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ABSTRACT 
 

The degradation in efficiency of auxiliary components in heating/cooling systems when operating at part load is 

frequently reported. Through the use of variable speed components, the supplied capacity can be reduced to match 

the required load and hence reduce unnecessary energy consumption. However, for fan coil units, difficulties can 

arise when optimizing fan and pump speeds at part load. Practically locating optimal water and air flow rates from 

readily available information and for varying supplied capacities is necessary, in order to reduce the fan coil power 

consumption. This research attempts to identify whether optimal fan and pump speeds exist for a fan coil unit and 

how they can be implemented, in a practical manner, in a system control applications. Using an empirical fan coil 

and pump model, the total power consumption (fan and pump) for different combinations of fan and pump speeds 

over a range of capacities was calculated. It was observed that, for a given capacity, an optimal combination of fan 

and pump speeds exists and there was a significant change in power consumption for different combinations of fan 

and pump speeds supplying the same capacity. A control strategy is described that utilizes a simple fan coil capacity 

estimation model, coupled with air and water flow rates, along with nominal design data. The pump speed is 

optimized using PID control to maintain the space temperature at the chosen set-point, which matches the supplied 

capacity to the required capacity. At set-time intervals, the capacity estimation model is utilized to optimize the 

water and air flow rates for the required capacity. The control strategy is evaluated, using a full building simulation 

model for a daily load profile and is compared to two baseline conditions: for no control of the fancoils/pump 

combination and for PID circulation control of the pump only. The optimal fan and pump speed control resulted in a 

43% and 24% decrease in power consumption with compared to the no control baseline and the PID controlled 

circulation pump strategy, respectively. 

 

 

1. INTRODUCTION 

 

To date, relatively little work has been undertaken that focuses on optimization of heat pump systems from a 

building integration perspective. In heat pump systems, auxiliary components, such as circulation pumps and fan 

coil units, can consume a significant proportion of the total energy used. When operating at part-load, relative 

auxiliary power consumption can increase even further (Albieri 2008). For fan coil units, this can result in 

degradation in the water temperature difference across the fan coil, which results in unnecessary pump power 

consumption (Henze and Floss 2011). Auxiliary energy consumption at part-load can be reduced by matching the 

supplied and required zone capacities. This can be achieved by cycling the components on/off for nominal pump and 

fan settings using room temperature bandwidth as a control input or by actively controlling the fan or circulation 

pump speeds. For fan coil units in particular, Fahlén and Markusson (2011) suggest controlling either the supply 

water temperature or water flow rate to reduce the supplied load to the building at part-load. For multi-speed fan coil 

units, fan speed is sometimes controlled using room temperature bandwidth, where the fan speed is increased when 

the current setting is unable to maintain the room temperature at the specified set-point (Tianyi et al., 2011). Sekhar 

(2005) studied, for an air handling unit, the tradeoff in terms of power consumption between increasing fan speed or 

supply air temperature. For practical control of variable speed components such as fans and pumps, PID control is 

mailto:kilian.edwards@ucd.ie
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often utilized. Teitel et al. (2008) compared the use of variable speed fan control with proportional error 

compensation to on/off fan control. Fahlén (2011) describes a heat pump system where the water flow rate, supplied 

to a multi-fan coil heating system, is controlled using PI control with the average zone temperature as an input. In a 

study by Zhang et al. (2011), the water flow rate through a fan coil is also controlled, using PID control to maintain 

supply air temperature at the set-point as part of a system control strategy. Strategies that use PID control combined 

with more complex control models for fan coil applications have also been researched (Wang and Xu, 2002)  

(Soyguder and Alli, 2009). Xu et al. (2006) used generalized predictive control to update the gain parameters of the 

PID controller, which maintained the supply air temperature by controlling the water flow rate. However, when 

matching the required load using both fan and pump speed control on fan coil units, it is unclear what the optimum 

combination of water/air flow rate for minimizing power consumption would be. Some methods of finding the 

optimal fan and pump speed for a required capacity have been reported, such as matching the capacities of the water 

and air (Fahlen et al., 2006) (Fahlén et al., 2007). Tianyi et al. (2011) used a fuzzy control strategy to vary the water 

flow rate, using valve control and fan speed for a multi-speed fan coil unit, however this method may not result in 

the optimum combination of fan and pump speeds for reduced power consumption. For larger multi-chiller systems, 

some studies report on the use of complex system control strategies to minimize power consumption using analytical 

neural network models and optimization models (Wang and  Jin, 2000) (Soleimani-Mohseni et al., 2006) (Kusiak 

and  Li, 2010). These strategies require a large amount of installed sensors or accurate system models, which may 

not be practical for smaller systems. In order to optimize the water and air flow rate, it is necessary to create a 

practical control model of the fan coil. Some previously developed control models (Yu et al., 2005) are complex, 

requiring a large amount of data which may not be available, however, models such as those described by Wang et 

al. (2004) and Markusson et al. (2011) can be constructed using information that can be obtained from data sheets. 

In this paper, a fan coil capacity estimation equation is utilized to develop a control strategy for optimizing the fan 

and pump speeds for different required capacities. This strategy is then compared to other standard fan coil control 

strategies using an empirical fan coil, pump and building simulation model. 

 

 

2. SIMULATION MODEL 

 
2.1 Simulation Model Development 
A simulation model of a fan coil system was developed for evaluating the performance of different control 

strategies. The overall mathematical model was constructed using experimental data gathered from a test rig of a 

ground source heat pump system. The fan coil units utilize three speed fans and the deployed water circulation 

pumps are variable speed. As part of this system model, empirical models were developed for the circulation pumps 

and fan coil units and integrated with a building model. These models were programmed using MATLAB to create 

fan coil unit simulation model. Further details of the model are available in Corberan et al. (2011). 

 
2.2 Simulation Model Analysis 
Using the fan coil system model, the fan coil capacity was calculated for a range of water flow rates at the three fan 

speed settings for steady state conditions. In Figure 1, the total power consumption (fan and pump) is plotted against 

the supplied capacity of the fan coil for a range of air and water flow rates. Over the fan coil capacity range, use of 

different fan speeds for different ranges results in the lowest total power consumption for that range. For a required 

cooling capacity below 1250 W, fan speed 1 resulted in the lowest overall power consumption, between 1250 and 

2000 W, fan speed 2 should be utilized and fan speed 3 is required for a capacity above 2000 W. The difference in 

power consumption between the three fan speeds for a given supplied capacity is significant and demonstrates the 

possible savings available through optimizing air and water flow rates. The point at which the optimal fan speed 

switches is dependent on the non-linear relationship between water/air flow rate and the capacity and power 

consumption of the pump and fan. For a multi-speed fan coil system, the fan power consumption is given in the 

manufacturer data sheets for each setting, it is also assumed that the relationship between pump power consumption 

and water flow rate can be calculated. Therefore to optimize the air and water flow rate, the variation in fan coil 

capacity with water flow rate for each fan speed is required. A capacity estimation model that can be developed 

using readily available information from data sheets is described in Section 3, which will ultimately be used as part 

of the proposed control strategies. 
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Figure 1: Fan and pump power consumption vs capacity (optimal fan speed for a given capacity). 

 

 

3. CONTROL STRATEGY DEVELOPMENT 

 
This section describes the the development of fan coil control strategy using the model described in Section 2. 

 

3.1 Control Model 
 

The capacity estimation model of the fan coil unit was created based on an approach previously described by 

Markusson et al. (2011) which predicts the capacity ratio of a fan coil unit for a change in the water flow rate. The 

capacity estimation model used for the control model is shown below: 
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The required design data values can be obtained or calculated from a manufacturer’s data sheet using one defined 

design condition. Therefore at a given water flow rate ( ̇ ), the fan coil capacity (Q) can be estimated using 

Equations 1 to 4. However, this model is only suitable for a given fan speed. Therefore a separate capacity 

estimation model was developed for each of the three fan speeds, using the design data at each of the fan speeds 

specified in the data sheet. The predicted capacity for varying water flow rates at each of the three fans speeds is 

compared in Figure 2 to the capacity as calculated by the MATLAB simulation model. As can be seen, the predicted 

and simulated capacities are similar for all fan speeds at varying water flow rate. The water flow rate shown is that 

through a single fan coil. The maximum absolute error between the capacity values given by the simulation model 

and the simplified control model for the range of water flow rates and fan speeds is 132 W. This error is only present 

at the maximum and minimum extremes of water flow rate.  

 

 
 
 

Figure 2: Water flow rate vs fan coil capacity and absolute error (control and simulation model). 

 

 

3.2 Control Strategies 
 

The control strategy developed aims to reduce the overall energy consumption of the fans and circulation pump for a 

multi-zone system with multiple fan coils by controlling the fan and pump speeds. The strategy operates as follows; 

firstly the supplied capacity to the building is reduced to match the requirement of the maximum capacity zone, 

which is done by controlling the circulation pump speed. The pump speed is controlled using PID control to 

maintain the room temperature of the zone with the maximum load requirement at the set-point temperature. At a 

specified time interval, the water and air flow rates are optimised to minimise the power consumption for the 

prevailing supplied capacity. The operation of this strategy and other tested strategies are described in detail in the 

following sections. 

 

3.2.1 Standard Control 

The pump speed is not controlled and remains at the nominal frequency of 50 Hz, the fan coils are also not 

controlled. A room temperature bandwidth is utilised to maintain the room air temperature around the set-point. For 

cooling, when the room air temperature is cooled to the lower bandwidth, a two-way valve diverts the circulation 

water away from the fan coil. When the room air temperature reaches the upper bandwidth, the water flow is 

reverted through the fan coil. The fan and pump remain in operation regardless as to whether the fan coil water 

supply is diverted or not. In the current paper, this control acts as a baseline reference case. 

 

3.2.2 PID Control of Circulation Pump 

The circulation pump speed is controlled to maintain the room temperature of the zone with the maximum required 

capacity at the room temperature set-point using PID control. At the beginning of a heating/cooling daily cycle, one 
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room is arbitrarily chosen as the maximum capacity zone. All other zones operate by cycling the water supply to the 

fan coils, as described for the standard control case. For cooling, a third bandwidth above the upper room 

temperature bandwidth is also specified (PID bandwidth). If the load of a zone surpasses that of the current 

maximum capacity zone, the room temperature of that zone will continue to increase beyond the upper set-point 

temperature. When the room temperature rises above the PID bandwidth, the room temperature error for that zone 

will become the input signal for the pump PID controller. Limits are put on the pump speed to insure it does not 

exceed set values, in this case a lower limit of 20 Hz and an upper limit of 70 Hz. The fan speed of each fan coil is 

not controlled. 

 

3.2.3 PID Control of Circulation Pump and Fan Speed Optimisation 

For this control strategy, the pump speed is controlled using PID control as described above. However the capacity 

estimation model is utilised at a specified time interval to optimise the fan and pump speed. When optimisation is 

initiated, the fan coil capacity of the zone with the maximum load is calculated using the capacity estimation 

equation for the given water flow rate and fan speed. At this capacity, the optimiser calculates the required water 

flow rate at the three fan speeds using the capacity model for each speed. The power consumption of the three 

different options are calculated and the fan speed that results in the lowest power consumption is set for the 

maximum capacity zone. The water flow rate will then adjust to the desired level automatically using the PID 

control.  

 

In particular cases, the fan coil may not be capable of matching the required load for a low fan speed. At a reduced 

fan speed setting as zone capacity increases, the pump speed may increase to its maximum level, if this happens, the 

capacity will not be met and the calculated capacity will be incorrect during the optimisation phase. Therefore when 

the pump speed reaches its maximum level, the fan speed of the maximum capacity zone is increased automatically. 

To avoid the optimisation running before the water flow rate and room temperature has settled to the set-point, the 

counter for the optimiser is reset each time the maximum capacity zone is changed. Due to the inertia of the room 

fan coil unit, the time period between each optimisation update should be large enough to allow the room 

temperature to reach the set-point temperature. 

 

 

4. RESULTS 

 
4.1 Simulation description 
The control strategies mentioned above were tested using the fan coil system simulation model. The simulations 

were run for a daily cooling cycle with an average external temperature of 28°C and a maximum and minimum of 

32°C and 24°C, respectively.  The room set-point temperature is set to 25°C with a bandwidth of ±1°C. The supply 

water temperature is constant at 7°C. For the standard control strategy and the pump control strategy, the fan speed 

in all zones is set to the highest value for the duration of the simulation. This was done to insure the required 

capacity of the zones would always be satisfied. For the water/air flow rate control strategy, the time between each 

optimisation was set to 20 minutes. The building load profile is shown in Figure 3. This profile was chosen to 

represent high and low capacity zones with realistic load steps and a change in zone with the maximum load. The 

building load chosen is based on experimental load data from the installed test demonstration site, on July 13 2010, 

and represents an average part load ratio of 0.6. 
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Figure 3: Zone load profile between 7 am – 9 pm. 

 

4.2 Simulation Results 

 
The results shown are for the daily simulation between the hours of 7 am – 9 pm. Figure 4 shows the total power 

requirement of the fan coils for the tested control strategies. For the beginning of the simulation, zone 3 has the 

largest load requirement, which is surpassed by zone 1 after 12:30 pm. For the standard control strategy, a constant 

power requirement is observed as fan and pump speeds are unchanged. For the pump control strategy, the pump is 

adjusted to match the maximum load, therefore the pump speed can be seen to increase as the part load does. The 

water/air flow rate optimisation strategy results in a reduced power requirement, particularly for low part load ratios 

which are present at the beginning of the simulation. However as the load increases, the pump speed can increase 

significantly if the fan speed is at a low setting, this results in an increase in total power requirement for a short 

period of time before the water/air flow rate optimisation control is activated. The saving potential is highly 

dependent on the part load ratio of the building and individual zones. 

 

 

 
 

Figure 4: Total power consumption from 7.00 am – 9.00 pm for the three tested control strategies. 

 

 

 

 

 

Figures 5 shows the total power consumption and zone capacity for the three tested control strategies and the room 

temperature and air and pump state for the fan/pump speed optimization strategy from 8:00 am to 10:00 am. It 

should be noted that a time lag is observed to exist between any change in the zone load and the associated zone 

temperature. Before 8:30 am, the pump control strategy has a lower power consumption than the no control 
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scenario, due to the reduced pump speed. Fan/pump optimization control has a lower power consumption, again due 

to the reduced fan speed. At 8:30 am, the load of zones 1 and 3 increase with zone 3 having the largest required 

capacity. The room temperature of zone 3 can be seen to increase beyond the PID bandwidth and pump control is set 

to that zone. For the pump/fan optimization control, the pump speed is increased to reduce the room temperature, 

however, at the low fan speed setting the fan coil is unable to match the required capacity and the pump speed 

increases to the maximum level at 8:48 am. When this occurs, the fan speed is automatically increased to speed 3 to 

insure capacity is matched which results in the room temperature for that zone decreasing to the lower bandwidth 

temperature. All zones begin to cycle within the upper and lower bandwidth, therefore the pump speed is not 

controlled by any zone temperature and reduces to the minimum value of 20 Hz. At 9:15 am, zone 3 exceeds the 

PID bandwidth and control reverts to that zone, resulting in an increase in pump speed as before. The room 

temperature stabilizes at the set-point and at 9:48 am the fan/pump speed optimizer is utilized. As a result of the 

optimizer the fan speed is reduced from 3 to 2 to reduce the overall power consumption and the room temperature is 

again stabilized by increasing the pump speed. 

 

Figure 6 shows the total energy consumption of the circulation pump and fan coils for the three tested control 

strategy. For the standard control strategy, the fan and pump are not under control and hence are in constant 

operation. Although individually, the fan coil units consume a small proportion of the total energy consumption of a 

system, the combined energy consumption of the ten fan coils are larger than that of the circulation pump. For the 

pump control strategy, the energy consumed by the fans is not reduced as the fan speeds are not controlled. However 

the pump energy consumption is significantly reduced due to the reduced pump speeds when operating at part load. 

At a part load of 1, the circulation pump would be operating at the nominal frequency and no energy saving arise. 

For the water/air speed optimisation strategy, the pump energy consumption is increased however the fan energy 

consumption is reduced when compared to pump speed control alone. This results in an overall reduction in energy 

consumption due to the optimised fan/pump speed delivering the same required capacity. A 43% and 24% decrease 

in power consumption is observed when comparing air/water flow rate control strategy to a no control baseline and a 

PID controlled circulation pump strategy, respectively.  

 

The control strategies were tested on different sample days to assess performance for varying load profiles. The 

simulated load profiles and the experimental profiles they are based on are shown in figure 7. The two sample days 

chosen represent lower load profiles than that described above. As can be seen from figure 8 the total energy 

consumption using the standard control is constant regardless of the load profile, however pump control and 

fan/pump control result in reduced energy consumption for a reduced load profile. The pump energy consumption in 

both cases is reduced substantially; however, the fan coil energy consumption is still relatively large due to the 

significant fan power consumption even when operating at the lowest speed, which is the case for fan/pump control. 

 

 

5. CONCLUSIONS 

 
For a given required fan coil capacity there exists a combination of fan and pump speed that result a minimum 

power consumption. The potential energy savings by operating at the optimal water and air flow rates can be 

significant. However, to practically calculate the optimal water/air flow rate, both the capacity and power 

consumption need to be calculated from available data and simple system measurements. A control strategy has 

been developed that reduces the supplied capacity to that of the maximum zone capacity using variable speed pump 

control. At given intervals, the optimal combination of fan and pump speed for reduced power consumption at a 

given capacity is calculated and the fan speed is updated. This control strategy resulted in a 43% and 24% decrease 

in power consumption with compared to a no control baseline and a PID controlled circulation pump strategy, 

respectively. For a reduction in part load the total energy consumption using pump control and pump/fan control can 

be reduced significantly. As the part load decreases the power consumed by the fans constitutes a high proportion of 

the total energy used which results in a greater savings potential by controlling fan speed. 
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Figure 5: Total power consumption, zone capacity, room temperature, air and pump state from 8:00 pm – 10:00 pm 

for the three tested control strategies. 
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Figure 6: Fan and pump power consumption 7 am – 9 pm for the three control strategies. 

  

 
 

Figure 7: Experimental and simulated building load between 8am – 9 pm for the three tested days. 

 

 

 
 

Figure 8: Fan and pump power consumption 8 am – 9 pm for June 02 and September 30, respectively. 
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NOMENCLATURE 

 
A Cross-sectional area  (m

2
)    

Q Capacity  (W)      

 ̇ Mass flow rate  (kg·s
-1

)       

n Flow related heat transfer exponent  (-)       

t Temperature  (K)     

θ HE mean temperature  (K)  

Δt Inlet outlet temp difference  (K)   

∝ Convection heat transfer coefficient  (W·m
-2

·K
-1

) 

    

Subscripts 
a  air     d  design 

in  inlet     w  water 

  

REFERENCES 

 
Albieri, M., Beghi, A., Bodo, C., and Cecchinato, L. (2008) ‘Advanced Control Systems for Single Compressor 

Chiller Units’, International Journal of Refrigeration’, 32 (5), 1068-1076, (2009). 

Corberan J.M., Finn D.P., Montagud C.M., Murphy F.T. and Edwards K.C. 2011, A quasi-steady state mathematical 

model of an integrated ground source heat pump, Energy and Buildings, vol. 43 no: 1, p. 82-92. 

Fahlén, P., 2011, Heat Pump for  Heating and Hot Water - Experience From and  Improvement of a Retrofit, 

Ground-Coupled Installation, 10
th

 IEA Heat Pump Conference 2011, Tokyo, Japan 16 - 19 May. 

Fahlén, P., Markusson, C., 2011, Capacity control of air coils for heating and cooling: transfer functions, drive 

power and system design, ASHRAE Transactions, ISSN 0001-2505. 

Fahlén, P., Markusson, C., Haglund Stignor, C., 2007, Capacity Control of Liquid Cooled Air Coolers, 22nd 

International Congress Refrigeration, Beijing, China, August 21–26. 

Fahlen, P., Voll, H., Naumov, J., 2006, Efficiency of  Pump Operation in Hydronic Heating and Cooling Systems,  

Journal of Civil Engineering and Management., vol. 12, no. 1: p. 57-62. 

Henze, G, P., Floss, A,G ., 2011, Evaluation of temperature degradation in hydraulic flow networks. Energy and 

Buildings, vol. 43, p. 1820–1828. 

Kusiak, A., Li, M., 2010, Cooling output optimization of an air handling unit, Applied Energy, vol. 87, p. 901–909. 

Markusson, C., Jagemar, L., Fahlén, P., 2011, Capacity Control Of Air Coils - Drive Power, System Design and 

Modelling, The 23rd International Congress of Refrigeration , Prague, Czech Republic, August 21–26. 

Teitel, M., Levi, A., Zhao, Y., Barak, M., Bar-lev, E Shmuel, D., 2008, Energy saving in agricultural buildings 

through fan motor control by variable frequency drives, Energy and Buildings, vol. 40, p. 953–960 

Tianyi, Z., Jili, Z., Dexing, S., 2011, Experimental study on a duty ratio fuzzy control method for fan-coil units, 

Building and Environment, vol. 46, p. 527-534. 

Sekhar, S,C., 2005, Space temperature difference, cooling coil and fan—energy and indoor air quality issues 

revisited, Energy and Buildings, vol. 37, p. 49–54. 

Soleimani-Mohseni , M.,  Thomas, B., Fahlen, P., 2006, Estimation of operative temperature in buildings using 

artificial neural networks, Energy and Buildings, vol. 38 p. 635–640. 

Soyguder, S., Alli, H., 2009, Predicting of fan speed for energy saving in HVAC system based 

on adaptive network based fuzzy inference system, Expert Systems with Applications., vol. 36, p. 8631–8638 

Wang, Y, Cai, W., Soh,Y., Li, S., Lu, L., Xie, L., 2004, A simplified modeling of cooling coils for control and 

optimization of HVAC systems, Energy Conversion and Management vol. 45, p. 2915–2930. 

Wang, S., Jin, X., 2000, Model-based optimal control of VAV, Building and Environment, vol 35, p. 471-487. 

Wang, S., Xu, X., 2002, A robust control strategy for combining DCV control with economizer control, Energy 

Conversion and Management, vol. 43 p. 2569–2588. 

Xu, M., Li., S, Cai., W., Lu, L., 2006, Effects of a GPC-PID control strategy with hierarchical structure for a cooling 

coil unit, Energy Conversion and Management, vol. 47, p. 132–145. 



 

 3497, Page 11 
 

International High Performance Buildings Conference at Purdue, July 16-19, 2012 

Yu, X., Wen, J., Smith, T, F., 2005, A model for the dynamic response of a cooling coil, Energy and Buildings, vol. 

37, p. 1278–1289. 

Zhang , X, J.,  Yu, C, Y., Li, S., Zheng, Y, M., Xiao, F., 2011, A museum storeroom air-conditioning system, 

Applied Thermal Engineering, vol. 31, p. 3653-3657. 


	Purdue University
	Purdue e-Pubs
	2012

	Air and Water Flowrate Optimisation for a Fan Coil Unit in Heat Pump Systems
	Edwards Kilian
	Donal P. Finn


