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Introduction

• Particle Swarm Optimization (PSO) algorithm 
is a population metaheuristic method used in 
different continuous domain problems.

• Applications to discrete domain functions are 
scarce.

• Our aim is to develop a PSO algorithm to 
solve a combinatorial optimization problem in 
the design of cellular manufacturing systems. 

Particle swarm optimization 
algorithms: Introduction

PSO algorithms were proposed in the middle nineties* and 
they are one of the latest evolutionary optimization 
techniques. 

Their biological inspiration is based on the metaphor of social 
interaction and communication in a flock of birds or school of 
fishes. In these groups there is a leader who guides the 
movement of the whole swarm. 
*Kennedy, J. y Eberhart, R.C., (1995) Particle Swarm Optimization, IEEE 
International Conference on Neural Networks, Australia.



3

• The movement of every individual is based on the leader behavior and on 
its own knowledge. Since it is population-based and evolutionary in nature, 
the members in a PSO algorithm tend to follow the leader of the group, i.e., 
the one with the best performance.

• In general, it can be said that the model that inspires PSO assumes that 
the behavior of every particle is a compromise between its individual 
memory and a collective memory. 

• In this aspect, PSO algorithms present some similarities with algorithms 
based in ant colonies (ACO). The main difference between ACO and PSO 
algorithms is the method used to memorize solutions previously visited and 
the procedure to generate new solutions (constructive in ACO versus path 
relinking in PSO). In relation to other methods such Genetic Algorithms 
(GA) or Tabu Search (TS), PSO use a population like in GA, but the 
generation procedure is not based in crossover or mutation. Although TS 
may use path relinking, it is not a population based method, so it does not 
get the benefits derived from the information interchange. 

Particle swarm optimization 
algorithms: Introduction

• The principles that govern PSO algorithms can be 
stated in the following characteristics:
– Each particle has a position (solution) and a velocity (change 

pattern of the solution).
– Every particle knows its position and the value of the objective

function for that position.
– It also remembers its own best previous position and the 

corresponding objective function value.
– It can generate a neighborhood from every position.
– It knows the best position among all of the particles and its 

objective function value.

Particle swarm optimization
algorithms: Principles
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Particle swarm optimization
algorithms: Natural metaphor

In each iteration t, the behavior of a particle 
is a compromise among three possible 
alternatives:

• Following its own pattern of exploration.
• Going toward its better previous position.
• Going toward the best historic value of all the 

particles.

Particle swarm optimization
algorithms: Principles
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Particle swarm optimization
algorithms: Equations

tiv ,

Position of particle i at iteration t (which is equivalent to one 
solution of the problem).
Velocity of particle i at iteration t (which is equivalent to the 
change pattern of the solution).
Best previous position of particle i at iteration t (which is 
memorized by every particle).
Best previous position among all the particles at iteration t 
(which is memorized in a common repository).

Weight coefficients to change the solution according 
with vi,t, pi,t and p∀i,t
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Particle swarm optimization
algorithms: Equations
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The part-machine grouping problem

• The cell formation problem involves grouping similar 
parts into part families and machines into clusters of 
manufacturing resources called manufacturing cells. 

• Each family is processed by one and only one of the 
manufacturing cells. 

• Most techniques use only the information available 
on the part-route sheets. Part-route sheets indicate 
the sequence of facilities or machines used to 
process each part. From it, we can construct a binary 
matrix A, called part-machine incidence matrix, where 
aij= 1 means that machine i is required to process 
part j and aij =0 otherwise.

The part-machine grouping problem
• The machine-part cell formation problem can be stated as 

follows: given a set of machines, a set of parts, and a part-
machine incidence matrix; assign parts and machines to a fixed 
number of part families and associated manufacturing cells, so 
that the cell-coupling (measured by the number of out-of-cell 
operations or intercellular movements) is minimized and each 
cell does not contain more than a specified maximum number of 
machines. 

• Cell coupling occurs due to parts requiring machines that belong
to a different cell. We call any operation included in the part 
route sheet which has to be performed outside the assigned cell 
an “exceptional element”. 

• For a given cell configuration, the degree of interaction between 
cells can be measured by the number of exceptional elements.
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The part-machine grouping problem: 
Mathematical formulation. 

• M Number of machines
• P Number of Parts
• C Number of Cells
• i Index of machines (i=1,…,M)
• j Index of parts (j=1,…,P)
• k Index of cells (k=1,…,C)
• A=[aij] MxP binary machine-part incidence 

matrix
• Mmax Maximum number of machines per 

cell 

The part-machine grouping problem: 
Mathematical formulation. 

• Minimize:
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The part-machine grouping problem: 
Mathematical formulation.

• This integer program has a quadratic objective 
function and two sets of variables (yik and zjk). 

• To solve it, only one set of variables (for example yik) 
need to be directly searched since given the values 
of those variables, the optimal values of the other set 
can be easily computed. 

• That is, given the machine cells partition the 
assignment of parts to each family is trivial: each part 
is assigned to the family/cell that contains the 
majority of the machines that part requires. 

• If some of the machines required by a part type are 
not in that cell, they correspond to exceptional 
elements and are added to compute the objective 
function (to minimize).

Proposed algorithm

• Pseudocode
• Position of a particle
• Velocity of a particle
• New velocity by substraction of two 

positions
• Product of a coefficient and a velocity
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Proposed algorithm:pseudocode

t=0 

Random initialization of the swarm t,ix and the velocity t,iv          

Evaluate t,ip i∀  and t,ip∀   

Repeat until a stopping criterion is reached 

           Compute 1+t,iv  i∀  

           Compute 1+t,ix  i∀  

            t=t+1  

           Evaluate t,ip i∀  and t,ip∀  

Position of a particle
• The position of a particle represents an encoded solution of the

problem. This encoding corresponds to a vector of M positions. 
Each component of that vector takes a value between 1 and C 
which represents the cell to which the machine is assigned. 

• Note that due to the type of codification used, the same solution 
may correspond to different positions. Thus, the positions 
(1,2,3,2,1,1,3,2), (2,1,3,1,2,1,3,1), (1,3,2,3,1,1,2,3) represent all 
the same solution to the problem. To take this into account, an 
appropriate internal mapping procedure has been developed.

M1 M5

M8

M7

M6

M4

M3

M2
Cell 1

Cell 2

Cell 3
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Velocity of a particle
• The velocity of a particle must be understood in the context of a 

combinatorial optimization problem as an ordered set of 
transformations on a solution, i.e. a velocity is a succession of 
changes or movements.

• In the proposed approach the insertion movement has been 
selected because computational experiences show that it is 
more efficient than exchange movements. For example, a 
movement coded as (3,1) represents changing machine 3 to cell 
1. Applied to a certain solution, not all movements are feasible
since some of them may violate the maximum cell size.

(1,2,1,2,1,1,3,2)(3,1)(1,2,3,2,1,1,3,2)

NEW VELOCITY BY SUBTRACTION OF 
TWO POSITIONS

It represents  the necessary movements to 
change from the position given by the second 
term to the position given by the first term (path 
relinking).

• The coefficients cn (n=1,2,3) correspond to the 
probability of selection of the movements of the 
corresponding velocities. 

PRODUCT OF A COEFFICIENT AND A 
VELOCITY

)()( ,,3,,2,11, titititititi xpcxpcvcv −+−+= ∀+
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Computational experiences
• The swarm size has been fixed to 20 and the 

algorithm processing time has fixed to 2 seconds. 
• An experimental design has been generated. Six 

possible values have been tested for every 
coefficient cn: 0.10, 0.30, 0.50, 0.70 and 0.90. 

• The experiments consisted in one execution of 
the algorithm for every instance and cell size. 
After running the experiments, the statistical 
package Statgraphics 10 ™ has been used to 
perform an analysis of the experiments. The 
figures show the medium value an 95% 
confidence intervals for the different levels of the 
three parameters.

Computational experiences
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Computational experiences
• 70 instances have been solved and PSO results have been 

compared with the known optimal solution  

• It can be seen that PSO obtains the optimum a large number 
of times (50 out of 70) with small differences in the rest of 
occasions.

Problem Mmax=6 Mmax=7 Mmax=8 Mmax=9 Mmax=10 Mmax=11 Mmax=12 

1 0 4 0 0 0 0 4 
2 0 0 0 0 0 1 0 
3 1 0 2 0 0 1 0 
4 0 0 0 0 0 0 0 
5 1 0 2 3 2 0 1 
6 0 0 0 0 0 2 0 
7 1 3 2 0 0 0 0 
8 1 4 0 1 0 0 0 
9 0 0 0 0 0 0 3 

10 0 0 0 3 0 0 0 
 

Extensions

A reference set is used to guide the particles in the 
exploration. So the swarm evolution is a tradeoff 
between following a guide solution (from the 
reference set), or following the particle best solution 
or following the swarm best particle. A perturbation 
random term has been included to let a degree of 
diversification in the search. So PSO equation 
changes to

)()()()( ,,4,,3,,2,,11, tititititititititi xrefcxpcxpcxrndcv −+−+−+−= ∀∀+
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Computational experiences
Problem Mmax=6 Mmax=7 Mmax=8 Mmax=9 Mmax=10 Mmax=11 Mmax=12 

1 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 
3 0 1 0 0 0 0 0 
4 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 
6 0 0 0 0 1 0 1 
7 0 0 0 0 0 0 0 
8 1 1 0 1 0 0 0 
9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
 •It can be seen that PSO obtains the optimum a 

large number of times (64 out of 70) with 
minimum differences in the rest of occasions.

Conclusions
• A PSO metaheuristic has been proposed for 

solving the cell formation problem. 
• The results obtained in the computational 

experiences carried out show that the 
proposed algorithm can generate optimal (or 
near optimal) solutions. 

• More experiments, especially with larger 
problems will however be needed in order to 
confirm such good performance. 
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Further research

• Other update equations for velocity and
position

• Dynamic coefficients
• Multiobjetive optimization

Thank you


