
Introduction to partial differential equations

Damián Ginestar Peiró
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First order partial differential equations

In many geometry, physics or engineering problems there are
equations that involve a function, more than one indepndent variable
and the partial derivatives of this function.

A relation of this kind is called a partial differential equation.

F

(
x, y, u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2 , . . .

)
= 0

Different notations for the partial derivatives are:

∂u

∂x
, ux, ∂xu,Dxu

∂2u

∂x2 , uxx, ∂xxu,D
2
xu

∂2u

∂x∂y
, uxy, ∂xyu,DxDyu
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First order partial differential equations

First, we will focus on first order partial differential equations.
Examples are given by:

ut + ux = 0
ut + uux = 0
ut + uux = u

3ux − 2uy + u = x

A linear first order partial differential equation is of the form

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y)

The quasilinear first order partial differential equation is of the form

a(x, y, u)ux + b(x, y, u)uy = f(x, y, u)

Note that the u-term was absorbed by f(x, y, u).
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First order partial differential equations

Let’s consider the linear first order constant coefficient partial differential
equation

a ux + b uy + c u = f(x, y)

We consider the case b = 0

ux + c

a
u = f(x, y)

a

whose solution is

u(x, y) = 1
a

∫ x

0
f(τ, y)e

c
a

(τ−x) dτ + g(y)e− c
a

x
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First order partial differential equations

Now, we consider
a ux + b uy + c u = f

We consider the change of variables

η = bx− ay

ξ = y

x = 1
b

(η + aξ)

y = ξ
and the equation becomes

b uξ + cu = f̃

which can be solved as in the other case.
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First order partial differential equations

Exercise

Find the general solution of

3ux − 2uy + u = x

Solution

u(x, y) = x− 3 + c (−2x− 3y) e
y
2
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First order partial differential equations

We call current associated with a given velocity field v⃗ = (vx, vy) to a
scalar field ψ(x, y), such that

∇⃗ψ v⃗ = 0

The level curves associated with the surface z = ψ(x, y) are tangent
to the velocity field.

To determine ψ(x, y) one possibility is to impose

∂ψ

∂x
= −vy ,

∂ψ

∂y
= vx
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First order partial differential equations

Example

Given the velocity field
vx = x , vy = −y,

compute the current field.

Solution
We have

∂ψ

∂x
= y,

∂ψ

∂y
= x,

thus,
ψ(x, y) = xy + f(x), ψ(x, y) = xy + g(y),

This implies f(x) = g(y) = C, and

ψ(x, y) = xy + C
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First order partial differential equations

On possible solution is
ψ(x, y) = xy
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First order partial differential equations

Given a velocity field v⃗, we call potential function associated with this
field, if it exists, to a scalar function ϕ(x, y), such that

∇⃗ϕ = v⃗

A condition for the velocity field to have a potential function is

∂vy

∂x
= ∂vx

∂y

Example

Given the velocity field
vx = x , vy = −y,

compute the potential of velocities.
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First order partial differential equations

Solution
We have

∂ϕ

∂x
= x ,

∂ϕ

∂y
= −y ,

that is

ϕ(x, y) = 1
2x

2 + f(y), ϕ(x, y) = −1
2y

2 + g(x),

Computing the derivatives

∂ϕ

∂y
= −y = f ′(y) , ∂ϕ

∂x
= x = g′(x) ,
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First order partial differential equations

This implies

f(y) = −1
2y

2 + C1, g(x) = 1
2x

2 + C2,

and

ϕ(x, y) = 1
2
(
x2 − y2

)
+ C

The equipotential lines
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First order partial differential equations

Exercise

Given the velocity field

v⃗(x, y) =
(
y cos(x) + y2, sin(x) + 2xy − 2y

)
Find its potential function.

Solution
ϕ(x, y) = y sin(x) + y2x− y2 + k

(UPV) Partial differential equations Course 2024-2025 14 / 85



The method of characteristics

We start from a quasilinear partial differential equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u)

If u = u(x, y) is a solution of the equation,

f(x, y, u) = u(x, y) − u = 0

describes the solution surface. The normal vector associated with this
surface is

∇⃗f = (ux, uy,−1)

Introducing the vector v⃗ = (a, b, c), the differential equation can be
written as

v⃗ ∇⃗f = 0
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The method of characteristics

This implies that the vector v⃗ = (a, b, c) is tangent to the solution
surface. Geometrically, v⃗ defines a direction field, called the
characteristic field.

Recall that one can parametrize space curves,

r⃗(t) = (x(t), y(t), u(t)), t ∈ [t1, t2] .

The tangent to this curve is

v⃗ = dr⃗

dt
=
(
dx

dt
,
dy

dt
,
du

dt

)
These are called the characteristic curves,

dx

dt
= a,

dy

dt
= b,

du

dt
= c

These relations can be summarized as

dx

a
= dy

b
= du

c
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The method of characteristics

Theorem

The general solution of a quasilinear partial differential equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u)

is of the form F (f, g) = 0, where f(x, y, u) = c1 and g(x, y, u) = c2 are
two independent solutions of the characteristic system

dx

a
= dy

b
= du

c
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The method of characteristics

Example

Obtain the general solution of the equation

x
∂u

∂x
+ u

∂u

∂y
= y

Solution
The characteristic system is

dx

x
= dy

u
= du

y

Considering the equation

dy

u
= du

y
→ y2 − u2 = c1

And if
dy

u
= du

y
= dx

x
→ dy + du

u+ y
= dx

x
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The method of characteristics

We have
ln(x) = ln(u+ y) + ln (c2)

that is
c2 = x

u+ y

and the general solution of the equation is

F (c1, c2) = 0 → F

(
y2 − u2,

x

u+ y

)
= 0
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The method of characteristics

Example

Find the solution of the equation

3∂u
∂x

− 2∂u
∂y

= x− u

that satisfies u(x, x) = x.

Solution
The characteristic system is

dx

3 = dy

−2 = du

x− u

Considering the equation

dx

3 = dy

−2 → 2x+ 3y = c1
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The method of characteristics

And if
dx

3 = du

x− u
→ du

dx
= 1

3(x− u)

whos solution is
u = x− 3 + c2e

− x
3

Since the solution is F (c1, c2) = 0 this implies c2 = G (c1) = G (2x+ 3y)
and

u(x, y) = x− 3 +G (2x+ 3y) e− x
3

Since u(x, x) = x,
x = x− 3 +G(5x)e− x

3

and
G(5x) = 3e

x
3 → G(x) = 3e

x
15

The solution is

u(x, y) = x− 3 + 3e
y−x

5
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The method of characteristics

Example

Solve the advection equation

∂u

∂t
+ c

∂u

∂x
= 0

being c a constant.

Solution
The characteristic system

dt

1 = dx

c
= du

0 = dτ

this means that the characteristic curves satisfy

dx

dτ
= c,

du

dτ
= 0
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The method of characteristics

this is u = c1 and x = ct+ c2 and the general solution

F (u, x− ct) = 0 → u = f(x− ct)

where F is an arbitrary function.
This solution is a travelling wave

c

(UPV) Partial differential equations Course 2024-2025 23 / 85



The method of characteristics

It is satisfied that

0 = ut + cux

= ∂u

∂t
+ dx

dt

∂u

∂x
= du(x(t), t)

dt

This implies that u(x, t) is constant along the characteristics.

(UPV) Partial differential equations Course 2024-2025 24 / 85



Conservation laws

Conservation laws are useful in modelling several systems.

They determine the rate of change of some quantity, Q(t), in a
region, a ≤ x ≤ b.

They describe the fluid flowing in one dimension, such as water
flowing in a stream. Or, it could be the transport of mass, such as a
pollutant. One could think of traffic flow down a straight road.
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Conservation laws

The rate of change of Q(t) is given as
the rate of change of Q = Rate in - Rate Out + source term.

We can describe this flow in terms of the flux, ϕ(x, t) over the ends of
the region. On the left side we have a gain ϕ(a, t) and on the right
side of the region there is a loss of ϕ(b, t).

dQ

dt
= ϕ(a, t) − ϕ(b, t) +

∫ b

a
f(x, t) dx

where f(x, t) is the source density. This can be rewritten as

dQ

dt
= −

∫ b

a

∂ϕ(x, t)
∂x

dx+
∫ b

a
f(x, t) dx
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Conservation laws

Introducing the density function u(x, t)

Q(t) =
∫ b

a
u(x, t) dx

we have

d

dt

∫ b

a
u(x, t) dx = −

∫ b

a

∂ϕ(x, t)
∂x

dx+
∫ b

a
f(x, t) dx

This is ∫ b

a
(ut(x, t) + ϕx(x, t) − f(x, t)) dx = 0

One possibility is

ut(x, t) + ϕx(x, t) − f(x, t) = 0

which is a local conservation law.

We can write
∂ϕ

∂x
= dϕ

du

∂u

∂x
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Conservation laws

and
ut(x, t) + ϕ′(u)ux(x, t) − f(x, t) = 0

Example

The inviscid Burgers’ equation is given when ϕ = 1
2u

2 and f(x, t) = 0

ut + uux = 0

which is also called a nonlinear advection equation.
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Conservation laws

Traffic flow

Let u(x, t) be the density of cars. Let ϕ(x, t) denote the number of cars
per hour passing position x at time t. The flux in this model is ϕ = uv,
where v is the velocity of the cars at position x and time t.
We need to assume a relationship between the car velocity and the car
density. Let’s assume the simplest form, a linear relationship,

v = v1 − v1
u1
u

We can now write the equation for the car density,

0 = ut + ϕ′ux

= ut + v1

(
1 − 2u

u1

)
ux
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Nonlinear advection equation

Given the linear advection equation

ut + cux = 0

its characteristic lines satisfy

dx

dt
= c,

du

dt
= 0

then u(x, t) is constant along the characteristics x = x0 + ct.

The nonlinear advection equation is

ut + c(u)ux = 0

The characteristic lines satisfy

dx

dt
= c(u), du

dt
= 0

this is u(x, t) is constant along the characteristics x′(t) = c(u).
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Nonlinear advection equation

Example

Solve
ut + uux = 0

with the initial condition u (x, 0) = e−x2
.

Solution
The characteristic system

du

dt
= 0, dx

dt
= u

Since u is a constant, on the characteristics,

x = x0 + u (x0) t = x0 + te−x2
0

The solution

u = e−x2 along x = x0 + te−x2
0
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Nonlinear advection equation

We consider the initial condition u0(x) = e−(2(x−1))2

Clea r [ f0 , f v a l , x , f ]
f 0 [ x ] = Exp [=(2 ( x = 1 ) ) ˆ 2 ] ;
(* Cond i c i ó n i n i c i a l *)
x [ t , x0 ] = x0 + f0 [ x0 ] t ;
f [ t , x0 ] = f0 [ x0 ] ;
f v a l [ t ] := Table [{ x [ t , x0 ] , f [ t , x0 ]} , {x0 , =.5 , 3 , . 1 } ]
Plot [ Table [ x [ t , x0 ] , {x0 , =.5 , 3 , . 1 } ] , { t , 0 , 2} ,
AxesLabel => {Text [ S t y l e [ ”t ” , I t a l i c , 2 3 ] ] ,
Text [ S t y l e [ ”x ” , I t a l i c , 2 3 ] ] } ]

0.5 1.0 1.5 2.0
t

0.5

1.0

1.5

2.0

2.5

3.0

x
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Nonlinear advection equation

Parametr icPlot3D [{ x [ t , x0 ] , t , f [ t , x0 ]} , {x0 , =.5 , 3} , { t , 0 , 2} ,
Co lo rFunct ion => ”DarkRainbow ” ,
P lo tS t y l e => D i r e c t i v e [ Opac i ty [ 0 . 9 ] ] , MeshFunct ions => {#2 &} ,
Mesh => 5 , PlotRange => Al l , Axes => {True , True , True} ,
Boxed => False , ImageSize => 600 ,
AxesLabel => {Text [ S t y l e [ ”x ” , I t a l i c , 2 3 ] ] ,

Text [ S t y l e [ ”t ” , I t a l i c , 2 3 ] ] , Text [ S t y l e [ ”u ” , I t a l i c , 2 3 ] ] } ]
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Nonlinear advection equation

- 2 - 1 1 2 3
x
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The initial profile propagates to the right with the higher points traveling
faster than the lower points. Around t = 1.0 the wave breaks and becomes
multivalued. The time at which the function becomes multivalued is called
the breaking time.
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Breaking time

Given the nonlinear diffusion equation

∂tu+ c(u)∂xu = 0

we have that the wave speed is

F (x0) = c (u0 (x0))

and the characteristic
x = x0 + tF (x0)

The solution

u(x, t) = u (0, x0) = u0 (x0) along x = x0 + tF (x0)
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Breaking time

We have
∂u

∂x
= ∂u

∂x0

∂x0
∂x

,
∂u

∂t
= ∂u

∂x0

∂x0
∂t

From
x0 = x− tF (x0)

we obtain

∂x0
∂x

= 1 − tF ′ (x0) ∂x0
∂x

= 1
1 + tF ′ (x0)

∂x0
∂t

= −F (x0) − tF ′ (x0) ∂x0
∂t

= − F (x0)
1 + tF ′ (x0)
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Breaking time

∂x0
∂x and ∂x0

∂t are undefined if

1 + tF ′ (x0) = 0

that is

t = − 1
F ′ (x0)

The breaking time

tb = mı́n
{

− 1
F ′ (x0)

}
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Breaking time

Example

Find the breaking time for

ut + uux = 0

with u(x, 0) = e−x2
.

Solution
We have that

F (x0) = e−x2
0

F ′ (x0) = −2x0e
−x2

0

thus,

t = 1
2x0e

−x2
0
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Breaking time

To find the minimum

dt

dx0
= d

dx0

(
ex2

0

2x0

)
=
(

2 − 1
x2

0

)
ex2

0

2 = 0

this implies x0 = 1√
2 and

tb = t

( 1√
2

)
= 1

2√
2e

− 1
2

=
√
e

2 ≈ 1.16
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Second order differential equations

Examples of second order differential equations:

Wave equation
1
c2
∂2u

∂t2
= ∂2u

∂x2 .

Laplace’s equation
∂2u

∂x2 + ∂2u

∂y2 = 0.

Diffusion equation
1
c2
∂u

∂t
= ∂2u

∂x2 .
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Second order differential equations

A second-order PDE is called linear if it is linear in the derivatives and
in the function itself, otherwise it is called nonlinear

The general form of a linear partial differential equation with two
independent variables x and y is the following one

A
∂2z

∂x2 +B
∂2z

∂x∂y
+ C

∂2z

∂y2 +D
∂z

∂x
+ E

∂z

∂y
+ Fz = G,

with A = A(x, y), B = B(x, y), C = C(x, y), D = D(x, y),
E = E(x, y), F = F (x, y) and G = G(x, y).
If G(x, y) = 0 it is called homogeneous otherwise non-homogeneous.
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Second order differential equations

A linear second-order PDE of constant coefficients Φ(Dx, Dy)z = 0 is
reducible, if it can be written in the form

φ1(Dx, Dy) [φ2(Dx, Dy)] z = φ2(Dx, Dy) [φ1(Dx, Dy)] z = 0,

being
φi(Dx, Dy) = aiDx + biDy + ci, i = 1, 2.

To solve this kind of equations, we have to take into account that it
has to be satisfied

(aiDx + biDy + ci) z = 0, i = 1, 2,

We consider the characteristic system

dx

ai
= dy

bi
= − dz

ciz
, i = 1, 2.
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Second order differential equations

For i = 1, 2 we have
dx

ai
= dy

bi

dx

ai
= − dz

ciz

→


aiy − bix = C1

ze

cix

ai = C2

.

The general solution

z = e
−cix

ai ψi (aiy − bix) ,

With ψi (.), i = 1, 2 arbitrary functions.
That is, the general solution is

z = e
−c1x

a1 ψ1 (a1y − b1x) + e
−c2x

a2 ψ2 (a2y − b2x) .
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Second order differential equations

Example

Find the general solution of the wave equation

∂2u

∂t2
= c2∂

2u

∂x2 ,

Solution
Using the derivative operators, we can write(

D2
t − c2D2

x

)
u = (Dt − cDx) (Dt + cDx)u

thus, it is a reducible equation. Using the charcteristic systems, we find the
general solution

u = ψ1 (x+ ct) + ψ2 (x− ct) ,

being ψi (.), i = 1, 2 arbitrary functions. This solution is known as the
D’Alembert solution.
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Classification of partial differential equations

Linear second order partial differential equations (PDE) in general, or the
governing equations in fluid dynamics in particular, are classified into three
categories:

1 Elliptic,

2 parabolic,

3 Hyperbolic.

Let us consider the partial differential equation in a two-dimensional
domain of the form

A
∂2u

∂x2 +B
∂2u

∂x∂y
+ C

∂2u

∂y2 +D
∂u

∂x
+ E

∂u

∂y
+ Fu+G = 0 .

Mathematically, the classification of second-order PDEs is based upon the
possibility of reducing this equation by coordinate transformation to a
canonical or standard form at a point.

(UPV) Partial differential equations Course 2024-2025 45 / 85



Classification of partial differential equations

We rewrite the second order equation as

Auxx +Buxy + Cuyy = Φ (x, y, u, ux, uy) .

The type of second-order PDE at a point (x0, y0) depends on the sign of
the discriminant defined as

∆ (x0, y0) =
∣∣∣∣∣ B 2A

2C B

∣∣∣∣∣ = B2 − 4AC .
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Classification of partial differential equations

The terminology hyperbolic, parabolic, and elliptic chosen to classify PDEs
reflects the analogy between the form of the discriminant, B2 − 4AC, for
PDEs and the form of the discriminant, B2 − 4AC, which classifies conic
sections given by

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 .

The type of the curve represented by the above conic section depends on
the sign of the discriminant, ∆ ≡ B2 − 4AC.

- If ∆ > 0, the curve is a hyperbola,

- If ∆ = 0 the curve is an parabola,

- If ∆ < 0 the equation is a ellipse.
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Classification of partial differential equations

∂2u

∂x2 + ∂2u

∂y2 = 0,

A = 1, B = 0, C = 1 and ∆ = −4 < 0. Elliptic equation.

∂u

∂t
− α

∂2u

∂x2 = 0, (α > 0),

A = −α, B = 0, C = 0 and ∆ = 0. Parabolic equation.
For the wave equation

∂2u

∂t2
− a2∂

2u

∂x2 = 0,

A = 1, B = 0, C = −a2 and ∆ = 4a2 > 0. Hyperbolic equation.
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Canonical forms

The Tricomi equation

y
∂2u

∂x2 + ∂2u

∂y2 = 0, ∆ = −4y

When y > 0 it is elliptic, when y = 0 it is parabolic and when y < 0 it is
hyperbolic.
To reduce a second order partial differential equation to a canonical form,
we transform the independent variables x and y to the new independent
variables ξ and η through the change of variables

ξ = ξ(x, y) , η = η(x, y) ,

The Jacobian

J = ∂(ξ, η)
∂(x, y) =

∣∣∣∣∣ ξx ξy

ηx ηy

∣∣∣∣∣ ̸= 0 .
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Canonical forms

We define w(ξ, η) = u(x(ξ, η), y(ξ, η)) such that
u(x, y) = w(ξ(x, y), η(x, y)). Thus,

ux = wξξx + wηηx ,

uy = wξξy + wηηy ,

uxx = wξξξ
2
x + 2wξηξxηx + wηηη

2
x + wξξxx + wηηxx ,

uyy = wξξξ
2
y + 2wξηξxηx + wηηη

2
y + wξξyy + wηηyy ,

uxy = wξξξxξy + wξη (ξxηy + ξyηx) + wηηηxηy + wξξxy + wηηxy .

Substituting in the equation

awξξ + bwξη + cwηη = Φ (x, y, w,wξ, wη) .

where

a = Aξ2
x +Bξxξy + Cξ2

y ,

b = 2Aξxηx +B (ξxηy + ξyηx) + 2Cξyηy ,

c = Aη2
x +Bηxηy + Cη2

y .
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Canonical forms

We observe that(
a b/2
b/2 c

)
=
(
ξx ξy

ηx ηy

)(
A B/2
B/2 C

)(
ξx ξy

ηx ηy

)T

.

Thus,
b2 − 4ac = J2

(
B2 − 4AC

)
,

this shows that the discriminant of the transformed equation has the same
sign as the discriminant of the original equation.
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Canonical forms

A PDE is hyperbolic if the discriminant ∆ = B2 − 4AC > 0. Thus, for a
hyperbolic PDE, we should have b2 − 4ac > 0.
The simplest case of satisfying this condition is a = c = 0. We get the
following canonical form of hyperbolic equation,

wξη = ψ (ξ, η, w,wξ, wη) .

This form is called the first canonical form of the hyperbolic equation.
We also have another simple case when b = 0 and c = −a. In this case we
obtain

wξξ − wηη = ψ (ξ, η, w,wξ, wη) ,

which is the second canonical form of the hyperbolic equation.
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Canonical forms

A PDE is parabolic if the discriminant ∆ = B2 − 4AC = 0. that is
b2 − 4ac = 0. The simplest case of satisfying this condition is c (or a) = 0.
In this case another necessary requirement b = 0 will follow automatically,
b2 − 4ac = 0.
So, we get the following canonical form of parabolic equation:

wξξ = ψ (ξ, η, w,wξ, wη) .
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Canonical forms

A PDE is elliptic if the discriminant ∆ = B2 − 4AC < 0, that is
b2 − 4ac < 0. The simplest case of satisfying this condition is b = 0 and
c = a. So, we get the following canonical form of elliptic equation:

wξξ + wηη = ψ (ξ, η, w,wξ, wη) .
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Hyperbolic equations

In this case, we have seen that, to reduce this PDE to canonical form we
need to choose the new variables ξ and η such that the coefficients a and
c vanish

a = Aξ2
x +Bξxξy + Cξ2

y = 0 ,
c = Aη2

x +Bηxηy + Cη2
y = 0 ,

that is,

A

(
ξx

ξy

)2

+B

(
ξx

ξy

)
+ C = 0 ,

A

(
ηx

ηy

)2

+B

(
ηx

ηy

)
+ C = 0 .
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Hyperbolic equations

The two distinct roots of these equations are

µ1 = ξx

ξy
= −B +

√
B2 − 4AC
2A , µ2 = ηx

ηy
= −B −

√
B2 − 4AC
2A .

We consider curves of the form ξ(x, y) = k. This implies

dξ = ξxdx+ ξydy = 0 ,

that is,
dy

dx
= −ξx

ξy
,
dy

dx
= −ηx

ηy
.

This implies that

A

(
dy

dx

)2
−B

(
dy

dx

)
+ C = 0 .
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Hyperbolic equations

The solutions are

dy

dx
= B +

√
B2 − 4AC
2A = λ1 ,

dy

dx
= B −

√
B2 − 4AC
2A = λ2 ,

and the change of variables is given by

ξ = y − λ1x , η = y − λ2x .

It is easy to show that the hyperbolic PDE has a second canonical form.
The following linear change of variables

α = ξ + η , β = ξ − η ,

leads to the second canonical form of the hyperbolic equation.
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Hyperbolic equations

For example, we consider the wave equation

∂2u

∂t2
− c2∂

2u

∂x2 = 0 ,

then
A = 1 , B = 0 , C = −c2 ,

and the discriminant ∆ = 4c2 > 0 and the equation is hyperbolic.
For this case

λ1 = c , λ2 = −c ,

and the transformation

ξ = x− ct , η = x+ ct ,
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Hyperbolic equations

Transforms the wave equation into its canonical form

wξη = 0 .

The general solution is

w(ξ, η) = f(ξ) + g(η) ,

that is,
u(x, t) = f(x− ct) + g(x+ ct) .
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Hyperbolic equations

Exercise

The so-called small disturbance potential equation:

(
1 −M2

∞

) ∂2ϕ

∂x2 + ∂2ϕ

∂y2 = 0

was the form of equation used by Murman and Cole to obtain the first
numerical solution for a transonic flow around an airfoil with shocks.

Show that, depending on the Mach number, the small disturbance
potential equation is elliptic, parabolic, or hyperbolic. Find the
characteristic variables for the hyperbolic case and hence write the
equation in canonical form.
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Elliptic equations

Potential equation

Another interesting example is provided by the stationary potential flow
equation in two dimensions,(

1 − u2

a2

)
∂2ϕ

∂x2 − 2uv
a2

∂2ϕ

∂x∂y
+
(

1 − v2

a2

)
∂2ϕ

∂y2 = 0

where a is the speed of sound.

The discriminant

B2 − 4AC = 4
(
u2 + v2

a2 − 1
)

= 4(M2 − 1)

where the Mach number is M =
√
u2 + v2/a.
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Elliptic equations

The stationary potential equation is elliptic for subsonic flows and
hyperbolic for supersonic flows.

Along the sonic line M = 1, the equation is parabolic.

This mixed nature of the potential equation has been a great
challenge for the numerical computation of transonic flows since the
transition line between the subsonic and the supersonic regions is part
of the solution.
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Parabolic equations

For a parabolic PDE the discriminant ∆ = B2 − 4AC = 0. In this case, we
have seen that, to reduce this PDE to canonical form we need to choose
the new variables ξ and η such that the coefficients a and b vanish. For a,

a = Aξ2
x +Bξxξy + Cξ2

y = 0 ,

that is,

a = A

(
ξx

ξy

)2

+B

(
ξx

ξy

)
+ C = 0 .

If we consider the coordinate line ξ(x, y) = k,

dξ = ξxdx+ ξydy = 0 ,

and the solution is

A

(
dy

dx

)2
−B

(
dy

dx

)
+ C = 0 .
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Parabolic equations

This is called the characteristic polynomial of the PDE. Since
B2 − 4AC = 0 in this case,

dy

dx
= B

2A = λ .

There is only one family of real characteristic curves. The required
variables ξ is

ξ = y − λx .
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Parabolic equations

To determine the second transformation variable η, we set b = 0

b = 2Aξxηx +B (ξxηy + ξyηx) + 2Cξyηy = 0 ,

2A
(

− B

2A

)
+B

((
− B

2A

)
ηy + ηx

)
+ 2Cηy = 0 ,

−Bηx − B2

2Aηy +Bηx + 2Cηy = 0 ,(
B2 − 4AC

)
ηy = 0 .

This means that η can be chosen arbitrarily.
The canonical form in this case is

wξξ = ψ(ξ, η, w,wξ, wη) .
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Parabolic equations

Example

Obtain the canonical form of the equation

∂2u

∂x2 + 4 ∂2u

∂x∂y
+ 4∂

2u

∂y2 + u = 0

Solution:
The discriminant ∆ = B2 − 4AC = 16 − 16 = 0. Hence, the equation is
parabolic.
Solving the characteristic equation

A

(
dy

dx

)2
−B

(
dy

dx

)
+ C = 0 ,→ λ = 2
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Parabolic equations

The change of variables: {
ξ = y − 2x
η = x

The canonical form is
∂2w

∂η2 + w = 0
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Elliptic equations

For an elliptic PDE the discriminant ∆ = B2 − 4AC < 0. In this case, we
have seen that, to reduce this PDE to canonical form we need to choose
the new variables ξ and η to produce b = 0 and a = c, or b = 0 and
a− c = 0. Then,

A
(
ξ2

x − η2
x

)
+B (ξxξy − ηxηy) + C

(
ξ2

y − η2
y

)
= 0

2Aξxηx +B (ξxηy + ξyηx) + 2Cξyηy = 0 .

We add the first of these equation to complex number i times the second
to give

A (ξx + iηx)2 +B (ξx + iηx) (ξy + iηy) + C (ξy + iηy)2 = 0

that is,

A

(
ξx + iηx

ξy + iηy

)2

+B

(
ξx + iηx

ξy + iηy

)
+ C = 0
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Elliptic equations

We consider

α(x, y) = ξ(x, y) + iη(x, y) ,
β(x, y) = ξ(x, y) − iη(x, y) ,

and the curves α(x, y) = k, β(x, y) = k̃, which implies

dy

dx
= −αx

αy
,
dy

dx
= −βx

βy
,

and the characteristic curves of the PDE are

dy

dx
= λ1 = B + i

√
4AC −B2

2A ,
dy

dx
= λ2 = B − i

√
4AC −B2

2A ,

Clearly, the solution of this differential equations are necessarily
complex-valued and as a consequence no real characteristic exist for an
elliptic PDE.
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Elliptic equations

The solutions are
B ± i

√
4AC −B2

2A = {α, β} .

Now the real and imaginary parts of α and β give the required
transformation variables ξ and η.
Thus, we have

ξ = y − α+ β

2 x, η = α− β

2i x,

With this choice of coordinate variables the equation reduces to following
canonical form

wξξ + wηη = ψ(ξ, η, w,wξ, wη)
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Elliptic equations

Example

Given the equation
∂2u

∂x2 + x2∂
2u

∂y2 = 0, x ̸= 0

Obtain its canonical form.

Solution:
The discriminant ∆ = B2 − 4AC = −4x2 < 0. Hence, the equation is
elliptic.
Solving the characteristic equation

λ1 = B − i
√

4AC −B2

2A = −ix , λ1 = B − i
√

4AC −B2

2A = ix

we have
dy

dx
= −ix , dy

dx
= ix
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Elliptic equations

and the complex characteristic curves

y = −ix
2

2 + c1, y = i
x2

2 + c1,

Taking the real and imaginary parts, the change of variables is:

ξ = y, η = x2

2

and the canonical form:

∂2w

∂ξ2 + ∂2w

∂η2 = − 1
2η
∂w

∂η
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Elliptic equations

Exercises

Transform into the canonical form the equations:

1) uxx + 6uxy + 9uyy = 0.
2) uxx − 5uxy + 6uyy = 0.
3) uxx − 4uxy + 5uyy = 0.
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Variables separation. One dimensional problems

As an example, we consider the heat equation where it is assumed that
there are no heat sources,

∂T

∂t
= a2∂

2T

∂x2 , 0 < x < l , t > 0 ,

with homogeneous boundary conditions

T (0, t) = 0 , T (l, t) = 0 ,

and the initial condition
T (x, 0) = g(x) .
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One dimensional problems

The variables separation method assumes that

T (x, t) = X(x)P (t) .

Substituting this solution into the equation

P ′(t)
a2P (t) = X ′′(x)

X(x) = −λ ,

this is,

P ′(t) + a2λP (t) = 0 ,
X ′′ + λX(x) = 0 .

X(x) = C1 cos(x) + C2 sin(x)
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One dimensional problems

From the boundary conditions

X(0) = 0 , X(l) = 0 .

we obtain the eigenvalues

λn =
(
nπ

l

)2
, n = 1, 2, . . . ,

and the eigenfunctions

Xn(x) = sin
(
nπx

l

)
.

The temporal part equation is

P ′
n + a2λnPn = 0 ,

whose solution is of the form

Pn(t) = ane
−a2λnt = ane

−( nπa
l )2

t .
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One dimensional problems

The solution of the problem can be written as

T (x, t) =
∞∑

n=1
ane

−( nπa
l )2

t sin
(
nπx

l

)
.

Since the initial condition has to be satisfied

g(x) =
∞∑

n=1
an sin

(
nπx

l

)
,

and using the orthogonality property

an = 2
l

∫ l

0
g(x) sin

(
nπx

l

)
dx .
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Exercise

Diffusion equation

We study the heat conduction in a bar. In particular, we have a bar with
an initial temperature of 0 � and we apply temperatures of 100 � at both
extremes of the bar. We assume that the length of the bar is 1 and the
thermal diffusivity is α. Compute the analytical solution of this problem.

0 1

100100

x

T
T
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Exercise

Solution
We look for solutions of the form

T (x, t) = ax+ b+ u(x, t) , with u(0, t) = u(1, t) = 0

In this way

T (0, t) = 100 → b = 100
T (1, t) = 100 → a = 0

Thus,

T (x, t) = 100 + u(x, t) = 100 +
∞∑

n=1
An sin(nπx) e(−αn2π2t)
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Exercise

The initial condition

T (x, 0) = g(x) =
∞∑

n=1
An sin(nπx)

where, g(x) is taken as the Fourier series associated with the periodic
extension of the function

0 2

200200

x

T
T

100

1

100
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Exercise

Using the orthogonality relation∫ 2

0
sin(nπx) sin(mπx) dx = δm,n

we have

Am =
∫ 2

0
g(x) sin(mπx) , dx

=
∫ 2

1
200 sin(mπx) dx = 200

πm
((−1)m − 1)
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Multidimensional problems

Example

We consider the Laplace equation

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 = 0 ,

on a rectangle of edges (a, b, c), assuming the boundary conditions

u(0, y, z) = u(a, y, z) = u(x, 0, z) = u(x, b, z) = u(x, y, 0) = 0 ,

and u(x, y, c) = V (x, y).
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Multidimensional problems

Using the variables separation method,

u(x, y, z) = X(x)Y (y)Z(z) .

we obtain the equation

1
X(x)

d2X

dx2 + 1
Y (y)

d2Y

dy2 + 1
Z(z)

d2Z

dz2 = 0 .

Assuming that

1
X(x)

d2X

dx2 = −α2

1
Y (y)

d2Y

dy2 = −β2

1
Z(z)

d2Z

dz2 = γ2

with γ2 = α2 + β2.
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Multidimensional problems

we have that X(x), Y (y) and Z(z) must satisfy

X(0) = X(a) = Y (0) = Y (b) = Z(0) = 0 .

Hence, we obtain the solutions

X(x) = sin (αx)
Y (y) = sin (βy)

Z(z) = sinh
(√

α2 + β2z

)
being

α = πn

a
, β = πm

b
, n,m ∈ Z .
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Multidimensional problems

The general form of the solution is

u(x, y, z) =
∞∑

n=1

∞∑
m=1

Am,n sin (αnx) sin (βmy) sinh (γn,mz)

with

αn = πn

a
, βm = πm

b
, γn,m = π

√
n2

a2 + m2

b2 .

Making u(x, y, c) = V (x, y), we obtain

V (x, y) =
∞∑

n=1

∞∑
m=1

Am,n sin (αnx) sin (βmy) sinh (γn,mc) ,

with

An,m = 4
ab sinh (γn,mc)

∫ a

0
dx

∫ b

0
dyV (x, y) sin (αnx) sin (βmy) .
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