
1

The 6th Metaheuristics International Conference (MIC 2005),
August 22-26, 2005, Vienna, Austria

A path relinking procedure for
balancing assembly lines with

setups

Carlos Andrés* Cristóbal Miralles* Rafael Pastor† José Pedro
García*

*CIGIP Research Center, Polytechnic University of Valencia
Camino de Vera s/n, E-46022 Valencia, Spain

{candres,cmiralles,jpgarcia}@omp.upv.es

† IOC Research Center, Polytechnic University of Cataluña
Avda Diagonal, 647, E-08028 Barcelona, Spain

rafael.pastor@upc.edu

Presentation outline

• Introduction
• PSO and SS algorithms
• The assembly line balancing problem
• The proposed algorithm
• Computational experiences
• Conclusions and further research

2

Introduction
• Particle Swarm Optimization (PSO) and Scatter

Search (SS) algorithms are population metaheuristic
methods that have been used to find the minimum of
an objective function in different continuous domain
problem.

• Since the original PSO algorithms were developed for
optimization on a continuous domain, applications to
discrete domain functions are scarce.

• In SS there applications to continuous and discrete
domain are more frequent.

• Our aim is to develop an algorithm inspired in PSO
with some features from SS procedures to solve
some combinatorial problems (the assembly line
balancing problem with setups and the machine- part
grouping problem).

The particle swarm optimization
algorithms: Introduction

PSO algorithms were proposed in the middle nineties* and
they are one of the latest evolutionary optimization
techniques.

Their biological inspiration is based on the metaphor of social
interaction and communication in the flock of birds or school
of fishes. In these groups there is a leader who guides the
movement of the whole swarm.
•*Kennedy, J. y Eberhart, R.C., (1995) Particle Swarm Optimization, IEEE
International Conference on Neural Networks, Australia.

3

• The movement of every individual is based on the leader behavior and on
its own knowledge. Since it is population-based and evolutionary in nature,
the members in a PSO algorithm tend to follow the leader of the group, i.e.,
the one with the best performance.

• In general, it can be said that the model that inspires PSO assumes that
the behavior of every particle is a compromise between its individual
memory and a collective memory.

• In this aspect, PSO algorithms present some similarities with algorithms
based in ant colonies (ACO). The main difference between ACO and PSO
algorithms is the method used to memorize solutions previously visited and
the procedure to generate new solutions (constructive in ACO versus path
relinking in PSO). In relation to other methods such Genetic Algorithms
(GA) or Tabu Search (TS), PSO use a population like in GA, but the
generation procedure is not based in crossover or mutation. Although TS
uses path relinking, it is not a population based method, so it not use the
benefit derived from the information interchange.

The particle swarm optimization
algorithms: Introduction

• The principles that govern PSO algorithms can be
stated in the following characteristics:
– Each particle has a position (solution) and a velocity (change

pattern of the solution).
– Every particle knows its position and the value of the objective

function for that position.
– It also remembers its own best previous position and the

corresponding objective function value.
– It can generate a neighborhood from every position.
– It knows the best position among all of the particles and its

objective function value.

The particle swarm optimization
algorithms: Principles

4

The particle swarm optimization
algorithms: Natural metaphor

The particle swarm optimization
algorithms: Natural metaphor

5

The particle swarm optimization
algorithms: Natural metaphor

The particle swarm optimization
algorithms: Natural metaphor

6

The particle swarm optimization
algorithms: Natural metaphor

The particle swarm optimization
algorithms: Natural metaphor

7

The particle swarm optimization
algorithms: Natural metaphor

The particle swarm optimization
algorithms: Natural metaphor

8

The particle swarm optimization
algorithms: Natural metaphor

In each iteration t, the behavior of a particle
is a compromise among three possible
alternatives:

• Following its own pattern of exploration.
• Going toward its better previous position.
• Going toward the best historic value of all the

particles.

The particle swarm optimization
algorithms: Principles

9

The particle swarm optimization
algorithms: Equations

tiv ,

Position of particle i at iteration t (which is equivalent to one
solution of the problem).
Velocity of particle i at iteration t (which is equivalent to the
change pattern of the solution).
Best previous position of particle i at iteration t (which is
memorized by every particle).
Best previous position among all the particles at iteration t
(which is memorized in a common repository).

Weight coefficients to change the solution according
with Vt, Pbest(i)t and Pbest.

tix ,

tiP ,

tiP ,∀

321 ,, ccc

)()(,,3,,2,11, titititititi xpcxpcvcv −+−+= ∀+

1t,it,i1t,i vxx ++ +=

The particle swarm optimization
algorithms: Equations

x i,t

New particle position
at t+1 iteration

vi,t

∀ i,t

i,t

Global optimum at iteration t

Local optimum
at iteration t.

xi,t+1

)(,2 i,tti xpc −⋅

i,tvc ⋅1

)(,3 i,tti xpc −∀

Particle position
at t iteration

10

Scatter search

• The evolutionary approach named Scatter Search
was first introduced by (Glover, 1977) and it is based
in the application of diversification and intensification
strategies over a reference set composed by good
quality and diverse solutions.

• Scatter search has been investigated in a number of
studies, solving difficult problems in continuous and
discrete optimization.

• We have taken some aspects from scatter search
and we have used them for improving the search in a
PSO discrete algorithm.

Glover, Fred (1977): "Heuristics for Integer Programming using surrogate
constraints"”. In: Decisions Sciences, 8, 156-166.

The assembly line balancing problem
• The simple assembly line balancing problem

(SALBP) consists of the assignment of tasks of
different durations to stations.

• Precedence relations between some of the tasks
impose a partial ordering, reflecting which task has to
be completed before others. The tasks are related to
the assembly of a product to be performed at
consecutive stations. At the stations, the assigned
tasks have to be processed within the cycle time, i.e.
which is the time the product moves within the
station.

11

The assembly line balancing problem
• The problem presented here adds sequence

dependent setup time considerations to SALBP
problem in the following way: when a task B is
assigned next to the task A at the same
workstation, a setup STAB must be added to
compute the total operation time. Furthermore, if
a task B is the last one assigned to the
workstation which has task A the first one
assigned, then a setup time STBA must be
considered. The objective is minimizing the
number of stations for a given cycle time.

The assembly line balancing problem

• We called this problem as ALBS (assembly line
balancing problem with setups) and so far has
never been reported in the literature, although it
represents a very common situation in the
assembly lines.

• Setup times are usual in almost every manual
operated assembly line because the worker must
change the tool or adjust the machine to pass
from a task to the next.

12

Proposed algorithm

• Overview
• Pseudocode
• Position of a particle
• Velocity of a particle
• Reference set
• New velocity by substraction of two

positions
• Product of a coefficient and a velocity

Overview
• The proposed PSO+SS algorithm is very simple and follows the

deterministic PSO structure described before.
• However, an additional aspect from SS has been added to the

algorithm. A reference set is used to guide the particles in the
exploration. So the swarm evolution is a tradeoff between
following a reference solution (ref∀i,t); or following the own
particle best solution (pi,t); or following the swarm best particle
(p∀i,t). A perturbation random term has been included to let a
degree of diversification in the search. So the first PSO equation
has been changed to:

)x(refc)x(pc)x(pc)x(rndcv ti,ti,4ti,ti,3ti,ti,2ti,ti,11ti, −⋅+−⋅+−⋅+−⋅= ∀∀+

13

Proposed algorithm:pseudocode

t=0

Random initialization of the swarm , the reference sett,ix
and the velocity t,iv

Evaluate t,ip i∀ and t,ip∀
Repeat until a stopping criterion is reached

Compute 1+t,iv with equation (1) i∀

Compute 1+t,ix with equation (2) i∀

t=t+1

Evaluate t,ip i∀ and t,ip∀

Position of a particle
• The position of a particle represents an

encoded solution of the problem. This coding
corresponds to a vector of T positions (where
T is the number of tasks to be balanced)
composed of a permutation of the tasks.

14

Velocity of a particle
• The velocity of a particle must be understood within the context

of combinatory problems, as the set of transformations the
particle makes in the course of passing from a given position to
another.

• Velocity is a series of movements that generate the
surroundings of a position. For example, in the proposed
approach a movement coded as (3,1) represents “put task 3 in
the first position”. The task that occupied the first position is
fitted in the old task 3 position. This movement has been
selected instead of insertion movements because computational
experiences show that is more efficient.

(3,2,1,4,5,6,7,8)(3,1)(1,2,3,4,5,6,7,8)

A reference set is used to guide the particles in the
exploration. So the swarm evolution is a tradeoff
between following a guide solution (from the
reference set), or following the own particle best
solution or following the swarm best particle.

The approach uses the same procedure defined in
(Glover, 1999) applied to a random seed solution.

A member of the reference set is selected at a certain
number of iterations. When all the members have
been used, a new reference set is created.

Reference set

Glover, Fred (1999): "A template for Scatter Search and Path Relinking ". In: Hao,
Lutton, Ronald , Schoenauer and Snyers (eds.): Artificial evolution. (Lecture notes
in Computer Science Series). Springer, 13-54.

15

NEW VELOCITY BY SUBTRACTION OF
TWO POSITIONS

They represent the necessary movements to change
from the position given by the second, subtracting
term to the position given by the first term (path
relinking).

• The product of coefficients Cn (n=1,2,3,4) in the equation
(1) corresponds to the selection with a probability Cn of
some of the movements of the corresponding velocities.

PRODUCT OF A COEFFICIENT AND A
VELOCITY

)x(refc)x(pc)x(pc)x(rndcv ti,ti,4ti,ti,3ti,ti,2ti,ti,11ti, −⋅+−⋅+−⋅+−⋅= ∀∀+

Computational experiences
• The algorithm was programmed in C and the tests were run on

a Pentium IV, with 2.4 Ghz and 1 Gb RAM.
• The search capability of the proposed algorithm was analysed

with the Talbot set of SALBP problems.
• To run the described algorithm, it required to fix five parameters:

population size (Pop_size); probability of applying the random
term (C1); probability of applying the pi,t term (C2); probability of
applying the p∀i,t term (C3) and Probability of applying the
ref∀i,t term (C4). To determine the parameters, a big instance
from Talbot´s set was used.

• After an experimental design through a set of 243 experiments
the parameters were fixed in Pop_size=50, C1=25%, C2=75%,
C3=50% and C4=50%.

16

Computational experiences
•The first experiment consisted of comparing the proposed
algorithm results with the best known ones for SALBP (without
setups).
•The 64 instances from Talbot were solved ten times with the
algorithm.
•The results showed that the percentage of times that the
proposed algorithm found the best solution (minimum number
of workstations) in the 640 experiments was 75,5 % and only in
the 3 %, the absolute deviation from the optimum value was
greater than 1.
•Obviously, the percentage of optimal solutions can be
increased by solving the test problems several times or by
increasing the computation time (fixed to 120 second in our
experiments).

Computational experiences
• In a second step of the computational experience 128 ALBS

problems were generated from Talbot´s set.
• Every problem was duplicated with the addition of two types

of setup times, i.e. one matrix with a uniform distribution U[0,
Max(pti)•0.5] and other matrix with a uniform distribution U[0,
Max(pti)•2] (where Max(pti) is the maximum processing time
for every task).

• In order to get a more diversified evaluation of a solution,
next fitness function was used in this experiments instead the
number of stations (UM).

• Where UM is the number of stations, t(Sk) is the station load
and C is the cycle time,

UM
UM

C
St

Sf

UM

k

k

+
⎟
⎠
⎞

⎜
⎝
⎛

=
∑
=

2

1

)(

)(

17

Computational experiences
• Every instance was solved with the proposed algorithm and a GRASP

algorithm. For every problem instance, the algorithms were applied 10
times.

• Next table shows the ratio between the average of the values obtained
by the path relinking procedure and the GRASP algorithm:

 Setup matrix U[0, Max(pti)•0.5] Setup matrix U[0, Max(pti)•2]
Problem Cycle time PR/GRASP Cycle

time
PR/GRASP

Bowman 30 0,88 50 0,99
Mertens 15 0,98 20 0,69
Jaeschke 15 0,97 20 1,00
Jackson 15 0,85 20 0,84
Mitchell 40 0,84 50 0,88

Heskiaoff 350 0,98 450 0,97
Sawyer 75 0,89 125 0,82

Kilbridge 200 0,98 300 0,91
Tonge 600 0,92 800 0,82
Arcus1 15000 0,99 20000 0,89
Arcus2 20000 0,84 25000 0,91

Other experiences: the part machine grouping problem

• The cell formation problem involves grouping similar parts into
part-families and machines into clusters of manufacturing
resources called manufacturing cells.

• Each family is processed by one and only one of the
manufacturing cells.

• The machine-part cell formation problem can be stated as
follows: given a set of machines, a set of parts, and a part-
machine incidence matrix; assign parts and machines to a fixed
number of part families and associated manufacturing cells, so
that the cell-coupling (measured by the number of out-of-cell
operations or intercellular movements) is minimized and each
cell does not contain more than a specified maximum number of
machines.

18

Computational experiences (without reference set)

• 70 instances have been solved and PSO results have benn
compared with the optimal solution

• It can be seen that PSO obtain the optimum a large number
of times (50 out of 70) with small differences in the rest of
occasions.

Problem Mmax=6 Mmax=7 Mmax=8 Mmax=9 Mmax=10 Mmax=11 Mmax=12

1 0 4 0 0 0 0 4
2 0 0 0 0 0 1 0
3 1 0 2 0 0 1 0
4 0 0 0 0 0 0 0
5 1 0 2 3 2 0 1
6 0 0 0 0 0 2 0
7 1 3 2 0 0 0 0
8 1 4 0 1 0 0 0
9 0 0 0 0 0 0 3

10 0 0 0 3 0 0 0

Computational experiences (with reference set)

Problem Mmax=6 Mmax=7 Mmax=8 Mmax=9 Mmax=10 Mmax=11 Mmax=12

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 1 0 1
7 0 0 0 0 0 0 0
8 1 1 0 1 0 0 0
9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

19

Conclusions
• A PSO metaheuristic has been proposed for solving

two problems (assembly line balancing problem and
cell formation problem).

• The results obtained in the computational
experiences carried out show that the proposed
algorithm can generate optimal (or near optimal)
solutions.

• More experiments, especially with larger problems
will however be needed in order to confirm such good
performance.

Further research

• Other definitions of velocity and position
• Adaptive coefficients
• Multiobjetive optimization

20

Thanks for your attention

