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Conservation principles

Normally, two main types of fluids appear in technical applications:
water and air.

The general technique for obtaining the equations that describe the
motion of a fluid is to consider a small control volume, V , through
which the fluid moves. (Eulerian description).

These equations will be obtained by applying conservation of mass,
Newton’s Second Law and conservation of energy to the control
volume.
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Continuity equation
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Reynolds’ theorem

First, we consider a 1D problem

For a given function f(x), the definite integral

M =
∫ b(t)

a(t)
f(x, t) dx

satisfies
dM

dt
= ∂M

∂t
+ ∂M

∂a

∂a

∂t
+ ∂M

∂b

∂b

∂t
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Reynolds’ theorem

That is,

dM

dt
=
∫ b(t)

a(t)

∂f(x, t)
∂t

dx + f(b(t), t)db

dt
− f(a(t), t)da

dt

A similar result can be obtained for a problem en 3D, which is known as
the Reynolds’ transport theorem.
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Continuity equation

For a magnitude N = ηρ in a control volume V we have that the
Reynold’s theorem states that

dN

dt
=
∫

V

∂

∂t
(ηρ) dV +

∫
S

ηρv⃗ dS⃗ .

The mass conservation

dM

dt
=
∫

V

∂ρ

∂t
dV +

∫
S

ρv⃗ dS⃗ = 0 .
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Continuity equation

The variation of the mass with respect to time inside the control volume is
equal to the mass flow rate through the surface of the control volume,∫

V

∂ρ

∂t
dV = −

∫
S

ρ v⃗ n⃗ dS ,

Using Gauss’ Theorem, we have∫
V

(
∂ρ

∂t
+ ∇⃗ (ρv⃗)

)
dV = 0 .
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Continuity equation

The continuity equation

∂ρ

∂t
+ ∇⃗ (ρv⃗) = 0 ,

Dρ

Dt
+ ρ∇⃗v⃗ = 0 ,
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Continuity equation

The material derivative:

Dρ

Dt
= ∂ρ

∂t
+ vx

∂ρ

∂x
+ vy

∂ρ

∂y
+ vz

∂ρ

∂z
= ∂ρ

∂t
+ vi

∂ρ

∂xi
,

and the divergence

∇⃗v⃗ = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= ∂vi

∂xi
.
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Momentum equation

The momentum equation is obtained by applying Newton’s Second Law to
the control volume V . ∑

l

F⃗l = dP⃗

dt
.

The variation of the momentun, P⃗ , with respect to time in the volume V ,
is given by

dP⃗

dt
=
∫

V

∂(ρ v⃗)
∂t

dV +
∫

S
ρ v⃗ (v⃗ n⃗) dS .
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Momentum equation

Using Gauss’ theorem, in components, we can write

Fx =
∫

V

∂

∂t
(ρ vx) dV +

∫
V

∇⃗ (ρvxv⃗) dV ,

Fy =
∫

V

∂

∂t
(ρ vy) dV +

∫
V

∇⃗ (ρvyv⃗) dV ,

Fz =
∫

V

∂

∂t
(ρ vz) dV +

∫
V

∇⃗ (ρvz v⃗) dV .
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Momentum equation

For the component x, it is satisfied

∂

∂t
(ρ vx) + ∇⃗ (ρvxv⃗) =

ρ
∂vx

∂t
+ vx

(
∂ρ

∂t
+ ∂

∂x
(ρvx) + ∂ρ

∂y
vy + ρ

∂vy

∂y
+ ∂ρ

∂z
vz + ρ

∂vz

∂z

)
+

ρvx
∂vx

∂x
+ ρvy

∂vx

∂y
+ ρvz

∂vx

∂z
.

Using the continuity equation,

∂

∂t
(ρ vx) + ∇⃗ (ρvxv⃗) =

ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
.
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Momentum equation

The momentum equation

∫
V

ρ

(
∂v⃗

∂t
+
(
v⃗ ∇⃗

)
v⃗

)
dV =

∫
V

ρ
Dv⃗

Dt
dV = F⃗ .

If we consider a non-viscous fluid, the only forces acting on the control
volume are the force of gravity and the force exerted by the pressure, p,

F⃗ =
∫

V
ρg⃗ dV −

∫
S

pn⃗ dS =
∫

V

(
ρg⃗ − ∇⃗p

)
dV .
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Momentum equation

The Euler’s equations

ρ
Dv⃗

Dt
= ρg⃗ − ∇⃗p

If the reference frame is chosen in such a way that gravity is directed in the
direction of the negative z-axis, the Euler equations in components are,

ρ

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
= − ∂p

∂x

ρ

(
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z

)
= −∂p

∂y

ρ

(
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z

)
= −ρg − ∂p

∂z
.
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Momentum equation

When a viscous fluid is considered, it is necessary to introduce the tensor
that accounts for the stresses within the fluid,

σ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 ,
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Momentum equation

The momentum equations are written as

ρ
Dv⃗

Dt
= ρg⃗ − ∇⃗p + ∇⃗σ ,

In cartesian coordinates,

ρ
Dvx

Dt
= ρgx − ∂p

∂x
+ ∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
,

ρ
Dvy

Dt
= ρgy − ∂p

∂y
+ ∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
,

ρ
Dvz

Dt
= ρgz − ∂p

∂z
+ ∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
,

(UPV) Fluids equations Course 2024-2025 17 / 61



Momentum equation

Newton observed that the stress tensor in a fluid is proportional to the
partial derivatives of the the velocities.
For Newtonian fluids it is satisfied that

σxx = λ
(

∇⃗v⃗
)

+ 2µ
∂vx

∂x
, σyy = λ

(
∇⃗v⃗
)

+ 2µ
∂vy

∂y
,

σzz = λ
(

∇⃗v⃗
)

+ 2µ
∂vz

∂z
,

σxy = σyx = µ

(
∂vy

∂x
+ ∂vx

∂y

)
,

σxz = σzx = µ

(
∂vx

∂z
+ ∂vz

∂x

)
,

σyz = σzy = µ

(
∂vz

∂y
+ ∂vy

∂z

)
,

where µ is the molecular viscosity coefficient and λ is the second viscosity
coefficient.
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Momentum equation

It is assumed that

λ = −2
3µ ,

The Navier-Stokes’ equations for a viscous fluid

ρ
Dvx

Dt
= ρgx −

∂p

∂x
−

2
3

∂
(

µ∇⃗v⃗
)

∂x
+ 2

∂

∂x

(
µ

∂vx

∂x

)
+

∂

∂y

(
µ

(
∂vx

∂y
+

∂vy

∂x

))
+

∂

∂z

(
µ

(
∂vx

∂z
+

∂vz

∂x

))
,

ρ
Dvy

Dt
= ρgy −

∂p

∂y
−

2
3

∂
(

µ∇⃗v⃗
)

∂y
+

∂

∂x

(
µ

(
∂vx

∂y
+

∂vy

∂x

))
+2

∂

∂y

(
µ

∂vy

∂y

)
+

∂

∂z

(
µ

(
∂vx

∂z
+

∂vz

∂x

))
,

ρ
Dvz

Dt
= ρgz −

∂p

∂z
−

2
3

∂
(

µ∇⃗v⃗
)

∂z
+

∂

∂x

(
µ

(
∂vx

∂z
+

∂vz

∂x

))
+

∂

∂y

(
µ

(
∂vy

∂z
+

∂vz

∂y

))
+ 2

∂

∂z

(
µ

∂vz

∂z

)
.
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Momentum equation

For a 2-D incompressible flow with constant density and viscosity with
negligible body forces, the Navier-Stokes equations can be greatly
simplified,

∂vx

∂x
+

∂vy

∂y
= 0

∂vx

∂t
+

∂ (vx)2

∂x
+

∂vxvy

∂y
= ν

(
∂2vx

∂x2 +
∂2vx

∂y2

)
−

1
ρ

∂p

∂x

∂vy

∂t
+

∂vxvy

∂x
+

∂ (vy)2

∂y
= ν

(
∂2vy

∂x2 +
∂2vy

∂y2

)
−

1
ρ

∂p

∂y

where ν = µ/ρ is the kinematic viscosity.

(UPV) Fluids equations Course 2024-2025 20 / 61



Momentum equation

Exercise

Obtain the non-conservative form of the Navier-stokes equations exposed
above:

∂vx

∂x
+ ∂vy

∂y
= 0

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
= ν

(
∂2vx

∂x2 + ∂2vx

∂y2

)
− 1

ρ

∂p

∂x

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
= ν

(
∂2vy

∂x2 + ∂2vy

∂y2

)
− 1

ρ

∂p

∂y
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Momentum equation

Exercise

Starting from the equation of motion

∂v⃗

∂t
+
(
v⃗∇⃗
)

v⃗ = −1
ρ

∇⃗p + ν∇2v⃗

obtain the equations associated with the vorticity, defined as ω⃗ = ∇⃗ × v⃗
for a 2D problem defined in the (x, y) plane.
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Momentum equation

Vorticity
ω⃗ = ∇⃗ × v⃗

Is a measure of the local rotation of the fluid∫
S

ω⃗ dS⃗ =
∫

S

(
∇⃗ × v⃗

)
dS⃗ =

∫
σ

v⃗ dr⃗

The vorticity equation

∂ω⃗

∂t
+
(
v⃗∇⃗
)

ω⃗ =
(
ω⃗∇⃗

)
v⃗ + ν∇2ω⃗
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Energy equation

Consider a fixed volume V surrounded by a surface S.
The total energy content of the fluid contained within V is

E =
∫

V
ρ e dV +

∫
V

1
2 ρ vi vi dV ,

Here, e is the internal (i.e., thermal) energy per mass unit of the fluid.
The energy flux across S , and out of V , is

ΦE =
∫

S
ρ

(
e + 1

2 vi vi

)
vj dSj =

∫
V

∂

∂xj

(
ρ

(
e + 1

2 vi vi

)
vj

)
dV ,

where use has been made of the Gauss’ theorem.
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Energy equation

According to the first law of thermodynamics, the rate of increase of the
energy contained within V , plus the net energy flux out of V , is equal to
the net rate of work done on the fluid within V , minus the net heat flux
out of V :

dE

dt
+ ΦE = Ẇ − Q̇ ,

The net rate of work due to volumetric forces is∫
V

ρf⃗ v⃗ dV .

and the rate of work associated to pressure

−
∫

S
pvidSi = −

∫
V

∂

∂xi
(vip) dV .
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Energy equation

The rate of work done by the stress tensor is∫
S

viσijdSj =
∫

V

∂

∂xj
(viσij) dV .

Thus,

Ẇ =
∫

V
ρf⃗ v⃗ dV −

∫
V

∂

∂xi
(vip) dV +

∫
V

∂

∂xj
(viσij) dV .
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Energy equation

The heat flow in fluids is driven by temperature gradients.

Let the qi be the Cartesian components of the heat flux density. It
follows that the heat flux across a surface element dS, is
q⃗dS⃗ = qi dSi.

Let T be the temperature of the fluid. We assume that the Fourier’s
Law is valid,

qi = −k
∂T

∂xi
.

The neat heat flux out a volume V is,

Q̇ = −
∫

S
k

∂T

∂xi
dSi = −

∫
V

∂

∂xi

(
k

∂T

∂xi

)
dV .
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Energy equation

The energy conservation equation,

∫
V

(
∂

∂t

(
ρ

(
e + 1

2vivi

))
+ ∂

∂xj

(
ρ

(
e + 1

2vivi

)
vj

))
dV

=
∫

V

(
ρfivi − ∂

∂xj
(vjp) + ∂

∂xj

(
viσij + k

∂T

∂xj

))
dV .
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Energy equation

Using the continuity equation

ρ
D

Dt

(
e + 1

2vivi

)
= ρfivi − ∂

∂xj
(vjp) + ∂

∂xj

(
viσij + k

∂T

∂xj

)
,

The momentum equation can be written as,

ρvi
Dvi

Dt
= ρ

D

Dt

(1
2vivi

)
= −vi

∂p

∂xi
+ viρfi + vi

∂σij

∂xj
.

Combining these equations the energy equation,

ρ
De

Dt
= ∂vi

∂xj
σij + ∂

∂xj

(
k

∂T

∂xj

)
.
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Energy equation

The stress tensor in an isotropic Newtonian fluid is

σij = −λ δij + 2 µ

(
eij − 1

3 ekk δij

)
,

where

eij = 1
2

(
∂vi

∂xj
+ ∂vj

∂xi

)
,

and λ and µ are scalars.
The energy conservation equation for an isotropic Newtonian fluid takes
the general form

De

Dt
= −p

ρ

∂vi

∂xi
+ 1

ρ

(
χ + ∂

∂xj

(
k

∂T

∂xj

))
.
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Energy equation

where,

χ = µ

(
∂vi

∂xj

∂vi

∂xj
+ ∂vi

∂xj

∂vj

∂xi
− 2

3
∂vi

∂xi

∂vj

∂xj

)
,

is the rate of heat generation per unit volume due to viscosity.
In vector notation the energy equation is writen as

De

Dt
= −p

ρ
∇⃗v⃗ + χ

ρ
+ ∇⃗(k ∇⃗T )

ρ
.
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Energy equation

The equations for the mass, momentum and energy are 5 equations
whose unknowns are ρ, p, vx, vy, vz, e and T . Hence, we need more
relations between the unknowns.

In many situations of general interest, the flow of gases is
compressible. We can use the thermodynamic relations that specify
the internal energy per unit mass, and the temperature in terms of
the density and pressure.
For an ideal gas, these relations can take the form:

e = cv

M
T, T = M

R

p

ρ

where cv is the molar specific heat at constant volume,
R = 8.3145 J K−1 mol−1 the molar ideal gas constant, M the molar
mass (i.e., the mass of 1 mole of gas molecules), and T the
temperature in degrees Kelvin.
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Energy equation

The energy equation can be also formulated in terms of the enthalpy

ρ
Dh

Dt
− Dp

Dt
= Φ + ∂

∂x

(
k

∂T

∂x

)
+ ∂

∂y

(
k

∂T

∂y

)
+ ∂

∂z

(
k

∂T

∂z

)

where
h = cp (T − Tref)
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Conservation of scalar quantities

The integral form of the equation describing conservation of a scalar
quantity, ϕ, is

∂

∂t

∫
V

ρϕ dV +
∫

S
ρϕv⃗ dS⃗ =

∑
fϕ

where fϕ represents transport of ϕ by mechanisms other than
convection and any sources or sinks of the scalar.

Diffusion transport is always present and it is usually described by a
gradient approximation, e.g.,

fd
ϕ =

∫
S

Γ∇⃗ϕ dS⃗,

where Γ is the diffusivity for the quantity ϕ.
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Conservation of scalar quantities

An example is the energy equation for a fluid with constant specific heat
that can be expressed as

∂

∂t

∫
V

ρT dV +
∫

S
ρT v⃗ dS⃗ =

∫
S

ν

Pr
∇⃗T dS⃗,

where the thermal conductivity is assumed to be k = νcp/Pr, where Pr is
the Prandtl number, which is defined as the ratio of momentum diffusivity
to heat diffusivity,

Pr = ν

α
= momentum diffusivity

thermal diffusivity
= νρ

k/(cpρ) = cpµ

k

cp is the specific heat at constant pressure, µ the dynamical viscosity and
k the thermal conductivity.
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Conservation of scalar quantities

The integral form of the generic conservation equation is

∂

∂t

∫
V

ρϕ dV +
∫

S
ρϕv⃗ dS⃗ =

∫
S

Γ∇⃗ϕdS⃗ +
∫

V
qϕdV,

where qϕ is the source or sink of ϕ.

The coordinate-free vector form of this equation is,

∂(ρϕ)
∂t

+ ∇⃗ (ρϕv⃗) = ∇⃗
(
Γ∇⃗ϕ

)
+ qϕ.
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Conservation of scalar quantities

In Cartesian coordinates and tensor notation, the differential form of the
generic conservation equation is:

∂(ρϕ)
∂t

+ ∂ (ρϕvj)
∂xj

= ∂

∂xj

(
Γ ∂ϕ

∂xj

)
+ qϕ.
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Dimensionless Form of Equations

Experimental studies of flows are often carried out on models, and the
results are displayed in dimensionless form, thus allowing scaling to
real flow conditions. The same approach can be undertaken in
numerical studies as well.

The governing equations can be transformed to dimensionless form by
using appropriate normalization.

Velocities can be normalized by a reference velocity v0 , spatial
coordinates by a reference length L0, time by some reference time t0,
pressure by ρv2

0, and temperature by some reference temperature
difference (T1 − T0).
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Dimensionless Form of Equations

The dimensionless variables are then:

t∗ = t

t0
, x∗

i = xi

L0
, v∗

i = vi

v0
, p∗ = p

ρv2
0

, T ∗ = T − T0
T1 − T0

.
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Dimensionless Form of Equations

If the fluid properties are constant, the continuity, momentum and energy
equations are, in dimensionless form:

∂v∗
i

∂x∗
i

= 0,

St
v∗

i

∂t∗ +
∂
(
v∗

j v∗
i

)
∂x∗

j

= 1
Re

∂2v∗
i

∂x∗2
j

− ∂p∗

∂x∗
i

+ 1
Fr2 γi,

St
∂T ∗

∂t∗ +
∂
(
v∗

j T ∗
)

∂x∗
j

= 1
RePr

∂2T ∗

∂x∗2
j

.
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Dimensionless Form of Equations

The following dimensionless numbers appear in the equations:

St = L0
v0t0

, Re = ρv0L0
µ

, Fr = v0√
L0g

,

which are called Strouhal, Reynolds, and Froude number, respectively.
γi is the component of the normalized gravitational acceleration
vector in the xi direction.

The choice of the normalization quantities is obvious in simple flows;
v0 is the mean velocity and L0 is a geometric length scale; T0 and T1
are the cold and hot wall temperatures.

If the geometry is complicated, the fluid properties are not constant,
or the boundary conditions are unsteady, the number of dimensionless
parameters needed to describe a flow can become very large and
dimensionless equations may no longer be useful.
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Dimensionless Form of Equations

Example

Calculating the two-dimensional flow around a cylinder (radius a, located
at x = y = 0) in a uniform stream U involves solving

∂v⃗

∂t
+
(
v⃗∇⃗
)

v⃗ = −1
ρ

∇⃗p + ν∇2v⃗, ∇⃗v⃗ = 0 ,

with boundary conditions

v⃗ = 0⃗ on x2 + y2 = a2, v⃗ → (U, 0) as x2 + y2 → ∞

Rewrite this problem in non-dimensional form using the dimensionless
variables

x⃗′ = x⃗/a, v⃗′ = v⃗/U, p′ = p/ρU2, t′ = tU/a .
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Dimensionless Form of Equations

Note that x⃗′ = x⃗/a implies ∇⃗′ = a∇⃗ and t′ = tU/a gives ∂
∂t = U

a
∂

∂t′ .

The equation

U2

a

∂v⃗′

∂t′ + U2

a

(
v⃗′∇⃗′

)
v⃗′ = −ρU2

ρa
∇⃗′p′ + νU

a2 ∇′2v⃗′

That is
∂v⃗′

∂t′ +
(
v⃗′∇⃗′

)
v⃗′ = −∇⃗′p′ + 1

Re∇′2v⃗′

where Re =
U2
a

νU
a2

= inertial forces
viscous forces
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Dimensionless Form of Equations

Exercise

The differential equation describing the movement in the x − y plane of a
non viscous fluid is

∂2ϕ

∂t2 + ∂

∂t

(
u2 + v2

)
+

(
u2 − a2

) ∂2ϕ

∂x2

+
(
v2 − a2

) ∂2ϕ

∂y2 + 2u v
∂2ϕ

∂x∂y
= 0,

where ϕ is the velocity potential and a is the sound velocity. Write the
corresponding dimensionless equation using the parameters L for a typical
length and a0 for the sound velocity at the entrance to define the
dimensionless variables.
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Simplified Mathematical Models

The conservation equations for mass and momentum are non-linear,
coupled, and very difficult to solve.

Only in a small number of cases-mostly fully developed flows in simple
geometries, e.g., in pipes, between parallel plates etc. it is possible to
obtain an analytical solution of the Navier-Stokes equations, but their
practical relevance is limited.

In most cases, even the simplified equations cannot be solved
analytically; one has to use numerical methods, but the computing
effort may be much smaller than for the full equations.
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Incompressible flow

In most situations, the flow of a conventional liquid, such as water, is
incompressible to a high degree of accuracy. (Also air when Mach
number (v/a) is smaller than 0.3).

For an incompressible fluid, the rate of change of ρ following the
motion is zero: that is,

Dρ

Dt
= 0.

The continuity equation reduces to

∇⃗v⃗ = 0 .

In this case, that is, an incompressible fluid must have a
divergence-free, or solenoidal, velocity field.
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Suppose that the volume force acting on the fluid is conservative,
that is,

F⃗ = −ρ ∇⃗Ψ⃗

Ψ is the potential energy per unit mass.

Assuming that the fluid viscosity is a spatially uniform quantity, which
is generally the case (unless there are strong temperature variations
within the fluid), the Navier-Stokes equation for an incompressible
fluid reduces to

Dv⃗

Dt
= −∇⃗p

ρ
− ∇⃗Ψ + ν ∇ 2v⃗,

where
ν = µ

ρ
.

is termed the kinematic viscosity, and has units of m2/s.
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Incompressible flow

The complete set of equations governing incompressible flow is

∇⃗v⃗ = 0,

Dv⃗

Dt
= −∇⃗p

ρ
− ∇⃗Ψ + ν ∇2v⃗.

Here, ρ and ν are regarded as known constants, and Ψ as a known
function. Thus, we have four equations for four unknowns, the
pressure, p, plus the three components of the velocity, v⃗ .

Note that an energy conservation equation is redundant in the case of
incompressible fluid flow.
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Inviscid (Euler) Flow

In flows far from solid surfaces, the effects of viscosity are usually very
small.

If viscous effects are neglected altogether, i.e., if we assume that the
stress tensor reduces to σ = 0, the Navier-Stokes equations reduce to
the Euler equations.

The continuity equation is

∂ρ

∂t
+ ∇⃗ (ρv⃗) = 0,

The momentum equations are:

∂ (ρvi)
∂t

+ ∇⃗ (ρviv⃗) = −∇⃗ (pe⃗i) + ρgi.
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Potential Flow

The fluid is assumed to be inviscid (as in the Euler equations);
however, an additional condition is imposed on the flow, the velocity
field must be irrotational, i.e.:

∇⃗ × v⃗ = 0⃗.

From this condition it follows that there exists a velocity potential Φ,
such that the velocity vector can be defined as v⃗ = −∇⃗Φ.

The continuity equation for an incompressible flow, ∇⃗v⃗ = 0, then
becomes a Laplace equation for the potential

∇⃗
(
∇⃗Φ

)
= 0.

The momentum equation can then be integrated to give the Bernoulli
equation, an algebraic equation that can be solved once the potential
is known.
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Creeping (Stokes) Flow

When the flow velocity is very small, the fluid is very viscous, or the
geometric dimensions are very small (i.e., when the Reynolds number
is small), the convection (inertial) terms in the Navier-Stokes
equations can be neglected.

If the fluid properties can be considered constant, the momentum
equations become linear; they are usually called the Stokes equations.
Due to the low velocities the unsteady term can also be neglected.

The continuity equation is

∇⃗v⃗ = 0 ,

The momentum equations become:

∇⃗
(
µ∇⃗vi

)
− 1

ρ
∇⃗ (pe⃗i) + gi = 0 .

Creeping flows are found in porous media, coating technology,
micro-devices, etc.
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Fluid equations classification

The classification of linear second order partial differential equations
is based on the nature of the characteristics, curves along which
information about the solution is carried.

In the hyperbolic case, the characteristics are real and distinct. This
means that information propagates at finite speeds in two sets of
directions. In general, the information propagation is in a particular
direction so that one datum needs to be given at an initial point on
each characteristic; the two sets of characteristics therefore demand
two initial conditions. If there are lateral boundaries, usually only one
condition is required at each point because one characteristic is
carrying information out of the domain and one is carrying
information in.
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Fluid equations classification

In parabolic equations the characteristics degenerate to a single real
set. Consequently, only one initial condition is normally required. At
lateral boundaries one condition is needed at each point.

Finally, in the elliptic case, there are no real characteristics; the two
sets of characteristics are complex (imaginary) and distinct. As a
consequence, there are no special directions of information
propagation. Indeed, information travels essentially equally well in all
directions.
Generally, one boundary condition is required at each point on the
boundary and the domain of solution is usually closed although part
of the domain may extend to infinity.
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Fluid equations classification

These differences in the nature of the equations are reflected in the
methods used to solve them. It is an important general rule that
numerical methods should respect the properties of the equations
they are solving.

Consider that the flow velocity u is the velocity of a body moving in a
fluid. The movement of this body disturbs the fluid particles ahead of
the body, setting off the propagation velocity equal to the speed of
sound a.
The ratio of these two competing speeds is defined as Mach number

M = u

a
.
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Fluid equations classification

The physical situations these types of equations represent can be illustrated
by the flow velocity relative to the speed of sound as shown in Figure

(a) Subsonic flow (u < a, M < 1), (b) sonic flow (u = a, M = 1), (c)
supersonic flow (u > a, M > 1).
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Fluid equations classification

For subsonic speed, M < 1, as time t increases, the body moves a
distance, ut, which is always shorter than the distance at of the sound
wave. The sound wave reaches the observer, prior to the arrival of the
body. The zones outside and inside of the circles are known as the
zone of silence and zone of action, respectively.

If the body travels at the speed of sound, M = 1, then the observer
does not hear the body approaching him prior to the arrival of the
body. All circles representing the distance travelled by the sound wave
are tangent to the vertical line at the position of the observer.

For supersonic speed, M > 1, the velocity of the body is faster than
the speed of sound. The line tangent to the circles of the speed of
sound, known as a Mach wave, forms the boundary between the zones
of silence (outside) and action (inside).
The governing equations for subsonic flow, transonic flow, and
supersonic flow are classified as elliptic, parabolic, and hyperbolic,
respectively.
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Fluid equations classification

The Navier-Stokes equations are a system of non-linear second-order
equations in four independent variables. Consequently the classification
scheme does not apply directly to them. Nonetheless, the Navier-Stokes
equations do possess many of the properties outlined above and the many
of the ideas used in solving second-order equations in two independent
variables are applicable to them but care must be exercised.
It is possible for a single flow to be described by equations that are not
purely of one type.
An important example occurs in steady transonic flows, that is, steady
compressible flows that contain both supersonic and subsonic regions. The
supersonic regions are hyperbolic in character while the subsonic regions
are elliptic. Consequently, it may be necessary to change the method of
approximating the equations as a function of the nature of the local flow.
To make matters even worse, the regions cannot be determined prior to
solving the equations.
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Physical boundary conditions

The boundary conditions, and sometimes the initial conditions, dictate
the particular solutions to be obtained from the governing equations.

For a viscous flow, the boundary condition on a surface assumes zero
relative velocity between the surface and the gas immediately at the
surface. This is called the no-slip condition.

u = v = w = 0

In addition, there is an analogous ‘no-slip’ condition associated with
the temperature at the surface.

T = Tw

Tw is the temperature at the wall.
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Physical boundary conditions

If the wall temperature is not known, e.g., if it is changing as a
function of time due to aerodynamic heat transfer to or from the
surface, then the Fourier law of heat conduction provides the
boundary condition at the surface,

q̇w = −
(

k
∂T

∂n

)
w

where n is the direction normal to the wall.

When the wall temperature becomes such that there is no heat
transfer to the surface, this wall temperature, by definition, is called
the adiabatic wall temperature. The proper boundary condition for
the adiabatic wall is, (

k
∂T

∂n

)
w

= 0
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Physical boundary conditions

Finally, the only physical boundary conditions along a wall for a
continuum viscous flow are the no-slip conditions; these boundary
conditions are associated with velocity and temperature at the wall.
Other flow properties, such as pressure and density at the wall, fall
out as part of the solution.

For an inviscid flow, there is no friction, and the flow velocity vector
immediately adjacent to the wall must be tangent to the wall.

V⃗ n⃗ = 0

the flow at the surface is tangent to the wall.

This is the only surface boundary condition for an inviscid flow. The
magnitude of the velocity, as well as values of the fluid temperature,
pressure, and density at the wall, falls out as part of the solution.
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Physical boundary conditions

Depending on the problem at hand, whether it be viscous or inviscid,
there are various types of boundary conditions elsewhere in the flow,
away from the surface boundary.

For example, for flow through a duct of fixed shape, there are
boundary conditions which pertain to the inflow and outflow
boundaries, such as at the inlet and exit of the duct.

If the problem involves an aerodynamic body immersed in a known
freestream, then the boundary conditions applied at a distance
infinitely far upstream, above, below, and downstream of the body are
simply that of the given freestream conditions.
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