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First order partial differential equations

@ In many geometry, physics or engineering problems there are
equations that involve a function, more than one indepndent variable
and the partial derivatives of this function.

@ A relation of this kind is called a partial differential equation.

ou Ou O*u
F — Y —— ... =
<$7y7u7 8x78y78x27 > O

@ Different notations for the partial derivatives are:

ou
87%7 Uy, aﬂlu7 D:cu
0%u
2
@7 Ugy, a:c:cua Dxu
0%u
m, uxy, awyu, DmDyU
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First order partial differential equations

@ First, we will focus on first order partial differential equations.
Examples are given by:

U + uz =0
U +uty =0

Ut +UUy = U

3ugy — 2uy +u=2x

\ J

@ A linear first order partial differential equation is of the form

a’(xvy)ux + b(l‘, y)uy =+ c(ﬂs,y)u = f(xvy)

@ The quasilinear first order partial differential equation is of the form

a(m, y7 U)Uz + b(.’IJ, y7 U)uy = f(.’I}, y: ’U,)

Note that the u-term was absorbed by f(x,y,u).
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First order partial differential equations

Let's consider the linear first order constant coefficient partial differential
equation

aty +buy +cu= f(x,y)

We consider the case b =0

f(z,y)

a

c
Uy + —U =
a

whose solution is

1 :n S(r—x -z
U(fc,y)=g/0 f(r,y)ea ™ dr + g(y)ea
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First order partial differential equations

Now, we consider
auy +buy+cu=f

We consider the change of variables

n = br—ay r = —(n+af)
& =y y = ¢

and the equation becomes

bue +cu=f

which can be solved as in the other case.
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First order partial differential equations

Find the general solution of

3ug —2uy +u==2x

Solution

Yy
2

u(z,y) =z —3+c(—2x—3y)e
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First order partial differential equations

@ We call current associated with a given velocity field ¥/ = (v,,vy) to a
scalar field ¥ (zx,y), such that

VY i=0

@ The level curves associated with the surface z = ¢(z,y) are tangent
to the velocity field.

@ To determine ) (x,y) one possibility is to impose

w_ .,
or Y7 oy

:/UCC
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First order partial differential equations

Given the velocity field

Vp =T, Uy = —Y,
compute the current field.
Solution
We have
oY oY
_—= — =X
8.1,‘ y’ ay )
thus,

P(a,y) = xy + f(2), ¢(,y) =2y +9(y),
This implies f(x) = g(y) = C, and

Y(z,y) =2y +C
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First order partial differential equations

On possible solution is
U(z,y) = zy

Current lines
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First order partial differential equations

@ Given a velocity field ¥, we call potential function associated with this
field, if it exists, to a scalar function ¢(z,y), such that

Vo =0

@ A condition for the velocity field to have a potential function is

duy _ Ove

or Oy

Given the velocity field

compute the potential of velocities.
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First order partial differential equations

Solution
We have
9 _ 99 _
ax - 9 ay - y bl
that is

B y) = 32+ (), or.y) = 39 +9(),

Computing the derivatives

0
(;;:—y:f’(y), %Zﬂf:g’(x%
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First order partial differential equations

This implies

1 1
fly) = —=y* +C1, g(z)= 5%‘2 + Cs,

2
and

The equipotential lines
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First order partial differential equations

Given the velocity field

#(z,y) = (ycos(z) + y?,sin(z) + 22y — 2y)

Find its potential function.

Solution
¢(z,y) = ysin(z) + y’z —y* + k
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The method of characteristics

We start from a quasilinear partial differential equation

CL(.Z‘, Y, u)uz + b(.f, Y, U)“y = C(l‘, Y, U)

If w = wu(z,y) is a solution of the equation,
f(xvyvu) = u(.’l?,y) —u=0

describes the solution surface. The normal vector associated with this
surface is

VI = (g, uy, —1)

Introducing the vector ¥ = (a, b, ¢), the differential equation can be
written as

TVF=0
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The method of characteristics

@ This implies that the vector ¥ = (a, b, ¢) is tangent to the solution
surface. Geometrically, ¢ defines a direction field, called the
characteristic field.

@ Recall that one can parametrize space curves,

(t) = (x(t), y(t), u(t)), t€ [t1,ta].

@ The tangent to this curve is

L dr _ (dx dy du
T T (dt’ dt’ dt)
These are called the characteristic curves,
dx dy du
v a T a e
These relations can be summarized as
dr  _dy du
a b c
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The method of characteristics

The general solution of a quasilinear partial differential equation
a(x,y, u)uy + bz, y, u)uy = c(z,y,u)

is of the form F(f,g) =0, where f(z,y,u) = c¢1 and g(z,y,u) = ¢y are
two independent solutions of the characteristic system

de. dy du

a b @
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The method of characteristics

Obtain the general solution of the equation

ou ou

o + ua—y =y
Solution
The characteristic system is

de dy du

T u oy
Considering the equation

dy du 9

And if
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The method of characteristics

We have
In(z) = In(u+ y) + In (c2)
that is
ey = —
T +y

and the general solution of the equation is

F,:O—>F2—2x>:0
(c1,¢2) (y U Uty
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The method of characteristics

Find the solution of the equation

that satisfies u(x,z) = x.

Solution
The characteristic system is

Considering the equation

d d
?x:ij — 2z+4+3y=c
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The method of characteristics

And if
dzx du du
—

whos solution is
_z
u=x—34coe 3

Since the solution is F' (c1, c2) = 0 this implies ¢ = G (¢1) = G (2z + 3y)
and
uw(z,y) =z —3+G(2x+3y)e” s
Since u(x,z) = =,
t=1x—3+G(x)e s
and

x

G(bx) =3e3 — G(x)= 315

The solution is

w(z,y)=x—3+3¢5
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The method of characteristics

Solve the advection equation

ou i ou 0
A
ot ox
being c a constant.
Solution
The characteristic system
dt d d
dt _de _du _
1 c 0

this means that the characteristic curves satisfy

de_
dr 7 dr
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The method of characteristics

this is u = ¢; and z = ¢t 4+ ¢ and the general solution
Fluyx—ct)=0 — u= f(zx—ct)

where F'is an arbitrary function.
This solution is a travelling wave
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The method of characteristics

It is satisfied that

0 = wus+ cuy
_ u drdu_ du(a(t),)
ot dt dx dt

This implies that u(x,t) is constant along the characteristics.

Partial differential equations Course 2024-2025 24 /85



Conservation laws

@ Conservation laws are useful in modelling several systems.

@ They determine the rate of change of some quantity, Q(¢), in a
region, a < z < b.

@ They describe the fluid flowing in one dimension, such as water
flowing in a stream. Or, it could be the transport of mass, such as a
pollutant. One could think of traffic flow down a straight road.
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Conservation laws

@ The rate of change of Q(t) is given as
the rate of change of () = Rate in - Rate Out + source term.

@ We can describe this flow in terms of the flux, ¢(x,t) over the ends of
the region. On the left side we have a gain ¢(a,t) and on the right
side of the region there is a loss of ¢(b,1).

aQ

b
= 6la,t) ~ o(b1) + / Fl,t) do

where f(x,t) is the source density. This can be rewritten as

dQ b d¢(x,
E_*/a o

d+/fxt
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Conservation laws

@ Introducing the density function u(x,t)

b
Q(t) = / w(z,t) de

we have

;lt/bu(x,t)dx:—/dex—i-/bf(:B,t)dx
This is ,
[ o) + 6ulot) - flat) da =0

@ One possibility is

ue(@, ) + a,t) — f(2,1) = 0]

which is a local conservation law.
@ We can write

20 _do ou
or  du Ox
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Conservation laws

and

(2, t) + ¢’ (wug(z,t) — f(z,t) =0

The inviscid Burgers' equation is given when ¢ = %uQ and f(z,t) =0

which is also called a nonlinear advection equation.
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Conservation laws

Let u(z,t) be the density of cars. Let ¢(x,t) denote the number of cars
per hour passing position x at time ¢. The flux in this model is ¢ = uv,
where v is the velocity of the cars at position z and time ¢.
We need to assume a relationship between the car velocity and the car
density. Let's assume the simplest form, a linear relationship,

U1

V=11 — —U
U

We can now write the equation for the car density,

0 = wu+ ¢Iua:

29 /85
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Nonlinear advection equation

@ Given the linear advection equation
U + cu, =0

its characteristic lines satisfy
dx du
—=c¢, — =0
dt dt
then u(z,t) is constant along the characteristics * = z¢ + ct.
@ The nonlinear advection equation is
ut + c(u)ugy =0

The characteristic lines satisfy

dzr du
i c(u), i 0

this is u(z,t) is constant along the characteristics z’(t) = c(u).
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Nonlinear advection equation

Solve

u + uu, =0

with the initial condition u (z,0) = e~

Solution
The characteristic system

du o dr
dt 7 dt

Since u is a constant, on the characteristics,

= U

@ = g+ u(z) t = x0 + te b

The solution

2

_ a2
u=-e along x = xg +te” %0
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Nonlinear advection equation

We consider the initial condition ug(z) = e—(2@-1)?

Clear[f0, fval, x, f]

fo[x_] = Exp[—(2 (x — 1))~ 2];
(x Condicién inicialx)
x[to,x0-] = x0 + fO[x0] t;
flt.,x0_] = fO[x0];

fval[t_] := Table[{x[t, x0], f[t, x0]}, {x0, —.5, 3, .1}]
Plot [Table[x[t, x0], {x0, —.5, 3, .1}], {t, 0, 2},
AxesLabel — {Text[Style["t", Italic, 23]],

Text[Style["x", Italic, 23]]}]

3.0

25

2.0

0.5 1.0 15 2.0 t
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Nonlinear advection equation

ParametricPlot3D [{x[t, x0], t, f[t, x0]}, {xO0,

ColorFunction —> "DarkRainbow",
PlotStyle —> Directive [Opacity [0.9]],

Mesh —> 5, PlotRange —> All, Axes —> {True,

Boxed —> False, ImageSize — 600,
AxesLabel — {Text[Style["x", Italic,

Text[Style["t”, ltalic, 23]],

0, 2},

MeshFunctions — {#2 &},

23]],

Text[Style["u”,

True,

23]1}]

ial equations
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Nonlinear advection equation

The initial profile propagates to the right with the higher points traveling
faster than the lower points. Around t = 1.0 the wave breaks and becomes
multivalued. The time at which the function becomes multivalued is called
the breaking time.
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Given the nonlinear diffusion equation

O+ c(u)dpu =0
we have that the wave speed is

F (20) = ¢ (uo (0))

and the characteristic
x = xo + tF (x0)

The solution

u(z,t) = u(0,20) = up (xrg) along x =z +tF (x0)
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We have
du_ oudm Ou_ ou dso
dr  Oxg Oz’ Ot  Oxg Ot
From
xo = — tF (x0)
we obtain
% / % % _ el dzo
or 1 —tF (x()) py ot = F (l‘o) tF (.%'0) ot
_ 1 _ F(20)
1+ tF" (x9) 1+ tF' (xo)

Partial differential equations
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Jxg

dxg . .
e and 57 are undefined if

1+tF’($Q):0

that is

The breaking time
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Find the breaking time for

ur + uug, =0

with u(z,0) = %",

Solution
We have that

2

F'(zg) = —2wpe "

thus,
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To find the minimum

di _ d (e :(2_12)6@3:0
dl’o dIL’() 2]70 4 2

this implies zg = % and
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Second order differential equations

Examples of second order differential equations:

Wave equation

1 0%u . 0%u
o2 oz
Laplace’s equation
v 0%u
— + 5 =0.
ox? = 0y?
Diffusion equation
10u 0%u
2ot 0x?
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Second order differential equations

@ A second-order PDE is called linear if it is linear in the derivatives and
in the function itself, otherwise it is called nonlinear

@ The general form of a linear partial differential equation with two
independent variables x and y is the following one

2 2 2
0z g9z 092, p% 5% p._g,

22~
Ox2 Oxdy Oy? Ox Oy

with A = A(x,y), B = B(z,y), C =C(z,y), D = D(z,y),
E =E(z,y), F = F(z,y) and G = G(z,y).

e If G(z,y) =0 it is called homogeneous otherwise non-homogeneous.
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Second order differential equations

@ A linear second-order PDE of constant coefficients ®(D,, Dy)z =0 is
reducible, if it can be written in the form

@1(DI’DQ) [QDQ(D%DZ/)] = QOQ(D%DZJ) [‘pl(DfﬁvDy)] z=0,

being
(Pz(ngDy) = aiD.r + b’LDy + Ci, 1= 172

@ To solve this kind of equations, we have to take into account that it
has to be satisfied

(ali + biDy + Cz‘) z=0, 1=1,2,

@ We consider the characteristic system

dr _dy __dz

(473 bl C; 2 ’
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Second order differential equations

@ For ¢ = 1,2 we have

dr _ dy

= — a;y — bﬂ,’ = C1
a; b
- T
dx dz —
—_—=—— ze @i = 4y
a; [&¥4

@ The general solution
C;T
z=e @ y;(a;y —bix),
With v; (.), i = 1,2 arbitrary functions.
That is, the general solution is

z=e 4y (ary—bix)+e 92 by (agy — box).
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Second order differential equations

Find the general solution of the wave equation

*u  ,0%u
— = —
ot2 oz?’

Solution
Using the derivative operators, we can write

(Dt2 — (:QD?C) u=(Dy —¢cDy) (D¢ + c¢Dg)u

thus, it is a reducible equation. Using the charcteristic systems, we find the
general solution

u= 1 (24 ct) + s (2 — ct),

being ; (.), @ = 1,2 arbitrary functions. This solution is known as the
D’Alembert solution.
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Classification of partial differential equations

Linear second order partial differential equations (PDE) in general, or the

governing equations in fluid dynamics in particular, are classified into three
categories:

© Elliptic,
@ parabolic,
© Hyperbolic.

Let us consider the partial differential equation in a two-dimensional
domain of the form

2 2 2
Ou g o0 p% g% puya—o.

Q22
Ox? Oxdy Oy? Ox oy

Mathematically, the classification of second-order PDEs is based upon the
possibility of reducing this equation by coordinate transformation to a
canonical or standard form at a point.
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Classification of partial differential equations

We rewrite the second order equation as
Augy + Bugy + Cuyy = @ (2,9, u, g, uy) -

The type of second-order PDE at a point (z¢, yo) depends on the sign of
the discriminant defined as

B 24

A(x07y0) = 2C B
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Classification of partial differential equations

The terminology hyperbolic, parabolic, and elliptic chosen to classify PDEs
reflects the analogy between the form of the discriminant, B? — 4AC, for
PDEs and the form of the discriminant, B2 — 4AC, which classifies conic
sections given by

Az? + Boy+Cy> + D+ Ey+F=0.
The type of the curve represented by the above conic section depends on
the sign of the discriminant, A = B? — 4AC.
- If A > 0, the curve is a hyperbola,

- If A =0 the curve is an parabola,

- If A < 0 the equation is a ellipse.
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Classification of partial differential equations

Pu o
ox?  oy2
A=1, B=0,C=1and A =—-4<0. Elliptic equation.

ou 0%u

ot Y922
A=—qa, B=0,C =0and A = 0. Parabolic equation.
For the wave equation

=0, (a>0),
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Canonical forms

The Tricomi equation

Pu 0%

o4+ =0, A=-4

When y > 0 it is elliptic, when y = 0 it is parabolic and when y < 0 it is
hyperbolic.

To reduce a second order partial differential equation to a canonical form,
we transform the independent variables x and y to the new independent

variables £ and 7 through the change of variables

ng(l‘ay) ) 77277(95’?/) )

The Jacobian
§o &y
Nz My

J="= 70.
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Canonical forms

We define w(&,n) = u(z(&,n), y(€,n)) such that
u(z,y) = w(é(z,y),n(x,y)). Thus,

Uy

wele + Wy

We&y + wyy

Weels + 2Wenalle + W + Webna + Wyhea

w&éﬁ + 2wen&ane + wrmni + weyy + wyTlyy

wee€ay + wey (ExMy + EyNz) + WinMaNy + Weay + Wy -

Substituting in the equation

where

awge + bwey + cwny = @ (z,y, w, we, wy)

a = AL+ B&E +CE
b = 2A&n. + B (fmny + gynm) + Qngny )
¢ = Ani+ Bneny+Cnp .
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Canonical forms

We observe that
a b2\ _ (& &\ (A B2\ (¢ &\
b/2 ¢ e ny) \B/2 C J\nz ny)

b2 — dac = J> (32 _ 4AC) ,

Thus,

this shows that the discriminant of the transformed equation has the same
sign as the discriminant of the original equation.
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Canonical forms

A PDE is hyperbolic if the discriminant A = B2 — 4AC > 0. Thus, for a
hyperbolic PDE, we should have b? — 4ac > 0.

The simplest case of satisfying this condition is a = ¢ = 0. We get the
following canonical form of hyperbolic equation,

Wen = 7/1(&77710771)5,1”7)) .

This form is called the first canonical form of the hyperbolic equation.
We also have another simple case when b = 0 and ¢ = —a. In this case we
obtain

Wee — Wy = w(’ganawaw&wn) s

which is the second canonical form of the hyperbolic equation.
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Canonical forms

A PDE is parabolic if the discriminant A = B2 — 4AC = 0. that is

b? — dac = 0. The simplest case of satisfying this condition is ¢ (or a) = 0.
In this case another necessary requirement b = 0 will follow automatically,
b? — dac = 0.

So, we get the following canonical form of parabolic equation:

wf{ = w (57 777w7w§7 U}n) .
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Canonical forms

A PDE is elliptic if the discriminant A = B? — 4AC < 0, that is
b? — 4ac < 0. The simplest case of satisfying this condition is b = 0 and
¢ = a. So, we get the following canonical form of elliptic equation:

Weg + Wyn = 1/) (§7n7w7w£7wn) .

Partial differential equations Course 2024-2025
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Hyperbolic equations

In this case, we have seen that, to reduce this PDE to canonical form we

need to choose the new variables £ and 7 such that the coefficients a and
¢ vanish

a = AL+ B&LE+CE =0,
¢ = Ani+ Bneny+Cn. =0,

2
§a €a
Al = = C =
(&) +n(E) -0,

that is,
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Hyperbolic equations

The two distinct roots of these equations are

& -B+VB'—4AC  n, -B—VB?—4AC
'ul_fy_ 24 7:“2—77y— 24 .

We consider curves of the form &(x,y) = k. This implies

d§ = &pdr + §dy =0,
that is,

dy _ & dy e
dx & dx Ny

dy 2 dy B
A(BY (Y comp

This implies that
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Hyperbolic equations

The solutions are

dy B+ VB2 —4AC

dr 924 AL
dy B — VB2 —4AC

= - )\2 )
dz 2A

and the change of variables is given by

E=y— Nz, n=y— o ]

It is easy to show that the hyperbolic PDE has a second canonical form.
The following linear change of variables

a:§+777 6:§_777

leads to the second canonical form of the hyperbolic equation.
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Hyperbolic equations

For example, we consider the wave equation

Ou o

ot? ¢ 0z? =0,

then
A=1, B=0, C=-¢,

and the discriminant A = 4¢? > 0 and the equation is hyperbolic.
For this case
)\1 =cC, /\2 = —C,

and the transformation

E=xz—ct, n=x+ct,
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Hyperbolic equations

Transforms the wave equation into its canonical form
wep =0 .
The general solution is

w(§,m) = f(§) +9) ,

that is,
u(z,t) = fx —ct) + g(z +ct) .
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Hyperbolic equations

The so-called small disturbance potential equation:

(1—M2)‘;2¢+22y¢ 0

was the form of equation used by Murman and Cole to obtain the first
numerical solution for a transonic flow around an airfoil with shocks.

Show that, depending on the Mach number, the small disturbance
potential equation is elliptic, parabolic, or hyperbolic. Find the
characteristic variables for the hyperbolic case and hence write the
equation in canonical form.
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Elliptic equations

Potential equation

Another interesting example is provided by the stationary potential flow
equation in two dimensions,

2\ 72 2 2\ 92
TN Zw &g gy TG0
a? ) 0z%2  a? 0x0y a? | 0y

where a is the speed of sound.

The discriminant

u2+v2

B2—4AC:4< 5 —1):4(M2—1)
a

where the Mach number is M = Vu? +v?/a.
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Elliptic equations

@ The stationary potential equation is elliptic for subsonic flows and
hyperbolic for supersonic flows.

@ Along the sonic line M = 1, the equation is parabolic.

@ This mixed nature of the potential equation has been a great
challenge for the numerical computation of transonic flows since the
transition line between the subsonic and the supersonic regions is part
of the solution.
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Parabolic equations

For a parabolic PDE the discriminant A = B2 —4AC = 0. In this case, we
have seen that, to reduce this PDE to canonical form we need to choose
the new variables & and 7 such that the coefficients a and b vanish. For a,

a = A& + B&& + C& =0,

2
a Ex
a <£y> +B<£y>—|—0 0

If we consider the coordinate line &(x,y) = k,

that is,

d§ = &edr + §ydy =0,

dy 2 dy B
A(BY (Y comp

and the solution is
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Parabolic equations

This is called the characteristic polynomial of the PDE. Since
B2 —4AC = 0 in this case,
d B
W= =,
de 2A
There is only one family of real characteristic curves. The required
variables £ is

E=y— .
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Parabolic equations

To determine the second transformation variable 7, we set b = 0
b = 24&n, + B (&uny + &yne) +2CEym, =0,

B B
24 (—M) +B ((‘2.4) y +nz) +2Cn, =0,
2

B
—Bn, — ﬂny + Bn, + 2077y =0,
(B —44C)n, =0.

This means that 7 can be chosen arbitrarily.
The canonical form in this case is

Wee = ¢(£a n,w, We, wn) .

Partial differential equations Course 2024-2025 65 /85



Parabolic equations

Obtain the canonical form of the equation

0%u 0%u 0%u
4 478 =
Ox? Oxdy + Oy? L

Solution:

The discriminant A = B2 —4AC = 16 — 16 = 0. Hence, the equation is
parabolic.

Solving the characteristic equation

2
A(2) B () om0, am2
dx dx
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Parabolic equations

The change of variables:

§=y—2x
n=x
The canonical form is
Ow =0
T L=
Oon?
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Elliptic equations

For an elliptic PDE the discriminant A = B? — 4AC < 0. In this case, we
have seen that, to reduce this PDE to canonical form we need to choose
the new variables ¢ and 7 to produce b =0 and a = ¢, or b =0 and
a—c=0. Then,

A (é}% - 77:%) + B (gacgy - 771’77y> + C (55 - 773) = 0

We add the first of these equation to complex number i times the second
to give

A& + “71)2 + B (& +ins) (§y +iny) + C (§ + iny)Q =0

Eoting )’ €+
Al g2 o=
fy"‘”}y €y+”7y

that is,
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Elliptic equations

We consider

OZ(IE,y) = f(ﬂfay)+in($ay),
Blx,y) = &(x,y) —in(z,y),

and the curves a(z,y) = k, B(x,y) = k, which implies

dy _oa dy P

dz ay  dr By

and the characteristic curves of the PDE are

dy B +1V4AC — B2 dy B —iv4AC — B2
Y n = cE == ,
dz 2A dz 2A

Clearly, the solution of this differential equations are necessarily

complex-valued and as a consequence no real characteristic exist for an
elliptic PDE.
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Elliptic equations

The solutions are

B+ iVAAC — B2
24 = {8}

Now the real and imaginary parts of « and 3 give the required
transformation variables £ and 7.
Thus, we have

a—+p a—pf
T, n= — L,
2 29

With this choice of coordinate variables the equation reduces to following
canonical form

§=y—

Wee + Wnn = @Z’(fa n,w, W, wn)
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Elliptic equations

Given the equation

O, 0

w"‘rm ayz :0, 377&0
Obtain its canonical form.
Solution:
The discriminant A = B?2 — 4AC = —422 < 0. Hence, the equation is
elliptic.

Solving the characteristic equation

_ B—1iV4AC - B* B —iV4AC — B2

A1 5 1 —ixr, A = 51 T
we have
dy _ —iT dy _ T
dr " odx
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Elliptic equations

and the complex characteristic curves
x? 22
y:—Z?—FCl, y:Z?"i_Cl?

Taking the real and imaginary parts, the change of variables is:

2
T
=y, n= >
and the canonical form:
Pw w1 ow

o€ TaE T Tmoy
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Elliptic equations

Transform into the canonical form the equations:
L1 s, = @iy 4 i = 0
D) Wiy = Sl 2F Bty = 0
3) Ugg — dUgy + Suyy = 0.
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Variables separation. One dimensional problems

As an example, we consider the heat equation where it is assumed that
there are no heat sources,

oT 02T

— =a"—, 0 I, t>0
5 =@ gz 0<e<l, t>0,

with homogeneous boundary conditions
T(0,t)=0, T(,t)=0,

and the initial condition
T(x,0) = g(z) .
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One dimensional problems

The variables separation method assumes that
T(x,t) = X(z)P(t) .
Substituting this solution into the equation

Pl X'()
a’?P(t)  X(x)

=\,
this is,
P'(t) + a*X\P(t) =0,

X"+ XX (z)=0.

X (x) = C; cos(x) + Cysin(x)

Partial differential equations
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One dimensional problems

From the boundary conditions
X(0)=0, X()=0.

we obtain the eigenvalues

and the eigenfunctions
Xn(x) =sin (mlm‘) .
The temporal part equation is

P, +ad*)\,P, =0,

whose solution is of the form

nmTa 2
P,(t) = ane_“a"t = ane_( )t
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One dimensional problems

The solution of the problem can be written as

IL7\'(L nﬂ-x
E ape \'1 tsin ; .

Since the initial condition has to be satisfied
o0
. [(nmx
=Y 4y sin () ,
— l
n=1

and using the orthogonality property

l / x) sin (mlrx) dx .
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Exercise

Diffusion equation

We study the heat conduction in a bar. In particular, we have a bar with
an initial temperature of 0 °C and we apply temperatures of 100 °C at both
extremes of the bar. We assume that the length of the bar is 1 and the
thermal diffusivity is . Compute the analytical solution of this problem.

A
A
u T

100 T T 100

v
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Exercise

Solution
We look for solutions of the form

T(xz,t) =ax +b+u(z,t) , with u(0,t) =wu(l,t) =0
In this way
T(0,t) =100 — b=100
T(1,t) =100 — a=0
Thus,

T(z,t) =100 4+ u(z,t) = 100 + Z A, sin(nrz) o(—an?m2t)

n=1
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Exercise

The initial condition

T(z,0)=g(x) = Z Ay, sin(nrx)

n=1

where, g(x) is taken as the Fourier series associated with the periodic
extension of the function

T

200 ™ 200

100 100

x W
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Exercise

Using the orthogonality relation
2
/ sin(nmx) sin(mnx) de = 6mp
0
we have

2
Ay = /g(m)sin(mwx),dx
0
200

= /2 200sin(mnz) de = — ((—1)™ — 1)
1 m™m
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Multidimensional problems

We consider the Laplace equation

Pu, Pu Fu_,
0x?2 = oy 022

on a rectangle of edges (a, b, ¢), assuming the boundary conditions

U(anv Z) = u(avyaz) = U(ZE,O,Z) = U(J:?ba Z) = U(J:?y,O) =0,

and u(z,y,c) = V(z,y).
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Multidimensional problems

Using the variables separation method,
u(z,y,z) = X(2)Y (y)Z(2) -
we obtain the equation

1 d*°X 1 d%y 1 d*Z
7 T 7t 5 =0.
X(x) dzx Y(y) dy Z(z) dz

Assuming that

1 &#X
X(x) de?
iﬂ:_ﬁ
Y(y) dy?

| &2,
Z(z2) dz? -7

with v2 = o? + 32,
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Multidimensional problems

we have that X (z), Y(y) and Z(z) must satisfy

being
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Partial differential equations



Multidimensional problems

The general form of the solution is

W@y, 2) =3 Ay sin (@) sin (By) sinh (o)

n=1m=1
with
™ 5 ™m n2 - m2
oy = — m = 'Yn,m — - -
a ’ b’ b2

Making u(z,y,c) = V(z,y), we obtain

V(z,y) = i i Apy psin (apx) sin (By,y) sinh (v, me)

n=1m=1

with

a b
nm— 5 . 1 5, < d duV , . . . . .
’ absinh (’Yn,mc)/o ”T/O yV (z,y)sin (anx) sin (Bmy)
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