdn . -eé'e’glz(t), (30)

where the matrices AI- = A;(t, h) and éi = B;(t, h) are taken as

1/2 1/2
Ai=h / Pi(v)A(t12 + hr)dr, Bi=h / pf’(r)B(ll/z + ht)dr. 31
-1/2 —1/2

Heretip =1+ % and p{ (), pf(r) are filters (scalar functions). As we will see in the sequel,
to get integrators of even order n = 2s, it is enough to consider p{, pf’ as polynomials of
degree s — 1, i.e.,

[1]

i

T4+ al[S_HrS_l, pib(r) = bl[ol + blmr +o 4 bgs_lltx_l.

i_ (1A B_( L0
e_(01 S T \-Ap L)

then (30) can be written as z(r + h) ~ K (¢, h)z(t), where

pi(r) = aEO] +a

Since in our case

— ~m-%—l ~m ~m_,_ ~1 ~l
K(t,h) = eAmtigBn A eBied

(1 H, I 0\ (IH: I 0\ (1IH}
(") G ) (F) - (o) 6F)- o

and
12 12
H =h / PiTYH (i +htydr,  HE =h / pY (D) H (112 +ht)dT.  (33)
—1/2 —1/2

These integrals can either be computed analytically or numerically approximated by using
some appropriate quadrature rule. If the method (32) is of order 2s, then a quadrature rule of
order 2s or higher must be used to retain the original order.

The numerical scheme is then determined by the values of the coefficients al[k], bl[k] (k=
0,1,...,s —1,i =1, ..., m). The problem of designing efficient methods of a prescribed
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order 2s is then equivalent to determining coefficients such that the composition (30) achieves
the desired order of accuracy and, at a given cost, provides the most accurate results among
a number of possible choices. The method is of order 2s if the coefficients al[k], bl[k] satisfy
a system of algebraic equations (the order conditions), which have to be first formulated
and then solved (usually by numerical tools). A subset of such order conditions corresponds
precisely to the particular case where H (¢) actually does not depend on ¢, so that the matrix
(32) reduces to the matrix K (k) in (20) with a;, b; related to al.[k], bl[k]. When constructing a
method of order 2s, we proceed as follows: (i) we first determine the values of the coefficients
a;, b; in such a way that (20) gives a good method of order 2s for the autonomous case, (ii)
}kl, b}kj, so that the remaining order conditions hold (once

plk]

i

and then choose the coefficients a

the relation between the coefficients a;, b; and al[k], is taken into account).

3.1 Order conditions for the autonomous case

When considering the matrix (20) used to propagate the numerical solution in the autonomous
case (18), one observes that diagonalizing the matrix H with an appropriate linear change
of variables transforms the system into N uncoupled harmonic oscillators with frequencies
w1, ..., oy. Although in practice one wants to avoid diagonalizing the matrix H, numeri-
cally solving the system (18) by a splitting method is mathematically equivalent to applying
the splitting method to each of such harmonic oscillators (and then rewritting the result in
the original variables). Clearly, the exact solution of each individual harmonic oscillator with
frequency w is propagated by the 2 x 2 matrix O (wh), where

0() =( COS X sinx)' (34)

—sinx cosx

As for the numerical solution, it is propagated by a matrix K (wh) defined as

(1 apt1x 1 0 1 apx 1 0 1ax
K(")_(o 1 )(—bmxl)(o 1 )"'(—blxl)(o 1)'

It is straightforward to check that

Ki(x) Ka(x) L+ kxS -xz"—l)
K = = 1= S, i=1 ol . s 35
&) (K3(x) K4(x)) (zyﬂzlk3,ix2f—l T3 (35

where k; ; are homogeneous polynomials in the parameters a;, b;.

The integrator (35) typically will be stable for |hw| < x, for some value x, (that we call
stability threshold) depending on the coefficients a;, b;. It has been shown [4] that if for a
given splitting method x, > 0, then the method applied to (18), for H a constant matrix, is
conjugate, for hp(H) < x., to the solution of a modified system

¢'=HMmp, p'=-Hhyq,. (36)

where
hH(h) = hH + ¢o0i1 (W)™ 4 ¢ 3 (R - (37)
for some constants ¢o; 41,7 = 1,2, ..., provided that the method is of order 2n for the

harmonic oscillator (see [4] for more details). Here p(H) denotes the spectral radius of H.
We thus intend to construct accurate symmetric schemes with large stability intervals
(—x4, x4). Notice that for a fair comparison of the stability interval for splitting methods
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with different number of stages, one must consider the relative stability threshold x../m. For
this class of schemes, the elements of the stability matrix have to satisfy

Ki(x) = K4(x) = cosx, (38)
K>(x) ~sinx, K3(x) ~ —sinx, (39)
Ki(x)* = K2(x)K3(x) = 1. (40)

Since we are dealing with symmetric compositions, we found more appropriate (due to the
ill conditioned equations to be numerically solved) to consider the decomposition
Ui (x) Uz(x))

(41)

K(x)=U(=x)"'U(x), where U(x) = (U3<x) Us(x)

with Uj, Us even polynomial functions and U;, U3 odd polynomial functions. Since we
are interested in matrices K, U to be decomposed as products (35), then they must sat-
isfy det(K) = det(U) = 1. Clearly, conditions (38)—(40) are equivalent to O(x) =~
U(—x)"'U (x) together with

Ui(0)Us(x) — Ua(x)Us(x) = 1. (42)
Whence, one has an approximation of order 2s if

Us(x) cos(x/2) + Us(x) sin(x/2) = O(x>"+1)

(43)
Ui (x) sin(x/2) — Uz (x) cos(x/2) = Ox>"1).

Observe that to obtain a method of order 2n one needs a composition with m > 2n — 1
stages, as already noticed in [11]. The matrix U has 4n — 2 parameters that can be used to
solve the required system of 4n — 2 equations: indeed, equations (43) originate 2n linear
equations and condition (42) gives 2n — 2 quadratic equations. However, the methods with
minimal number of stages obtained by solving these 4n — 2 equations have stability thresh-
olds x, ~ m, and thus the relative stability threshold x,/m ~ 7 /(4n — 2) becomes very
small for high order methods.

A simple trick to get methods with larger relative stability threshold is to add the condition

O(jm)=K(jm), j=1,...,1 (44)

for some positive integer /. For moderate values of / relative to s, this typically gives a method
with stability threshold x, > [m. In addition to improving stability, due to its interpolatory
nature, condition (44) contributes to improve also the precision of the method when applied
to (18).

In terms of the matrix U (x), condition (44) reads

Ui(2j = Dm) = Us(@j — D7) =0, Uy(jm) = Us2jm) =0, j <1/2. (45)

Given positive integers s, /, we impose conditions (42), (43), and (45) to the matrix U (x),
which gives a system of 4(n +1) — 2 linear and quadratic equations in terms of the coefficients
of the polynomials U;(x), j = 1,2, 3, 4. The required number of free parameters can be
obtained by considering

dUy) =2mn+1-1), d(Us) =2(n +1),
d(Uy) =2(n+1) -1, dUs) =2n+1)—1,
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where d (P (x)) denotes de degree of the polynomial P (x). For a given matrix U (x) satisfying
the required conditions, if there exists a splitting method associated to the matrix (41) (if it
exists, is unique [4]), then in general will have m = 2(n 4 1) — 1 stages.

We have obtained (with the help of the software Mathematica) all the solutions of the
equations corresponding to moderate values of n and / (n + [ < 6). For each n and [/, we
choose among all the real solutions of the corresponding system of polynomial equations the
best methods with respect to suitable criteria based on the rigorous error estimates (for the
application of (18)) derived in [6]. Once an appropriate matrix U (x) is chosen for given n
and [, we compute the coefficients {a1, b1, aa, ba, ...} of the splitting scheme corresponding
to K(x) = U(—x)"'U(x) by following the algorithm presented in [4]. We collect in Table 1
the coefficients of two of the best methods obtained in this way with m = 11 stages with
n=1=3andn = 4,] = 2 (in the last case, the method is of order eight at the cost of being
slightly less stable due to the smaller value of /).

3.2 Determining the coefficients for the non-autonomous case

The order conditions to be satisfied by the coefficients ai[k], bl[k], i,k=0,1,...,5s — 1 for
the polynomials in the scheme (33) to give a method of order p = 2s can be determined by
following the approach of [3]. First one considers the formal solution of Egs. (16) at time &
as furnished by the Magnus expansion,

2t +h) =e? Wz, (46)

where 2(t, h) = ZZO:] £k (t, h) and each $2¢ (¢, h) is a multiple integral of combinations of
nested commutators containing k matrices A(¢) and B(t) [7,16]. The explicit expression of
$2;(t, h) can be obtained by inserting into the recurrence defining the Magnus expansion a
Taylor series of the matrices A(7) and B(¢) around the midpoint # 4 /2 (to take advantage
of the time-symmetry property of the solution), i.e.,

At+i+D)=ai+amr+ozt>+-,  Bl+i+0)=p1+pr+B+

Then, the Baker—Campbell-Hausdorff (BCH) formula is repeatedly applied to (30), so that
K (¢, h) is expressed as the exponential of only one operator,

K(t, h) = exp(2(t, h)),

depending on Ai(t, h), l§,- (t,h) (i =1,...,m) and nested commutators of these matrices.
In consequence, the numerical scheme is of order p if 2@, h) — 2@, h) = OhPTY) as
h — 0.

The analysis is simplified by imposing time symmetry to the composition (32): K (¢t +
h,—h) = K@, h)~!, or equivalently, Q@ +h—h) = —2(@, h). This is automatically
satisfied if

Apgoi(t +h,—h) = —A;(t,h), Buyii—i(t +h,—h) = —Bi(t,h), Buii(t,h) =0
47)

fori = 1,2,...,m. Expanding A;(t, h), B;(t, h) in (31) in terms of a}, B;,

Aty = haa,,  Bit,h)y=> n"b" By, (48)

n>1 n>1

it is clear that conditions (47) are fulfilled as soon as
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Table 1 Coefficients a\/’, b/ for the 11-stage sixth-order method with s = 3 and n = 3,1 = 3 (SMy6),
andn = 4,1 = 2 (SM1186). The schemes are written as ABA time-reversible compositions. The correspond-

ing coefficients al[j ], bl{j ! can be obtained from (58) for s = 3, and then using the coefficients from ri@j) given
in (56)
SM116

! = 0.04648745479086313086
b{") = 0.18433048350266556347
! = ~0.06069167116364293530
b§") = ~0.04105690329771146237
) = 0.21846652646340681047
b§") = 0.13375567966675033070
) = 0.16805357948309270304
by") = 0.20376454713235473820
af!) = 031430236417035348674
b{) = ~0.01176016691496004372
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forn>1,i=1,2,...,m.

In the autonomous case one has oy = hA, By = hBanda; = 8; = 0, j > 1 so that the

scheme reduces to

@ (1) 1 (1 (1
K(h) — eanl+10tlehm :Bleam o . ebm 5‘6“' 011! (50)

which corresponds to Eq. (20) with al.(l) =aq;, bi(]) = b;. From (50) it is clear that ai(l), bl.(l)
can be taken separately from the remaining coefficients. For instance, from (31) we have
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1/2 1/2

a’ =hn / plyde, bV =h / pl(v)dz. (51)
—1/2 —1/2
M M

In any case, the actual choice of g, plays an essential role to get the coefficients

al[j], bl[j] leading to efficient methods, since the constant parts a; = hA(t1,2), 1 = hB(t12)

usually represent the dominant contributions to the evolution of the system.

Once a set of values for al.(

D bf ]), i =1,...,m,satisfying the symmetry condition (49) is
chosen, we have to determine the coefficients, ai("), bl.("), n>2,i=1,..., m, which satisfy
the remaining order conditions. This can produce different methods with the same values for

the coefficients ai(l), bfl).

Let us now write A,-, E,- as follows:

s—1 s—1
Ai=>alla0 B =>"vlIBY), (52)
j=0 j=0
where
1/2 1/2
AV =p / /Aty +ht)yde, BY =h / t/B(t12 + ht)dt (53)
—1/2 -1/2

forj=0,...,s — 1.

At this point the following remark is worth to be stated. Suppose that l;,- ,cii=1,...,k),
are the weights and nodes of a particular quadrature rule for integrals. Then it is possible to
approximate all the integrals A®) (up to the required order) just by using only the evaluations
A; at the nodes ¢; of the quadrature rule required to compute A©:

k i
i - 1 .
A(>:hZ;bj(Cj—2) Aj, i=0,...,5—1, (54)
]:

with A; = A(#, + ¢;h). In particular, if fourth and sixth order Gauss—Legendre quadrature
rules are considered, we have s = k = 2 and by = by = 1/2,¢; = 1/2 — +/3/6,¢2 =
1/2 + +/3/6. To order six we have s = k = 3 and by = by = 5/18,by = 4/9,¢; =
1/2 = /15/10, ¢ = 1/2, ¢35 = 1/2 4+ +/15/10.

Now, a simple relationship can be established between the coefficients a
method and the coefficients al.("), bi(") by taking into account how the matrices A®), B® and
a;, B; are related. Specifically, one has (neglecting higher order terms)

L1 4

[j1 :
;. b7 foragiven

1/2 s

N s 7 i
. . L . 1— (=Dt .
@) _— Jo.riti—lgr — [CORNSA) P Joy:
AD = / Zh ajt dt _Z(T )ijh'a; _Z ENTRY haj, (55)
—12 /=1 j=l1 j=1
0 <i <s — 1, and an analogous expression relating B® with B;. If this relation is inverted
(to order four, s = 2, and six, s = 3) we get

9
2 0 15

- 10
) =a?) 1=(0 12), =0 12 0 (56)
~15 0 180
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respectively. If we consider (48)

K K s
A= Y, = 3 Y A0
n=1 n=1 Jj=1

s s s (57)
B = by = > b > U,
n=1 n=1 j=1
and compare with (52) then
R ,
o/l =2 a"n g 6 = b (58)
n=1 n=1

From this analysis, we proceed as follows. We first compute the coefficients a;, b; by apply-
ing the procedure shown before for the autonomous case. Then, we take ai(l) =a;, bfl) =b;

and then we get the coefficients al.(k), bi(k), k> 1.

In this work we have considered symmetric methods of order six. For the autonomous case
the schemes have necessarily m > 5 stages. In consequence, we have analyzed compositions
withm =5,7,9, 11 which corresponds to take n = 3 and/ = 0, 1, 2, 3 in Sect. 3.1, but we
have also analyzed the case n = 4 and [ = 0, 1, 2. In each case we have taken the optimal
choices according to the criterion considered before.

On the other hand, getting sixth-order methods for the non-autonomous case requires to

solve a system of 10 nonlinear equations in the variables al.(z) , bfz)

ear system of 8 equations to be solved in al.(3), bl.(S), with the symmetry (49). To obtain real
solutions for these equations it was necessary to consider methods with at least 11 stages.
Here we have carried out an exhaustive search of solutions and examined how all of them
behave in practice. This turns out to be the set of coefficients which minimize the sum of the
absolute values of the coefficients. The corresponding sets are collected in Table 1. For future
reference, we refer to these (optimal in the previous sense) methods as SM 116 and SM186.

The coefficients al[j ], bl[j I can be obtained from (58) for s = 3, and then using the coefficients

and an additional lin-

from (ri(3j)) given in (56). As a matter of fact, in [3] we included in the numerical examples
the results achieved by SM116, but without indicating how the scheme was obtained.

4 Numerical examples

Our purpose in this section is to illustrate the performance of the new specially adapted
11-stage sixth-order (SM;;6 and SM;86) splitting methods for partitioned non-autono-
mous linear systems. To do so, we carry out some comparisons with some other well estab-
lished general purpose geometric schemes. Given a basic symmetric second order method,
we consider symmetric compositions of the basic method with fractional steps. The most
efficient compositions of this family of orders 6 to 10 known by the authors (with real coeffi-
cients and without processor or corrector) correspond to the following methods: the 13-stage
sixth-order (S136), the 21-stage eighth-order (S;18), and the 35-stage tenth-order (S3510)
methods obtained in [22]. The coefficients of S3510 are also collected, for instance, in [13,
chapter V]. As basic second order scheme we take the well known leapfrog composition:
1//}[12] = (p}[l% o %[lA] o (p}[l%. The explicit time dependence is treated by taking the time as two
new coordinates as shown in (10)—(11) or (25). We also consider the 11-stage sixth-order
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Runge—Kutta—Nystrom splitting method, RKN{6, given in [10] and adapted to explicitly
time-dependent problems [9] similarly as given in (28)—(29), which gives similar perfor-
mance to the scheme proposed in [1], but it is simpler to implement. This method is also
implemented taking the time as two new coordinates, as in the S,, p schemes, to illustrate
the advantage of treating the time dependency appropriately (in this case it is referred as
RKN/;64).

Since the main interest of this family of methods lies in the numerical integration of dif-
ferential equations originated from space discretizations of PDEs, the computational cost of
the methods is measured by the number of stages required. The integrals (31) appearing in
the new scheme are approximated by the sixth-order Gauss—Legendre quadrature rule, as
indicated in (52) and (54). Notice that using this quadrature rule only three evaluations for
the time dependent functions are required per step, whereas 11 is the number used to count
the cost of the algorithm.

Perturbed harmonic oscillators. We first consider as a simple test bench problem the Mathieu
equation,

9"+ (a)2 + € cos(t))g = 0,

with ¢ € R, which corresponds to a time dependent linear harmonic oscillator with
Hamiltonian

Ly 1.9 2
H=—-p"+ (0" +€cos(t))g”.
2 2

We take as initial condition ¢(0) = 1, p(0) = 1, integrate up to t = 200 7/ and measure
the average error in phase space (att = 2w /w, 4w /w, ..., 2007 /) in terms of the number
of force evaluations for different time steps (in logarithmic scale). We compare the relative
error for o = 3/2 withe = 1/40 and € = 1/4, and w = 5, with € = 1/40 and € = 4.
The results are collected in Fig. 1. Since the kinetic part is time-independent, the RKN1;6
method can be used in this case by just taking the time as a new coordinate. The superiority
of the new schemes is manifest for all accuracies of practical interest. We can also observe
that this superiority is more relevant when the dominant contribution from the Hamiltonian
originates from the constant part, since the new scheme is built to be highly efficient for small
perturbations of the autonomous harmonic oscillator. In this setting the scheme SM1186 is
superior and behaves as an eighth-order method in the case = 5, € = 1/40. We observe that
when the time-dependent functions are significant, the errors associated to the new method
are dominated by the Magnus expansion treatment. This is an important observation to take
into account to build new improved methods in this class.

The Schrodinger equation. Let us now consider the one-dimensional Schrodinger equation
(in units where 1 = 1)

2

il
.0 n=(-—2
latw(x ) ( 2u 9x2

+V(X)+f(t)X) V(x, 1), (59)
with ¥ (x, 0) = 9 (x). We take the Morse potential V (x) = D (1 — e:"’”‘)2 in a laser field
described by f(#)x = A cos(wt)x. It corresponds to the Walker—Preston model of a diatomic
molecule in a strong laser field [23]. This problem is used as a test bench for the numerical
methods presented in [12,21] and the same values for the parameters are taken (in atomic
units): w = 1,745 a.u., D = 0.2251 a.u. and o« = 1.1741 a.u. (corresponding to the HF
molecule), A = 0.011025 a.u. and laser frequency w = 0.01787. We assume that the system
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(a) w=3/2, e=1/40 (b) w=3/2, e=1/4

- = RKN_6
- 5,46
— - S,.8
é 414 < 32;10
o —_— SMHG
w -6 - SM1186
)
(@)
-1 -8
-10
4 4.2 4.4 4.6 4.8 5 4 4.2 4.4 4.6 4.8 5
LOG(N. EVAL.) LOG(N. EVAL.)
(C) w=5, £=1/40 (d) w=b, £=4

LOG(N. EVAL)) ' ' LOG(N. EVAL.)

Fig. 1 Average error in phase space (at t = 27 /w, 47 /w, ..., 1007z /w) versus the number of force evalua-
tions for different time steps (in logarithmic scale) for the Mathieu equation for different values of w and €.

is defined in the interval x € [—0.8,4.32], which is split into N = 64 parts of length
Ax = 0.08, and impose periodic boundary conditions.

After space discretization, Eq. (59) leads to the complex linear equation (12) with u € CV
and up(t) = Y, )(Ax)Y2, k =0,1,...,N — 1. Here x;y = xo + kAx and H(t) =
T + V(t) is an Hermitian matrix (real and symmetric). As initial conditions we take the
ground state of the Morse potential,

¢ (x) = o exp(—(y — 1/2)ax)exp (—ye ),

with y = 2D/w0, wo =o+/2D/pnand o isa normahzmg constant.
Notice that V(t) is a diagonal matrix with elements VH =V(x;)+ f(t)xj,and Tq, Tp
can be efficiently computed using FFTs [2,11]. Notice also that in (33) we now have

12
A_p / PV H (112 + ht)dt = ha T + haVV + hX F, (1, h) (60)
—-1/2
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and
12
HE =h / PP H (112 + ht)dr = hb"T + hb'V + hX Fy (2, ), ©61)

l
—-1/2

where Fy/p(t,h) =h fi{?z plf'/b(r) f(t1j2+ht)dt. Here X is a diagonal matrix with diag-
onal elements X ;; = x;. The products H;q and H; p only require one FFT and its inverse
and thus an m-stage method requires 4m FFTs per step. The split (25) used for the general
purpose methods S, p was already proposed in [21], showing a clear improvement with
respect to the second order Magnus integrator (combined with a third order splitting scheme)
given in [12]. This split is also used for the R K N116 method, but it produces a fourth-order
scheme. This is corrected using the averaging (28)—(29) which only requires to replace the
scalar function f(¢) by its corresponding integral along each fractional time-step in one part
of the separable Hamiltonian system.

First, we integrate the system in the time interval ¢ € [0, 27] with t = 27 /w. The exact
solution, u.,(27), at the final time is obtained numerically using a sufficiently small time
step. We measure the error in the wave function, ||u.x(27) — u(27)| versus the number of
FFTs required for each method, and this is repeated for different values of the time step,
starting with a very small time step and increasing it until reaching a time step close to the

(a) (b)
-6.5 - S,46
- 8218
-4 S3510
7 - RKN,,64
- RKN,,6
sl — SM,,6
- - SM,,86
-8 + -
T T
2 e
-85
O]
3 S
_9 - *
*
X
-9.5 %
-10 _
-10.5 L .
3.4 3.6 3.8 4 4.2 5.4 5.6 5.8 6 6.2
LOG(N. FFTs) LOG(N. FFTs)

Fig. 2 Error in the wave function versus the number of FFTs for the one-dimensional Schrodinger equa-
tion (59) written in the form (13) after space discretization: a for the time integration ¢ € [0, 27], and b for
t € [0,2007] with T = 27/ w.
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stability limit of the method (an overflow appears if the time step is slightly increased). We
repeated the same experiment taking a larger time integration, ¢ € [0, 2007].

Figure 2 shows the efficiency plots for the methods. The superiority of the new splitting
methods is manifest both with respect to efficiency and the stability limit. In addition, we
observe that this superiority increases when taking a longer time integration. This constitutes
indeed an interesting property of the new methods which is currently under investigation [6].
Scheme SM 116 is more stable (it was built with a larger value of /), but SM186 can be more
efficient when a high accuracy is desired and the time dependent functions originate a small
perturbation to the remaining autonomous problem, because in that limit the method behaves
as an eighth-order method.
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