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Finite Difference Equations

Consider a function u(z) and its derivative at point z,

Using Taylor's expansion

ou Az? %?u Az JPu
Az) = A (g 20 20 T
u(z + Az) = u(x) + Az x(x) + 5 92 + TR +

This implies that
ou  u(zr + Az) — u(z)

The approximation of the derivative % is of first order in Azx.
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Finite Difference Equations

Using

ou Az? 0%u Az 9Pu
e = Aw) =ule) = A @)+ 5 5n 3 e T

for a generic point x;, x;41 = x; + Az, ;1 = ; — Az and we have:

The forward difference

Ou\ U1 —u
(5), =5 o

The backward difference

ou U; — Uj—1
—) === A
<Bx)i Az +0 (A7)
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Finite Difference Equations

A central difference

0 i1 — Ui—
<82> -- +12A; F+0(ar?)

For the second derivative

(82u> _ Uim1 — 2u; 4+ Ui ) (AxQ)

Oz Ax?

Other approximations:

ou o Buy — Ay +uio o
(&L')i B 2Ax +0 (A7)
ou - —3ui + 4ui+1 — Uj42 2
(), = o
82u U; — 2’LLZ',1 + Uj_2
(ax) = A +0(Az)
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Finite Difference Equations

When nonuniform meshes are used, we can obtain approximations

ou Ui41 — Uy
- = =T ° Az
(al)l AZL'Z'+1 +O< xl+1) ’
ou U; — Uj—1
(&r) = T Ag 0@,
au o 1 ALEL AxH_l
((’)x)l N A.%‘l + AfL'H»l <A$i+1 (UH_l B uz) + AJ}Z' (UZ B Uz—l))
+0 (Az;Awiy1)

where Az; = x; — x;_1.
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Finite Difference Equations

Approximations with higher order accuracy can be constructed.

With fourth order accuracy we have

up = oAz (wi—2 — 8uj—1 + Suiy1 — uiy2)
1
u = oA (—uj—o + 16u;—1 — 30u; + 16u;r1 — uit2)
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Elliptic equations

As an example, we consider a bounded domain 2 =|0, 1] and the
non-homogeneous problem

{—U”( z) +c(x)u(z) = f(z), = €0,1]
u(0) = a, u(l) =f

We introduce the equidistributed grid points (), given by
xj = jAz, where N is an integer and the spacing is given by

Azx =1/(N +1).

Introducing the approximation of the second order derivative:

{_W +to(ag)uy = flzg), j=1....N
upg = &, UN+1 = 5
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Elliptic equations

In matrix form, it can be written as,
Au=1b,

where A is the tridiagonal matrix

c(z1) 0 - 0
0 c(x2) :
A=A0 4 :
c(xn-1) 0
0 0 c(zn)
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Elliptic equations

with
1 —1 2 —1 f(xg)
A0 = v o , and b= :
T
Lo 1 2 -1 f@n-1)
O --- 0 —=1 2 f(zn) + %

If ¢ > 0, the the matrix A is symmetric and positive definite.
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Elliptic equations

For Neumann boundary conditions we can consider the problem

{—u”(w) + c(x)u(z) = f(z), =z €]0,1]
W(0)=a, v (1)=p

The first derivative of u can be discretized by a difference scheme as
follows:
_ u(Az) — u(0) u(l) —u(l — Azx)

/ 1) ~
u'(0) ~ SR () I

and we obtain the numerical scheme

_Uj_H — 2u]' =+ Uj — 1
Ax?
up = u1 — Aza, un41 = uy + Axf,

+CjUj:f($j), j=1,....N
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Elliptic equations

Leading to the linear system

where

c(zn)
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Elliptic equations

and

;(901)

-1 2 -1 f (@)
T Az?
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Elliptic equations

This scheme is first order accurate. To improve the accuracy of the
solution, we can use a central difference scheme for the Neumann
boundary conditions:

_ u(Az) —u(-Azx) u(l+ Az) —u(l — Ax)

/ / ~
w(0) ~ 2Ax w1~ 2Ax ’

however, this requires introducing additional fictitious unknowns
corresponding to the data u_; and upyy2, thus increasing the size of the
linear system to be solved.

This leads to define the following numerical scheme:

U1 — 2u]' + Ujt1
Ax?
u_1 = uy — 2Axa, unio = uy + 2Ax0,

+Cj’LLj:fj, j=0,....N+1

which is a second order accurate scheme.
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Elliptic equations

We want to study the following boundary values problem
o
Ox?
with %(0) = 0 and »(10) = 1.

=-2, z€(0,10),

We use the finite differences approximation

82u -~ Uj—1 — 2U¢ + Ui41
ox2 (i) ~ Ax? ’
Making use of 11 nodes in the mesh xzq, 1, ... , 109, we have that

Az =1 and the equation can be approximated as

Uim1 — 2U; + Uiy = —2 .
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Elliptic equations

Varying i = 1,...,9, we obtain the system
-2 1 0 0 0 0 0 0 0 Uy -2
1 -2 1 0 0 0 0 0 0 U2 -2
0 1 -2 1 0 0 0 0 0 u3 -2
0 0 1 -2 1 0 0 0 Uy -2
0 0 0 1 -2 1 0 0 0 Uus = —2
0 0 0 0 1 -2 1 0 0 Ug -2
0 0 0 0 0 1 -2 1 0 Uy -2
0 0 0 0 0 1 -2 1 ug -2
0 0 0 0 0 0 0 1 -2 Ug -3
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Elliptic equations

To solve this system, we can use the following instructions:

vi=ones (1,8);

v2=-2%xones (1,9) ;
A=diag(v2)+diag(vl,-1)+diag(vl,1);
b=-2*ones (9,1);

b(9)=-3;

solu=A\b;

solu=[0;so0lu;1];

The analytical solution of this problem is

101
_ .2
u(x) = —z° + 0%
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Elliptic equations

The obtained result is

30

25

20

*

analytical
numerical
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Parabolic equations: Explicit schemes

We consider the diffusion equation
ou_ 0
ot~ “oa2-

An explicit finite difference scheme may be written in the forward
difference in time and central difference in space (FTCS) as,

up - up ui g = 2ui +uity 2
=« + O (At, Ax
At Az? ( )
or
up ™ = d (ufy = 2uf )

where the diffusion number is
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Explicit schemes

@ The concept of stability of a numerical scheme is concerned with the
growth or decay of errors introduced at any stage of the computation.

@ In practice, each calculation made on the computer is carried out to a
finite number of significant figures which introduces a round-off error
at every step of the computation.

@ A particular method is stable if the cumulative effect of all the
round-off errors produced in the application of the algorithm is
negligible.
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Explicit schemes

@ In order to determine the stability of the solution of finite difference
equations, it is convenient to expand the difference equation into a
discrete Fourier series.

@ Decay or growth of an amplification factor indicates whether or not
the numerical algorithm is stable. This is known as the von Neumann
stability analysis.
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Explicit schemes

Assuming that at any time step n, the computed solution ;' is the sum of
the exact solution ;' and error €7,

n__ -—n n
U; = u; +5Z'7

equation associated with FTCS scheme is

n+1 n

At A2

3

(ei1 —2ef +¢€iq) -

If the boundary conditions are considered as periodic, the error £; can be
decomposed into a discrete Fourier series in space at each time level n,

N

where the domain considered is [—L, L] and Az = L/N.
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Explicit schemes

Introducing the spatial phase angle

¢ = J]z; )
for each one of the components
& eilds — (5 i(l=1)¢; — 227 1ild) | gn L(l+l)¢1)
At A:E2

that is
Nl — &) = dey (€7 — 24 €™
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Explicit schemes

The computational scheme is said to be stable if the amplitude of any error
harmonic €7 does not grow in time, that is, if the following ratio holds:

m+1

T
<

lgl = <1

)

where g is the amplification factor
g=1—2d(1 - cos(¢;))
The stability conditions are
g1, g=>-1,

Since the maximum value of 1 — cos(¢;) is 2, we have the stability
condition (Courant-Friedrich-Lewy (CFL) condition)

0 < XAt al\t < 1
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Explicit schemes

Let us assume that we have a bar with a length of 0.5 m that initially has
a temperature of 25 degrees Celsius. The right end is set at a temperature
of 100 degrees Celsius, while the other end is kept at 25 degrees Celsius.
We want to know how the temperature evolves at different points of the
different points of the bar using the heat equation

o_
9t "9m2

a=10"2m?/s .
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Explicit schemes

We use the explicit scheme

al\t

n+1 n n
=u; + —5 (uj ] —2ui +u
% AmQ( i—1 z+1> ’

Uy

We choose, for example, Az = 0.1, that is, 6 spatial nodes. If we choose
At = 0.1s, the Courant condition (CFL)
1072
0<—=At<0.5,
10270

is satisfied.
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Explicit schemes

close all
% geometry
deltat=0.1;
deltax=0.1;
alpha=1le-2;
% initial conditions
u0=25*ones (6,1);
u0(6)=100;
A
it=1;
pasost=100;
nprint=10;
hold on
% time loop
for n=1:pasost

tiempo=n*deltat;

u(1)=25;

for i=2:5

u(i)=u0(i)+alpha*deltat/(deltax~2)*...
(u0(i-1)-2*u0(i)+u0(i+1));

end

u(6)=100;

if (it==nprint)

it=0;

plot (u);

end

it=it+1;

u0=u;
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Explicit schemes
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Explicit schemes

Other explicit schemes are:
@ The Richardson method

n+l __  n-—1
i 3

2At Az?

u

which is unconditionally unstable.
@ The Dufort-Frankel method

n+1 n—1
7 U; i—
=« 3

2At Ax?

u

which is unconditionally stable.
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Implicit schemes

An implicit method for the parabolic equation is

n+1 n+1 n+1
! —uh ur T — 2u +
i ) 1—1 7 i+1 O (ﬁt, ﬁx2)

=«

At Ax?

This scheme is unconditionally stable.

al\t

n+1 n+1 n+1 __
—ru, 'y + (1+2r —ru =u, r=-—5
( ) i+1 ? A2
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Implicit schemes

If we assume homogeneous boundary conditions, for each time step it is
necessary to solve a system of linear equations.

n+1
(1+2r) —r U1
—r (I4+2r) —r
—r  (1+2r) —r

— 1 2 n+1

r (1+2r) “Nt
ul + rug“
n+1

n
U, +TUN 1y
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Implicit schemes

Another possibility is the Crank-Nicolson method

a Ax? Ax?

n+1 n+1 n+1 n+1 n n n
T o (T = 2u gy = 2u 4 uyy
At 2

or, in general,

ut -y Bu?_ﬁ —2u " Uy Ly 2ty
At Az? Az?

For 1/2 < 3 < 1, the method is unconditionally stable.
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Exercises

Diffusion equation

We study the heat conduction in a bar. In particular, we have a bar with
an initial temperature of 0 °C and we apply temperatures of 100 °C at both
extremes of the bar. We assume that the length of the bar is 1 and the
thermal diffusivity is . Compute its numerical solution using the (3
method (Crank-Nicolson)

TA

100 4 =T 100

v
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Exercises

@ Study the stability of the BTCS scheme for the diffusion equation
uitt =} +d (“?—Jﬁl — 2uftt 4 “?ﬁl)

@ Study the stability of the CTCS scheme for the diffusion equation

n+l _  n—1 n n n
ur ™ =l 4+ 2d (uf g — 2uf + u )
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Hyperbolic equations

Given a wave equation
0u 5 0%u

o2~ ¢ ox2
We can look for solutions of the form
u(z,t) = G(t)e*®

This implies

That is
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Hyperbolic equations

The solutions of the differential equation are
Gl _ eikat G _ ef'ikat
= , G, =
and we obtain the waves
ul(x,t) _ eik(:BJrat) ’ ur(:z,t) _ ez’k(w*at)
Superposition of these waves, gives
u(z,t) = Fi(z + at) + Fa(x — at)
Att =0,
u(z,0) = Fi(z)+ Fa(z)
L@,0) = aFj(x) - aFy(x)
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Hyperbolic equations

Solving for F and Fb,

(@.0) = 5 (ulw +at,0) 4l —at,0) + o [ Pz, 0)d
u(z,t) = 5 (u(z +at, u(x — at, 50 ) 57 (% T

u(z,0) = H(z), Opu(z,0) =0,

1
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Hyperbolic equations

Given a wave equation

@ B 282u 0
ot? or2

it can be factorised as

(8 i 0 ) (8 0 ) 0
—4a— || = u=
ot o) \ot ~ ‘oz
which is equivalent to
{Bu aau _

ot 8:(: -

It + CL% =0
Hyperbolic equations, in general, represent wave propagation. They are
given by either first order or second order differential equations, which may

be approximated in either explicit or implicit forms of finite difference
equations.
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Explicit schemes

Let us consider a first order wave equation (transport equation or
convection eqution)

ou ou
— — =0 0.
ot T 07
The Euler forward method (FTFS) is
wt gy ui
At Az

If we repeat the Von Neuman stability analysis, we obtain for the
amplification factor

gj=1-C (% —1) =1+2Csin® ( ;) — iC'sin ()

with C the Courant number
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Explicit schemes

Hence, it is satisfied

lg]? (1 + 2C sin? (?))2 + C?sin?(¢)

= 1+4C (1 + C)sin? (g’) > 1.
and the scheme is unconditionally unstable.
The Euler's Forward Time and Central Space (FTCS) scheme is

n+1 n n n
i W Ui T U

At YT oAx

u

This is also an unconditionally unstable scheme.
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Explicit schemes

The Euler's forward time and backward space (FTBS) approximations
(also known as upwind method) is given by

up - uf _ _au? Uiy
At Ax
The amplification factor takes the form

g = 1-C (1 - e_id’) =1—C(1—cos(¢)) —iCsin(¢)

— 1 90sin? (f) —iCsin(g) ,

that is,
g=£&+in,
with
¢ = 1-2Csin? ((5) =(1-C)+ Ccos(9),
n = _CSID(¢> )
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Explicit schemes

The stability condition states that the curve representing g for all values of
¢ should remain within the unit circle.

(1—C + Ccos())? + C?sin’(¢)
= 1-2C(1—0O)(1 - cos(¢))

1 —4C(1 — C)sin? @) <1

lg/?

This implies

that is
0<Cx«1

Courant-Friedrich-Lewy (CFL) condition.
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Explicit schemes

In numerical solutions of finite difference equations, we are also concerned
with dispersion (phase) error. They should be as small as possible
The phase ®, given by

® = arctan (2) = arctan <1 ;ng(il(¢)> .

The phase angle is defined as
d = kaAt = Co,
and the dispersion error or relative phase error is defined as
P 1 n 1 —C'sin(¢)
5(]5:5 %arctan(€> %arctan<1_0+ccos(¢>> ,
that can be approximated by

6¢zl—é(202—30+1)¢2
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Explicit schemes

The Lax method

1
ufth = 3 (uipy +uiy) — D) (win —uils)

which is stable for 0 < C < 1.

The Midpoint Leapfrog method

n+1 n—1 n n
Uy — —uy a(ufy g —ul )

2At B 2Ax

This scheme is stable for 0 < C' <1 and it is second order accurate in
time and space but it requires two sets of initial values.
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Explicit schemes

The Lax-Wendroff method is obtained using the Taylor expansion

ou 10% , , 3
u(w, b+ At = (e, 1) + 5 At S g AP 4O (a?)

Differentiating convection equation with respect to time
0%u 0 (0Ou 5 0%u
aﬁ:_aax(at>:a oz’

The Taylor expansion is written as

ou At? 9%
n+1 n 2
u; " =y + At (—a) + " (a :102>

Using central differencing of the second order for the spatial derivatives,
we obtain

ntl _on oAy (Yt %1) Af)2 (uerl i 11)
u; ul —a ( 5AL + =(aAt) AL

which is a stable method if 0 < C < 1.
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Implicit schemes

Two typical implicit methods for the convection equation are, the Euler's
BTCS method

u a
) T n+l n+l
= (u¢+1 Ui—1 )

and the Crank-Nicolson method

n+1 n+1 n+1 n n
up " — g R e | i Ujpq — Uj—q
At 2 2Azx 2Ax

These schemes are unconditionally stables.

1D models
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Implicit schemes

upwind C=0.5 Lax C=05

.

.

Diffusion Diffusion

1 | 22 'WW‘
il

- V%‘*‘%%;

0

4

Dispersion Dispersion
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Matrix stability for finite differences method

Given a time-dependent boundary problem, once a spatial discretization is
used, we obtain the semi-discrete system

au
— =AU +b
dt *

An approximate solution
V(t)=U(t) +e(t)
The error £(t) satisfies the homogeneous equation

de

% _ 4
ar -
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Matrix stability for finite differences method

Using a time-discretization, we end up with a homogeneous difference
equations system of the form

E™ = BE"

This system is stable if all the eigenvalues of matrix B, A, satisfy that
Al < 1.

1D models Course 2024-2025 49 /81



Matrix stability for finite differences method

Matrix stability

Use the matrix stability method to analyse the stability of the FTCS
scheme for the linear convection equation

%—Fa@—o
ot or

if periodic boundary conditions are assumed.

Solution:
The FTCS scheme is given by

n+1 n n
U, U Uipy — Uiq

At 2AT
that is

1D models Course 2024-2025
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Matrix stability for finite differences method

For the errors, we have

eftlt = el +

7 5 (6?_1 - €?+1)

Evaluating the difference equation for the nodes ¢ = 0,1,..., N and using
the periodicity we obtain a system of the form

E"*! = BE"
where matrix B is

1 -D 0 D
D 1 -D o
B — s D = —
2

: D 1 —-D

-D 0 D 1
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Matrix stability for finite differences

Program to compute the eigenvalues of B

clear all, close all;
format long

% Number of points plot(lambda, "=");
Nx = 10; ‘ : )
x = linspace (0,1,Nx+1); xlabel (' Real_\lambda');
dx = 1/Nx; ylabel ('Imag_\lambda');
% velocity
v = 1; % unit circle
% Set timestep th = linspace(0,2%pi,101);
CFL = 1; hold or.1;
dt = CFLxdx/abs(v); plot(sin(th),cos(th));
hold off;
D=dtxv/(2xdx); axis('equal’);
grid on;

vl=Dxones(1,Nx—1);
v2=ones(1,Nx);
v3=vl; P N .
&dlaﬂ(v )+d|a0(v1,—1)+diag(v3,1); o / N\
B(1,Nx)=D; 0t
B(Nx,1)=—D;

% Calculate eigenvalues of A
lambda = eig(B) 0 \ YA

%for i=1:length (lambda) :
% norm(lambda(i)) e A
Y%end
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Multistep methods

Computational stability, convergence, and accuracy may be improved using

multistep (intermediate step between n and n + 1) schemes, as the
Richmyer scheme

n+g 1 n n n n
up 2 =g (ufy Futy) _ (ufyr —uiy)
At/2 2Ax ’
n+% n+%
U?+1 _ uyn (’U,i+1 —U; o
=—a
At 2Ax

These equations can be rearranged as

"Jr% 1 n n C n n
up "t =g (w1 +uiyg) — 1 (w1 —uiy)
1 1
ntl _ . n c nt3 n+3
'U,i = U,L' — 5 (U,L-_,’_l — ui—l .

This scheme is stable for 0 < C' < 2.

(UPV) 1D models Course 2024-2025 53 /81



Multistep methods

The Lax-Wendroff scheme can be rewritten as

C
uiy i) — b (uiq — uiy)

n—i—% n-‘r;)

n+1:un—c u. + —UuU. 1
i+ =5

The stability condition is 0 < C' < 1.

54 /81
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Conservation laws

Given the linear advection equation

ou ou
a—l—a%—o x € [0,1] .

If we define the total mass

1
M:/ udx |
0
and we assume that u has periodic boundary conditions u(0,t) = u(1,1),
we have
dM d 1 Ldu
—_— = —= de | = | —d
dt dt(/oux> o dt *
1 du 1 )
= a%dm——a ; du = —aluly=0.

Then the mass M is conserved.
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Conservation laws

If we consider the FTBS scheme
up = = O (uff — i) |

2 3

we calculate

M = Zm:Aacu?H sz —C (uf —uj4))

_ M"—CAz (Z - §u$_1>
— — CAz (Zu Nil ?)

=0
= M"—-CAx(uy, —ug)=M".

Thus, this scheme conserves the mass with homogeneous or periodic
boundary conditions.
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Conservation laws

Now we consider a higher moment such as the variance
1
V= / uw? de — M? .
0

Then we calculate

av L du? L du 1 511
E: A ﬂda::/o ZUde:—Za/O udu:—u{u}ozo.

If we again consider the FTBS scheme, we calculate

V=S e () = Ae S (O (- )

=1 =1

N.’E
V" —20(1-0C) (v" ~ Az Zu?u?_1> .
=1

It can be seen that the variance always decreases when using FTBS.
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Nonlinear problems

A classical nonlinear first order hyperbolic equation is the Euler’s equation

ou ou ou oF 7 u?

ot~ oz * ot~ ox 2

The Lax method can be applied to this equation. Using the FTCS
differencing scheme

n+1 n n n
Wy T Uy __Fi+1 iy

At o 2Ax ’

and to maintain the stability, we replace u' by its average,

1 At
uptt = 5 (uityr +uiyq) — AL (K1 — Fy)
This sheme is stable if
At
Fumax S]-
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Nonlinear problems

The Lax-Wendroff method for the Euler equation is derived form the
Taylor expansion

ou 1 0%
n+1 n 2 .
u " = —i——atAt—i—Z! (%gAt + .

Pu_ 0 ((9F> __9 (f?F)
o2 ot\ox/) Oz \ot)
OF OFdu _OF ( 8F) AaF

9t uot du\ o

We have that

and

=-Ag-
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Nonlinear problems

Thus,

pe_ o)
o2 Ox or )

Substituting in the Taylor expansion,

OF 0 OF\ At?
ntl _  n _ 3
u; —uz—|—< 3x)At+8x<Aax) 5 +O<At),

that can be approximated by

upt —up  FRL - Fy At OF\" OF\"
1 i Tt i— A N O il
Al 2Ar | 2AL ( 83;)'5 ( 83})» 1

=3
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Nonlinear problems

The last term of this equation is approximated as,

aF\" oF Fn _Fn Fr—Fr
()~ (), A, B
2

i+3 Ax z—% Az
Az a Az
_ons (A +AY) (B — FY) — oxg (A7 + AL (B — FY)
A:z: '
That is
uftt = uj _E( - L)
At?

A2 ((uits +ud) (Fy = F) = (i +ui'y) (B = F'y))

This is second order accurate with the stability requirement,

At

Az — Umax| < 1.
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Nonlinear problems

A multilstep scheme (MacCormack method) for the Euler equation is the
following one,

At
u; = U?—E( i z'")7
uptt = 5 (U?‘Fuz _E(Fi _Fi1)> :

Because of the two-level splitting, the solution performs better than the
Lax method or the Lax-Wendroff method.
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Nonlinear problems

One of the most widely used implicit schemes is the Beam-Warming
method, discussed below.

Let us consider the Taylor expansions

ou A2 92 5
u(m,t+At):u(:U,t)+Ata( )+7w(x,t)+O(At), (1)

and

2 92
u(x,t):u(a:,t-i-At)—At@(x t+At)+ A7 0u

5 (7 5 e L2, t+ A +O (a8
(2)
Substracting (1) and (2),
ou Oou
2u(z, t + At) =2u(x,t) + Ata—(x t) + Ata(x,t + At)

At? 9%u At? 9%y )
-5 at?( )+ at?(xt+At)+O(At),
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Nonlinear problems

or
du\" ou\"!
2 a At
<at),- +<at>z~ )
1 20\ " o2\ A 3
3 ((w) ‘(w) S +o(ar).
We have that

o2\ (02" 0 (0"
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Nonlinear problems

and we arrive at

1 ou\" Au\ "t
ntl _ . n - el el 3
u! _“2+2(<8t>i+(8t>i >+O(At).

For the equation
Ou _ _OF
ot Ox

we have

u; uy 1 [ /OF\" OF\" ! 9
() (3 ol
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Nonlinear problems

The resulting finite difference equation in implicit formulation is nonlinear,
and a procedure is used to linearize it.

To this end, we write a Taylor series for F'(t + At) in the form

_ oF 2
F(t+ A1) = F(t)+ 5 At 40 (ar?)

B OF Ou 9

= F(t)+ 55 At +0 (ar?)

== (2 (), g (A (- )))

i

and
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Nonlinear problems

Using a second order central differencing approximation

wil _ o At (2(F, — FY) Al ity — AR Ky
u; ut — = n
2Azx

D) 2Aac

n n n n
_Ai+1ui+1 — A quiy
2Ax ’

This scheme is second order accurate, unconditionally stable, but
dispersion errors may arise. To prevent this, a fourth order smoothing
(damping) term is explicitly added:

w

D = ) (uilyo — duilyy + 60’ — dui | +uily)

with 0 < w < 1.
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Nonlinear problems

Since the added damping term is of fourth order, it does not affect the
second order accuracy of the method, that is of the form

A n TL n A n
TN AR +1+KAz+l up!
At AL At
= U, _E( T — Fiby) + 1AL ANt — 1AL Al + D
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The Burger's equation

The Burgers' equation is a special form of the momentum equation for
irrotational, incompressible flows in which pressure gradients are neglected.
Consider the Burgers' equation written in various forms,

ou ou 0%u

ot " %r Vi

ou ou 0%u

ot ar o2’

ou OF 0%u

o or  Vaar
These equations are mixed hyperbolic, elliptic, and parabolic types. If
steady state is considered, then they become mixed hyperbolic and elliptic

equations. Because of these special properties, various solution schemes
have been tested.
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The Burger's equation

Consider the Navier Stokes equations

V=0
9 (vs e =
p g; ) + piV (v;) = =V (p&;) + uV3v;

that describe the dynamics of an incompressible flow where gravitational
effects are negligible.

If we consider a 1D problem with no pressure gradient, the above
equations reduces to

@—i— u@— Ou
’Oat P

0z Moz =0
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The Burger's equation:linear equation

The FTCS explicit scheme is obtained by using forward differences in time
and central differences in space,

n n n n n n
U; i aui+1 e Vuifl —2u +uyy
At 2Ax Ax?

n+1
ui —

The central difference for the convective term tends to introduce
significant damping.

The FTBS explicit scheme is the same as in FTCS except that backward
differences are used for the convective term,

n+1 n n n n n n
ST — ) Uy — Uy up | —2u +ul g
1 (3 _|_a 7 7 =v (3 7 1+ )

At Ax Ax?

u
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The Burger's equation: linear equation

@ The first order approximation of the convective term may introduce
an excessive diffusion error.

@ A compromise is to use higher order schemes. An example is the
following one,

2 1
At 6Ax
[ tit1 — 2uy + ug

Ax?

ultt — ta (nuy — 18u? ; + 9ul 5 — 2u?_3)
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The Burger's equation: linear equation

Another explicit scheme is the DuFort-Frankel method,

u?71+u?+1
u;z—&-l - U?_l N u?—i—l _ U?_1 uzn—l—l -2 (2) + Uzn—l
a =v
2At 2Ax Ax? ’
that is
unl (1 — 2d> ul <C + Qd) un (C - Qd) L
‘ 1+2d) ° 1+2d) 1 1+2d) 1
where
B alt B vAt
Az Az?

This scheme is stable if 0 < C' < 1.
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The Burger's equation: linear equation

The MacCormack explicit scheme is a two-step method, which can be
formulated as,

Step 1
At vAt
Auj = YA (uifyr —ui’) + Az? (w1 — 20 +uily)
Step 2
. At . VAL
Aug = N (uf —ui1) + 13 Az2 (uits = 2 +uiy)

1
utt = 5(u?+uf+Auf) )

This scheme is stable if
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The Burger's equation: linear equation

The MacCormack implicit scheme is

Step 1
At
( )Au = Au} +)\A Aug g
up = uy —i—Au
Step 2
At n . At
<1 + /\A> Aultt = Auf + )\EAqu
1
n+l _ — n * n+1
u; —2(u2+ul+AuZ )
where
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The Burger's equation: Nonlinear equation

The non linear equation is considered

6u oF u@
815 or ox?

The FTCS scheme for this equation is

n+1 n n n n n
Uy i — Fi u; gy — 2w gy

At N Az?
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The Burger's equation: Nonlinear equation

A potentially more accurate treatment of the convective term
Fiy1—Fi
2Ax
is provided by replacing it by a four-point upwind discretisation:
For u positive
Fii1—Fi . GFZ'—Q —3F, 1 +3F;, — Fiq
2Azx 3Azx

LW =

and if w is negative

Fig1—Fi 4 L 9Fz‘f1 —3F; +3F; 1 — F; i

LW —
r 2Azx 3Ax

These discretizations have a truncation error O (AxQ) for any 6 except for
6 = 0.5 when they are O (Axz?).
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The Burger's equation: Nonlinear equation

The Lax-Wendroff scheme is

Ax
1~ 2ul +ul 1
Ax?

At 1 [/ At\?
uptt = — 2Az (Fiiq — FiLy) + 2 <) (AiJrl (Fia — )
n
11—

_ A Y

1—=

(F" — Fﬁl)) +v

[N

_ — 1. )
where Ai+§ =U 1 =3 (u; + wiy1).

The scheme is stable if |upmaxAt/Az| < 1.
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The Burger's equation: Implicit schemes

The Crank-Nicolson method is

n m n 1 1
uptt — I e S R a8 n —F + R
At 2 2Ax 2Ax
+ 1 ui g — 2ui Uiy n uptl — 207 4 Wt
2 Az? Az? ’

which can be rewritten as,

Ayt 1 1
==L (Fr+F) + 5V Lea (wr +urtt)
where
n.o—F" ul 1 —2ul + ul
nt+l _  ntl _ tin -1 Ui +1
Aui = u:l —U? s LIF,Ln = W s LZIU? = A;Q L
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The Burger's equation: Implicit schemes

The appearance of the nonlinear implicit term F;* poses a problem. To
overcome it we use the Taylor expansion

OF\" 0*F
n+l _ n 2
F'™ = F] +At(8t) fAt <8t2> + -

that is,
FMl = B 4 AAut 40 (A82)

We obtain the following tridiagonal algorithm,

Ayt 1 1
Azt = —§Lx <2F¢" + u?Au?“) + §Lm (u? + u?“) ,

which can be rewritten as,

At 1
u?“ + o> (L (u"u"“) - VLmu"H) =u; + §VAthu?
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Systems of equations

For example, we can consider unsteady compressible inviscid flow, which is
governed by a system of three equations: continuity, z-momentum and
energy. After a suitable non-dimensionalisation the system of equations
can be written as

o7 OF

4 a—p|

ot T or

where
p pu
7= pu , F=| i+l :
1 2
7(7{1) +gpu (% + %puz) Y

where ¢ is the density, u is the velocity, p is the pressure and 7 is the
specific heat ratio.
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Systems of equations

For this problem, the two-stage Lax-Wendroff method is of the form

. 1 INND

Gp1 = 5(@?+@?+1)—m( - F)
At [ =, =

@t = - (R - )

At each stage of the solution development, p, v and p are evaluated from
@ in such a way that the components of F' can be determined.

Modified schemes to correct the dispersion error of the Lax-Wendroff
method can be also applied.
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Systems of equations

A crank Nicolson scheme will be

@ -7 = —a (R = B + (P - F))

Making use of a multidimensional Taylor expansion

ﬁn+1 F7L+AA—’TL+1

)

the following scheme is obtained,

1 At 1 At
_*7141— A—n-l—l IA—n+1 77141 A—n+1
1 Ar 1 + [Aq + A Ag it Qi1
1 At

:_ZE( T — F ),

which is a tridiagonal system for Ag" 7"T1. The solution in the next step is

(j;n—f—l _ Qz +A4n+1
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