

2D models

Damián Ginestar Peiró

Departamento de Matemática Aplicada

Universitat Politècnica de València

Course 2024-2025

Outline

- Finite Difference formulas
- Elliptic equations
- Parabolic equations
- 4 Advection-diffusion equation
- 5 Coordinate Transformation for Arbitrary Geometries
- 6 Fluid equations

Finite Difference formulas

For two-dimensions, we consider

$$x_i = x_0 + i\Delta x ,$$

$$y_j = x_0 + j\Delta y ,$$

The forward and backward operators are now given by δ_x^\pm and δ_y^\pm in x and y-directions, respectively. The forward first partial derivatives are

$$\left(\frac{\partial u}{\partial x}\right)_{ij} = \frac{1}{\Delta x} \delta_x^+ u_{ij} = \frac{u_{i+1,j} - u_{i,j}}{\Delta x} + O(\Delta x) ,$$

$$\left(\frac{\partial u}{\partial y}\right)_{ij} = \frac{1}{\Delta y} \delta_y^+ u_{ij} = \frac{u_{i,j+1} - u_{i,j}}{\Delta y} + O(\Delta y) .$$

4 □ ▶

Finite Difference formulas

The second order central difference formulas for the second order derivatives are of the form

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_{ij} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + O(\Delta x^2) ,$$

$$\left(\frac{\partial^2 u}{\partial y^2}\right)_{ij} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta y^2} + O(\Delta y^2) .$$

An approximation for the mixed derivatives is given by

$$\left(\frac{\partial^2 u}{\partial x \partial y}\right)_{ij} = \frac{u_{i+1,j+1} - u_{i+1,j-1} - u_{i-1,j+1} + u_{i-1,j-1}}{4\Delta x \Delta y} + O\left(\Delta x^2, \Delta y^2\right).$$

4 / 71

Finite Difference formulas

Other approximations are

$$\left(\frac{\partial^2 u}{\partial x \partial y} \right)_{ij} = \frac{u_{i+1,j+1} - u_{i-1,j+1} - u_{i+1,j+1} - u_{i-1,j}}{2\Delta x \Delta y} + O\left(\Delta x^2, \Delta y\right),$$

$$\left(\frac{\partial^2 u}{\partial x \partial y} \right)_{ij} = \frac{u_{i+1,j+1} - u_{i+1,j} - u_{i,j+1} + u_{i,j}}{\Delta x \Delta y} + O\left(\Delta x, \Delta y\right),$$

$$\left(\frac{\partial^2 u}{\partial x \partial y} \right)_{ij} = \frac{u_{i+1,j+1} - u_{i+1,j} - u_{i,j+1} + u_{i-1,j-1} - u_{i-1,j} - u_{i,j-1} + 2u_{i,j}}{\Delta x \Delta y}$$

$$+ O\left(\Delta x^2, \Delta y^2\right).$$

Let us consider the Poisson equation,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -f(x, y) ,$$

If we want to solve the equations in a finite domain, Ω , it is necessary to have boundary conditions:

- **1** $u\left(\vec{x}\right)=f\left(\vec{x}\right),\ \vec{x}\in\Sigma,$ being Σ the boundary of $\Omega.$ These are Dirichlet conditions.
- ② $\vec{n} \vec{\nabla} u = g\left(\vec{x}\right)$, being \vec{n} a unitary vector normal to the surface Σ , limiting Ω . These are Neumann bundary conditions.
- **3** $\vec{n}\vec{\nabla}u + \alpha u = h\left(\vec{x}\right)$, $\vec{x} \in \Sigma$. These are mixed boundary conditions.

2D models Course 2024-2025 6 / 71

(UPV)

The momentum equation for the velocity field \vec{v} in a fluid is

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \vec{v}$$

Conservation of mass for an incompressible fluid requires that the divergence of \vec{v} must be zero,

$$\vec{\nabla}\vec{v} = 0$$

The momentum equation in x and y components

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

2D models Course 2024-2025 7 / 71

Taking the divergence of the momentum equation and applying the incompressibility constraint,

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} = -\rho \left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial v}{\partial y} \right)$$

Which is an equation of the form

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} = b$$

Let us consider the following problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -f(x, y) , \quad (x, y) \in [0, l_1] \times [0, l_2] ,$$

 $u(x, y) = 0 , \text{ for } x = 0; \ x = l_1; \ y = 0; \ y = l_2 .$

The first step is to consider a mesh in the rectangle $[0, l_1] \times [0, l_2]$.

Mesh for a rectangle.

We have that

$$\frac{\partial^2 u}{\partial x^2} (u_i, u_j) \approx \frac{u_{i-1j} - 2u_{ij} + u_{i+1j}}{\Delta x^2} ,$$

$$\frac{\partial^2 u}{\partial y^2} (u_i, u_j) \approx \frac{u_{ij-1} - 2u_{ij} + u_{ij+1}}{\Delta y^2} ,$$

where $u_{ij} = u(x_i, y_j)$, and the equation

$$\frac{1}{\Delta x^2} \left(u_{i-1j} - 2u_{ij} + u_{i+1j} \right) + \frac{1}{\Delta y^2} \left(u_{ij-1} - 2u_{ij} + u_{ij+1} \right) = -f_{ij} .$$

We stablish an order to follow the different nodes of the mesh $i=1,\ldots,N$, $j=1,\ldots,M$, for example,

$$l = i + N(j-1) .$$

and we obtain a system of linear equations

$$Au = b$$
.

The dispersity pattern of the matrix A is

Let us study the time dependent two-dimensional diffusion equation,

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) .$$

Using the (FTCS) method, we write an explicit scheme in the form,

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \alpha \left(\frac{u_{i-1,j}^n - 2u_{i,j}^n + u_{i+1,j}^n}{\Delta x^2} + \frac{u_{i,j-1}^n - 2u_{i,j}^n + u_{i,j+1}^n}{\Delta y^2} \right) .$$

It can be shown that the system is stable if

$$d_x + d_y \le \frac{1}{2} ,$$

where

$$d_x = \frac{\alpha \Delta t}{\Delta x^2}, \quad d_y = \frac{\alpha \Delta t}{\Delta y^2}.$$

To avoid the stability restrictions, we can use an implicit scheme

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \alpha \left(\frac{u_{i-1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i+1,j}^{n+1}}{\Delta x^2} + \frac{u_{i,j-1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j+1}^{n+1}}{\Delta y^2} \right) ,$$

or

$$d_x u_{i+1,j}^{n+1} + d_x u_{i-1,j}^{n+1} - (2d_x + 2d_y + 1)u_{i,j}^{n+1} + d_y u_{i,j+1}^{n+1} + d_y u_{i,j-1}^{n+1} = -u_{i,j}^n ,$$

which, after an adequate ordering of the nodes leads to a pentadiagonal system, which should be solved for each time step.

An alternative is to use the alternating direction implicit (ADI) scheme,

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n}}{\Delta t/2} = \alpha \left(\frac{u_{i-1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i+1,j}^{n+\frac{1}{2}}}{\Delta x^{2}} + \frac{u_{i-1,j}^{n} - 2u_{i,j}^{n} + u_{i+1,j}^{n}}{\Delta y^{2}} \right)$$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\Delta t/2} = \alpha \left(\frac{u_{i-1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i+1,j}^{n+\frac{1}{2}}}{\Delta x^{2}} + \frac{u_{i-1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i+1,j}^{n+1}}{\Delta y^{2}} \right)$$

□ →15 / 71

This scheme is unconditionally stable and can be written in tridiagonal form

$$\begin{split} -d_1 u_{i-1,j}^{n+\frac{1}{2}} + (1+2d_1) u_{i,j}^{n+\frac{1}{2}} - d_1 u_{i+1,j}^{n+\frac{1}{2}} &= d_2 u_{i,j-1}^n + (1-2d_2) u_{i,j}^n + d_2 u_{i,j-1}^n \\ -d_2 u_{i,j-1}^{n+1} + (1+2d_2) u_{i,j}^{n+1} - d_2 u_{i,j+1}^{n+1} &= d_1 u_{i+1,j}^{n+\frac{1}{2}} + (1-2d_1) u_{i,j}^{n+\frac{1}{2}} + d_1 u_{i+1,j}^{n+\frac{1}{2}} \;, \end{split}$$

where

$$d_1 = \frac{\alpha \Delta t}{2\Delta x^2}$$
, $d_2 = \frac{\alpha \Delta t}{2\Delta y^2}$.

Both systems can be written as tridiagonal systems if a different order is used for numbering the nodes in the mesh (the role of the rows and columns is swapped).

The Crank-Nicolson scheme can be written in two steps,

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n}}{\Delta t/2} = \frac{\alpha}{2} \left(\frac{u_{i-1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i+1,j}^{n+\frac{1}{2}}}{\Delta x^{2}} + \frac{u_{i-1,j}^{n} - 2u_{i,j}^{n} + u_{i+1,j}^{n}}{\Delta x^{2}} \right)$$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\Delta t/2} = \frac{\alpha}{2} \left(\frac{u_{i,j-1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j+1}^{n+1}}{\Delta y^{2}} + \frac{u_{i,j-1}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i,j+1}^{n+\frac{1}{2}}}{\Delta y^{2}} \right)$$

which is an unconditionally stable scheme.

4 □ ト

Given the two-dimensional diffusion equation

$$\frac{\partial u}{\partial t} = \alpha_x \frac{\partial^2 u}{\partial x^2} + \alpha_y \frac{\partial^2 u}{\partial y^2} ,$$

a general two-level implicit finite differences scheme is

$$\frac{\Delta u^{n+1}}{\Delta t} = (1-\beta) \left(\alpha_x L_{xx} u_{i,j}^n + \alpha_y L_{yy} u_{i,j}^n \right) + \beta \left(\alpha_x L_{xx} u_{i,j}^{n+1} + \alpha_y L_{yy} u_{i,j}^{n+1} \right) ,$$

where $L_{xx}u_{i,j}^n=rac{u_{i-1,j}^n-2u_{i,j}^n+u_{i+1,j}^n}{\Delta x^2}$, $L_{yy}u_{i,j}^n=rac{u_{i,j-1}^n-2u_{i,j}^n+u_{i,j+1}^n}{\Delta y^2}$

024-2025 18 / 71

Making use of the Taylor expansion

$$u_{i,j}^{n+1} = u_{i,j}^n + \Delta t \left(\frac{\partial u}{\partial t}\right)_{i,j}^n + O\left(\Delta t^2\right) ,$$

which is approximated by

$$u_{i,j}^{n+1} = u_{i,j}^n + \Delta t \left(\frac{\Delta u}{\Delta t}\right)_{i,j}^n + O\left(\Delta t^2\right) ,$$

substituting this result

$$\frac{\Delta u^{n+1}}{\Delta t} = \left(\alpha_x L_{xx} u_{i,j}^n + \alpha_y L_{yy} u_{i,j}^n\right) + \beta \left(\alpha_x L_{xx} \Delta u_{i,j}^{n+1} + \alpha_y L_{yy} \Delta u_{i,j}^{n+1}\right) ,$$

After rearrangement,

$$(1 - \beta \Delta t \left(\alpha_{xx} L_{xx} + \alpha_{y} L_{yy}\right)) \Delta u_{i,j}^{n+1} = \Delta t \left(\alpha_{xx} L_{xx} + \alpha_{y} L_{yy}\right) u_{i,j}^{n}$$

Algebraic operators appropriate to both directions appear.

In order to be able to solve tridiagonal systems it is replaced by the approximate factorisation

$$(1 - \beta \Delta t \alpha_x L_{xx}) (1 - \beta \Delta t \alpha_y L_{yy}) \Delta u_{i,j}^{n+1} = \Delta t (\alpha_x L_{xx} + \alpha_y L_{yy}) u_{i,j}^n.$$

In this factorisation an extra term appears

$$\beta^2 \Delta t^2 \alpha_x \alpha_y L_{xx} L_{yy} \Delta u_{i,j}^{n+1} = O\left(\Delta t^2\right) .$$

(UPV) 2D models Course 2024-2025 20 / 71

This equation is solved in two steps:

$$(1 - \beta \Delta t \alpha_x L_{xx}) \Delta u_{i,j}^* = \Delta t (\alpha_x L_{xx} + \alpha_y L_{yy}) u_{i,j}^n ,$$

$$(1 - \beta \Delta t \alpha_y L_{yy}) \Delta u_{i,j}^{n+1} = \Delta u_{i,j}^* .$$

Sometimes, we have a fluid which diffusion takes place and it is also moving in a preferential direction. The obvious cases are those of a flowing river and of a smokestack plume being blown by the wind.

For a 2D problem we have that for the concentration of a substance, C, satisfies de Advection-diffusion equation

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right)$$

Simulation of the effect of a point-source in Finland (by the Finnish Meteorological Institute)

Example

Given the problem

$$\frac{\partial u}{\partial t} = 0.5 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - 5 \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial xy} \right)$$

with homogeneous boundary conditions in $[0,1] \times [0,1]$ and initial condition

$$u(x, y, 0) = \sin(\pi x)\sin(\pi y)$$

Using the variables separation method, the analytical solution for this problem is

$$u(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m,n} e^{\left(-0.5\pi^2(m^2 + n^2) - 25\right)t} e^{5(x+y)} \sin(m\pi x) \sin(n\pi x)$$

With

$$A_{m,n} = 4 \int_0^1 \int_0^1 e^{-5(x+y)} \sin(\pi x) \sin(\pi y) \sin(m\pi x) \sin(n\pi y) dxdy$$

Let us consider the generic problem associated with the advection diffusion equation,

$$\frac{\partial u}{\partial t} + \beta_1 \frac{\partial u}{\partial x} + \beta_2 \frac{\partial u}{\partial y} = \alpha_1 \frac{\partial^2 u}{\partial x^2} + \alpha_2 \frac{\partial^2 u}{\partial y^2} , \quad 0 \le x \le 1, \quad 0 \le y \le 1, \quad t \ge 0,$$

with the initial condition, u(x,y,0)=f(x,y), and the boundary conditions

$$u(0, y, t) = g_1(y, t) , u(1, y, t) = g_2(y, t) ,$$

 $u(x, 0, t) = h_1(x, t) , u(x, 1, t) = h_2(y, t) ,$

An ADI method for this problem is given by,

$$\begin{split} &\frac{u_{i,j}^* - u_{i,j}^n}{\Delta t/2} + \beta_1 \frac{u_{i+1,j}^* - u_{i-1,j}^*}{2\Delta x} + \beta_2 \frac{u_{i,j+1}^n - u_{i,j-1}^*}{2\Delta y} = \\ &\alpha_1 \frac{u_{i+1,j}^* - 2u_{i,j}^* + u_{i-1,j}^*}{\Delta x^2} + \alpha_2 \frac{u_{i,j-1}^n - 2u_{i,j}^n + u_{i,j+11}^*}{\Delta y^2} \end{split}$$

and

(UPV)

$$\frac{u_{i,j}^{n+1} - u_{i,j}^*}{\Delta t/2} + \beta_1 \frac{u_{i+1,j}^* - u_{i-1,j}^*}{2\Delta x} + \beta_2 \frac{u_{i,j+1}^{n+1} - u_{i,j-1}^{n+1}}{2\Delta y} = \alpha_1 \frac{u_{i-1,j}^* - 2u_{i,j}^* + u_{i+1,j}^*}{\Delta x^2} + \alpha_2 \frac{u_{i,j-1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j+11}^{n+1}}{\Delta y^2}.$$

2D models Course 2024-2025 27 / 71

A Crank-Nicolson scheme is

$$\begin{split} &\frac{u_{i,j}^{n+1}-u_{i,j}^n}{\Delta t} = \frac{\beta_1}{2} \left(\frac{u_{i+1,j}^{n+1}-u_{i-1,j}^{n+1}}{2\Delta x} + \frac{u_{i+1,j}^n-u_{i-1,j}^n}{2\Delta x} \right) + \\ &\frac{\beta_2}{2} \left(\frac{u_{i,j+1}^{n+1}-u_{i,j-1}^{n+1}}{2\Delta y} + \frac{u_{i,j+1}^n-u_{i,j-1}^n}{2\Delta y} \right) = \\ &\frac{\alpha_1}{2} \left(\frac{u_{i-1,j}^{n+1}-2u_{i,j}^{n+1}+u_{i+1,j}^{n+1}}{\Delta x^2} + \frac{u_{i-1,j}^n-2u_{i,j}^n+u_{i+1,j}^n}{\Delta x^2} \right) \\ &+ \frac{\alpha_2}{2} \left(\frac{u_{i,j-1}^{n+1}-2u_{i,j}^{n+1}+u_{i,j+1}^{n+1}}{\Delta y^2} + \frac{u_{i,j-1}^n-2u_{i,j}^n+u_{i,j+1}^n}{\Delta y^2} \right) \;. \end{split}$$

28 / 71

Introducing the operators

$$\begin{split} L_{xx}u_{i,j} &= u_{i-1,j} - 2u_{i,j} + u_{i+1,j} \ , \quad L_{yy}u_{i,j} = u_{i,j-1} - 2u_{i,j} + u_{i,j+1} \ , \\ L_{x}u_{i,j} &= u_{i+1,j} - u_{i-1,j} \ , \quad L_{y}u_{i,j} = u_{i,j+1} - u_{i,j-1} \ , \end{split}$$

and

$$\mu_i = \frac{\alpha_i \Delta t}{2\Delta x^2} \; , \quad \sigma_i = \frac{\beta_i \Delta t}{4\Delta x} \; ,$$

the scheme can be written as

$$(1 - \mu_x L_{xx} - \mu_y L_{yy} + \sigma_x L_x + \sigma_y L_y) u_{i,j}^{n+1} = (1 - \mu_x L_{xx} - \mu_y L_{yy} + \sigma_x L_x + \sigma_y L_y) u_{i,j}^{n},$$

which is solved using the factorization

$$(1 - \mu_x L_{xx} + \sigma_x L_x) (1 - \mu_y L_{yy} + \sigma_y L_y) u_{i,j}^{n+1} = (1 - \mu_x L_{xx} + \sigma_x L_x) (1 - \mu_y L_{yy} + \sigma_y L_y) u_{i,j}^{n}.$$

Let us consider a two-dimensional coordinate system of the physical domain (x,y), and the computational domain (ξ,η) . We begin with spatial derivatives of any variable with respect ξ and η ,

$$\frac{\partial}{\partial \xi} = \frac{\partial}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \xi} ,$$

$$\frac{\partial}{\partial \eta} = \frac{\partial}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \eta} .$$

In matrix form

$$\begin{pmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{pmatrix} = J \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} ,$$

2024-2025 30 / 71

where the Jacobian matrix (transpose) is

$$J = \begin{pmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \eta} \end{pmatrix}.$$

Thus,

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = \frac{1}{|J|} \begin{pmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\ -\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{pmatrix} .$$

2D models

The second derivatives,

$$\frac{\partial^{2}}{\partial x^{2}} = \frac{1}{|J|^{2}} \left(\left(\frac{\partial y}{\partial \eta} \right)^{2} \frac{\partial^{2}}{\partial \xi^{2}} - 2 \frac{\partial y}{\partial \eta} \frac{\partial y}{\partial \xi} \frac{\partial^{2}}{\partial \xi \partial \eta} + \left(\frac{\partial y}{\partial \xi} \right)^{2} \frac{\partial^{2}}{\partial \eta^{2}} \right) \\
\left(\frac{\partial y}{\partial \eta} \frac{\partial^{2} y}{\partial \xi \partial \eta} - \frac{\partial y}{\partial \xi} \frac{\partial^{2} y}{\partial \eta^{2}} \right) \frac{\partial}{\partial \xi} + \left(\frac{\partial y}{\partial \xi} \frac{\partial^{2} y}{\partial \xi \partial \eta} - \frac{\partial y}{\partial \eta} \frac{\partial^{2} y}{\partial \xi^{2}} \right) \frac{\partial}{\partial \eta} \right) \\
- \frac{1}{|J|^{3}} \left(\left(\frac{\partial y}{\partial \eta} \right)^{2} \frac{\partial |J|}{\partial \xi} \frac{\partial}{\partial \xi} - \frac{\partial y}{\partial \eta} \frac{\partial y}{\partial \xi} \frac{\partial |J|}{\partial \xi} \frac{\partial}{\partial \eta} \right) \\
- \frac{\partial y}{\partial \xi} \frac{\partial y}{\partial \eta} \frac{\partial |J|}{\partial \eta} \frac{\partial}{\partial \xi} + \left(\frac{\partial y}{\partial \xi} \right)^{2} \frac{\partial |J|}{\partial \eta} \frac{\partial}{\partial \eta} ,$$

↓ □ ▶

(UPV) 2D models Course 2024-2025 32 / 71

$$\frac{\partial^{2}}{\partial y^{2}} = \frac{1}{|J|^{2}} \left(\left(\frac{\partial x}{\partial \eta} \right)^{2} \frac{\partial^{2}}{\partial \xi^{2}} - 2 \frac{\partial x}{\partial \eta} \frac{\partial x}{\partial \xi} \frac{\partial^{2}}{\partial \xi \partial \eta} + \left(\frac{\partial x}{\partial \xi} \right)^{2} \frac{\partial^{2}}{\partial \eta^{2}} \right) \\
\left(\frac{\partial x}{\partial \eta} \frac{\partial^{2} x}{\partial \xi \partial \eta} - \frac{\partial x}{\partial \xi} \frac{\partial^{2} x}{\partial \eta^{2}} \right) \frac{\partial}{\partial \xi} + \left(\frac{\partial x}{\partial \xi} \frac{\partial^{2} x}{\partial \xi \partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial^{2} x}{\partial \xi^{2}} \right) \frac{\partial}{\partial \eta} \right) \\
- \frac{1}{|J|^{3}} \left(\left(\frac{\partial x}{\partial \eta} \right)^{2} \frac{\partial |J|}{\partial \xi} \frac{\partial}{\partial \xi} - \frac{\partial x}{\partial \eta} \frac{\partial x}{\partial \xi} \frac{\partial |J|}{\partial \xi} \frac{\partial}{\partial \eta} - \frac{\partial x}{\partial \xi} \frac{\partial |J|}{\partial \eta} \frac{\partial}{\partial \eta} \right) \\
- \frac{\partial x}{\partial \xi} \frac{\partial x}{\partial \eta} \frac{\partial |J|}{\partial \eta} \frac{\partial}{\partial \xi} + \left(\frac{\partial x}{\partial \xi} \right)^{2} \frac{\partial |J|}{\partial \eta} \frac{\partial}{\partial \eta} \right) ,$$

where

$$\begin{array}{lll} \frac{\partial |J|}{\partial \xi} & = & \frac{\partial}{\partial \xi} \left(\frac{\partial x}{\partial \xi} \, \frac{\partial y}{\partial \xi} - \frac{\partial y}{\partial \xi} \, \frac{\partial x}{\partial \eta} \right) \\ & = & \frac{\partial^2 x}{\partial \xi^2} \, \frac{\partial y}{\partial \eta} + \frac{\partial x}{\partial \xi} \, \frac{\partial^2 y}{\partial \xi \partial \eta} - \frac{\partial^2 y}{\partial \xi^2} \, \frac{\partial x}{\partial \eta} - \frac{\partial y}{\partial \xi} \, \frac{\partial^2 x}{\partial \xi \partial \eta} \end{array}$$

Let us consider the vector convection-diffusion equation

$$\frac{\partial U}{\partial t} + u \frac{\partial U}{\partial x} + v \frac{\partial U}{\partial y} - \nu \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \right) = F \ ,$$

with

$$U = \begin{pmatrix} u \\ v \end{pmatrix} , \quad F = \begin{pmatrix} f_x \\ f_y \end{pmatrix} .$$

Making the change from variables (x, y) to (ξ, η) ,

$$\frac{\partial U}{\partial t} + \bar{u}\frac{\partial U}{\partial \xi} + \bar{v}\frac{\partial U}{\partial y} - \nu \left(\frac{1}{|J|^2} \left(a\frac{\partial^2 U}{\partial \xi^2} - 2b\frac{\partial^2 U}{\partial \xi \partial \eta} + c\frac{\partial^2 U}{\partial \eta^2}\right)\right) + p\frac{\partial U}{\partial \xi} + q\frac{\partial U}{\partial \eta}\right) = F,$$

where

$$\bar{u} = \frac{1}{|J|} \left(u \frac{\partial y}{\partial \eta} - v \frac{\partial x}{\partial \eta} \right) ,$$

$$\bar{v} = \frac{1}{|J|} \left(v \frac{\partial x}{\partial \xi} - u \frac{\partial y}{\partial \xi} \right) ,$$

$$p = \frac{1}{|J|^3} \left(-\frac{\partial y}{\partial \eta} \left(a \frac{\partial^2 x}{\partial \xi^2} - 2b \frac{\partial^2 x}{\partial \xi \partial \eta} + c \frac{\partial^2 x}{\partial \eta^2} \right) + \frac{\partial x}{\partial \eta} \left(a \frac{\partial^2 y}{\partial \xi^2} - 2b \frac{\partial^2 y}{\partial \xi \partial \eta} + c \frac{\partial^2 y}{\partial \eta^2} \right) \right)$$

$$q = \frac{1}{|J|^3} \left(\frac{\partial y}{\partial \xi} \left(a \frac{\partial^2 x}{\partial \xi^2} - 2b \frac{\partial^2 x}{\partial \xi \partial \eta} + c \frac{\partial^2 x}{\partial \eta^2} \right) \right)$$

$$- \frac{\partial x}{\partial \xi} \left(a \frac{\partial^2 y}{\partial \xi^2} - 2b \frac{\partial^2 y}{\partial \xi \partial \eta} + c \frac{\partial^2 y}{\partial \eta^2} \right) \right)$$

$$a = \left(\frac{\partial x}{\partial \eta} \right)^2 + \left(\frac{\partial y}{\partial \eta} \right)^2 ,$$

$$b = \frac{\partial x}{\partial \xi} \frac{\partial x}{\partial \eta} + \frac{\partial y}{\partial \xi} \frac{\partial y}{\partial \eta} ,$$

$$c = \left(\frac{\partial x}{\partial \xi} \right)^2 + \left(\frac{\partial y}{\partial \xi} \right)^2 .$$

Course 2024-2025 37 / 71

These equations may be solved using the predictor-corrector MacCormack method,

Predictor

$$U_{i,j}^{*} = U_{i,j}^{n} + \Delta t \left(-\left(\bar{u} \frac{\partial U}{\partial \xi} + \bar{v} \frac{\partial U}{\partial \eta} \right)_{i,j}^{n} \right)$$

$$v \Delta t \left(\frac{1}{|J|^{2}} \left(a \frac{\partial^{2} U}{\partial \xi^{2}} - 2b \frac{\partial^{2} U}{\partial \xi \partial \eta} + c \frac{\partial^{2} U}{\partial \eta^{2}} \right) + p \frac{\partial U}{\partial \xi} + q \frac{\partial U}{\partial \xi} \right)_{i,j}^{n} + F_{i,j}^{n}$$

Corrector

$$\begin{split} U_{i,j}^{n+1} &= \frac{1}{2} \left(U_{i,j}^* + U_{i,j}^n \right) + \frac{\Delta t}{2} \left(-\left(\bar{u} \frac{\partial U}{\partial \xi} + \bar{v} \frac{\partial U}{\partial \eta} \right)_{i,j}^* \right) \\ &+ \frac{\nu \Delta t}{2} \left(\frac{1}{|J|^2} \left(a \frac{\partial^2 U}{\partial \xi^2} - 2b \frac{\partial^2 U}{\partial \xi \partial \eta} + c \frac{\partial^2 U}{\partial \eta^2} \right) + p \frac{\partial U}{\partial \xi} + q \frac{\partial U}{\partial \eta} \right)_{i,j}^* \\ &+ \frac{\Delta t}{2} F_{i,j}^{n+1} \ . \end{split}$$

 $\square \rightarrow$

Example

Write the advection-diffusion equation

$$\frac{\partial u}{\partial t} + \beta_1 \frac{\partial u}{\partial x} + \beta_2 \frac{\partial u}{\partial y} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) ,$$

using the polar coordinates:

$$x = r\cos(\theta), \quad y = r\sin(\theta)$$
.

Solution:

Using the Chain's Rule

(UPV)

$$\begin{array}{ll} \frac{\partial u}{\partial x} & = & \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x} \\ \frac{\partial u}{\partial y} & = & \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial y} \end{array}$$

We start from

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Derivating with respect to x

$$1 = \frac{\partial r}{\partial x}\cos(\theta) - r\sin(\theta)\frac{\partial \theta}{\partial x}$$
$$0 = \frac{\partial r}{\partial x}\sin(\theta) + r\cos(\theta)\frac{\partial \theta}{\partial x}$$

Solving the system

$$\frac{\partial r}{\partial x} = \cos(\theta) , \quad \frac{\partial \theta}{\partial x} = -\frac{1}{r}\sin(\theta)$$

Derivating with respect to y

$$0 = \frac{\partial r}{\partial y}\cos(\theta) - r\sin(\theta)\frac{\partial \theta}{\partial y}$$
$$1 = \frac{\partial r}{\partial y}\sin(\theta) + r\cos(\theta)\frac{\partial \theta}{\partial y}$$

Solving the system

$$\frac{\partial r}{\partial y} = \sin(\theta) , \quad \frac{\partial \theta}{\partial x} = \frac{1}{r}\cos(\theta)$$

We obtain

$$\frac{\partial u}{\partial x} = \cos(\theta) \frac{\partial u}{\partial r} - \frac{1}{r} \sin(\theta) \frac{\partial u}{\partial \theta}$$
$$\frac{\partial u}{\partial y} = \sin(\theta) \frac{\partial u}{\partial r} + \frac{1}{r} \cos(\theta) \frac{\partial u}{\partial \theta}$$

$$\frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial}{\partial r} \left(\cos(\theta) \frac{\partial u}{\partial r} - \frac{1}{r} \sin(\theta) \frac{\partial u}{\partial \theta} \right) \frac{\partial r}{\partial x}
= \frac{\partial}{\partial \theta} \left(\cos(\theta) \frac{\partial u}{\partial r} - \frac{1}{r} \sin(\theta) \frac{\partial u}{\partial \theta} \right) \frac{\partial \theta}{\partial x}
= \cos^{2}(\theta) \frac{\partial^{2} u}{\partial r^{2}} + \frac{2}{r^{2}} \sin(\theta) \cos(\theta) \frac{\partial u}{\partial \theta} - \frac{2}{r} \sin(\theta) \cos(\theta) \frac{\partial^{2} u}{\partial r \partial \theta}
+ \frac{1}{r} \sin^{2}(\theta) \frac{\partial u}{\partial r} + \frac{1}{r^{2}} \sin^{2}(\theta) \frac{\partial^{2} u}{\partial \theta^{2}}$$

$$\frac{\partial^{2} u}{\partial y^{2}} = \frac{\partial}{\partial r} \left(\sin(\theta) \frac{\partial u}{\partial r} + \frac{1}{r} \cos(\theta) \frac{\partial u}{\partial \theta} \right) \frac{\partial r}{\partial y}
= \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial u}{\partial r} + \frac{1}{r} \cos(\theta) \frac{\partial u}{\partial \theta} \right) \frac{\partial \theta}{\partial y}
= \sin^{2}(\theta) \frac{\partial^{2} u}{\partial r^{2}} - \frac{2}{r^{2}} \sin(\theta) \cos(\theta) \frac{\partial u}{\partial \theta} + \frac{2}{r} \sin(\theta) \cos(\theta) \frac{\partial^{2} u}{\partial r \partial \theta}
+ \frac{1}{r} \cos^{2}(\theta) \frac{\partial u}{\partial r} + \frac{1}{r^{2}} \cos^{2}(\theta) \frac{\partial^{2} u}{\partial \theta^{2}}$$

The equation

$$\frac{\partial u}{\partial t} + \beta_1 \frac{\partial u}{\partial x} + \beta_2 \frac{\partial u}{\partial y} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\frac{\partial u}{\partial t} + \beta_1 \left(\cos(\theta) \frac{\partial u}{\partial r} - \frac{1}{r} \sin(\theta) \frac{\partial u}{\partial \theta} \right) + \beta_2 \left(\sin(\theta) \frac{\partial u}{\partial r} + \frac{1}{r} \cos(\theta) \frac{\partial u}{\partial \theta} \right)$$

$$= \alpha \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right)$$

We consider an unsteady two-dimensional inviscid flow

Continuity
$$\frac{\partial \rho}{\partial t} = -\left(\rho \frac{\partial v_x}{\partial x} + v_x \frac{\partial \rho}{\partial x} + \rho \frac{\partial v_y}{\partial y} + v_y \frac{\partial \rho}{\partial y}\right)$$

$$x - \text{momentum} \qquad \frac{\partial v_x}{\partial t} = -\left(v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_y}{\partial y} + \frac{1}{\rho} \frac{\partial p}{\partial x}\right)$$

$$y - \text{momentum} \qquad \frac{\partial v_y}{\partial t} = -\left(v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + \frac{1}{\rho} \frac{\partial p}{\partial y}\right)$$

$$\text{Energy} \qquad \frac{\partial e}{\partial t} = -\left(v_x \frac{\partial e}{\partial x} + v_y \frac{\partial e}{\partial y} + \frac{p}{\rho} \frac{\partial v_x}{\partial x} + \frac{p}{\rho} \frac{\partial v_y}{\partial y}\right)$$

To obtain an explicit Lax-Wendroff method we use the Taylor expansions

$$\rho_{i,j}^{n+1} = \rho_{i,j}^{n} + \left(\frac{\partial \rho}{\partial t}\right)_{i,j}^{n} \Delta t + \left(\frac{\partial^{2} \rho}{\partial t^{2}}\right)_{i,j}^{n} \frac{\Delta t^{2}}{2} + \cdots$$

$$(v_{x})_{i,j}^{n+1} = (v_{x})_{i,j}^{n} + \left(\frac{\partial v_{x}}{\partial t}\right)_{i,j}^{n} \Delta t + \left(\frac{\partial^{2} v_{x}}{\partial t^{2}}\right)_{i,j}^{n} \frac{\Delta t^{2}}{2} + \cdots$$

$$\vdots$$

For example, using the continuity equation

$$\left(\frac{\partial \rho}{\partial t}\right)_{i,j}^{n} = -\left(\rho_{i,j}^{n} \frac{(v_{x})_{i+1,j}^{n} - (v_{x})_{i-1,j}^{n}}{2\Delta x} + (v_{x})_{i,j}^{n} \frac{\rho_{i+1,j}^{n} - \rho_{i-1,j}^{n}}{2\Delta x}\right)
- \rho_{i,j}^{n} \frac{(v_{y})_{i,j+1}^{n} - (v_{y})_{i,j-1}^{n}}{2\Delta y} + (v_{y})_{i,j}^{n} \frac{\rho_{i,j+1}^{n} - \rho_{i,j-1}^{n}}{2\Delta y}\right)$$

The second derivative

$$\frac{\partial^{2} \rho}{\partial t^{2}} = -\left(\rho \frac{\partial^{2} v_{x}}{\partial x \partial t} + \frac{\partial v_{x}}{\partial x} \frac{\partial \rho}{\partial t} + v_{x} \frac{\partial^{2} \rho}{\partial x \partial t} + \frac{\partial \rho}{\partial x} \frac{\partial v_{x}}{\partial t} + \rho \frac{\partial^{2} v_{y}}{\partial y \partial t} + \frac{\partial v_{y}}{\partial y} \frac{\partial \rho}{\partial t} + v_{y} \frac{\partial^{2} \rho}{\partial y \partial t} + \frac{\partial \rho}{\partial y} \frac{\partial v_{y}}{\partial t}\right)$$

The mixed derivatives

$$\frac{\partial^2 v_x}{\partial x \partial t} = -\left(v_x \frac{\partial^2 v_x}{\partial x^2} + \left(\frac{\partial v_x}{\partial x}\right)^2 + v_y \frac{\partial^2 v_x}{\partial x \partial y} + \frac{\partial v_x}{\partial y} \frac{\partial v_y}{\partial x} + \frac{1}{\rho} \frac{\partial^2 p}{\partial x^2} - \frac{1}{\rho^2} \frac{\partial p}{\partial x} \frac{\partial \rho}{\partial x} \right)$$

Using central differences

$$\begin{split} &\left(\frac{\partial^{2}v_{x}}{\partial x \partial t}\right)_{i,j}^{n} = -\left(\left(v_{x}\right)_{i,j}^{n} \frac{\left(v_{x}\right)_{i-1,j}^{n} - 2\left(v_{x}\right)_{i,j}^{n} + \left(v_{x}\right)_{i+1,j}^{n}}{\Delta x^{2}} \right. \\ &\left. + \left(\frac{\left(v_{x}\right)_{i+1,j}^{n} - \left(v_{x}\right)_{i-1,j}^{n}}{2\Delta x}\right)^{2} \\ &\left. + \left(v_{y}\right)_{i,j}^{n} \frac{\left(v_{x}\right)_{i+1,j+1}^{n} + \left(v_{x}\right)_{i-1,j-1}^{n} - \left(v_{x}\right)_{i-1,j+1}^{n} - \left(v_{x}\right)_{i+1,j-1}^{n}}{4\Delta x \Delta y} \right. \\ &\left. + \frac{\left(v_{x}\right)_{i,j+1}^{n} - \left(v_{x}\right)_{i,j-1}^{n}}{2\Delta y} \frac{\left(v_{y}\right)_{i+1,j}^{n} - \left(v_{x}\right)_{i-1,j}^{n}}{2\Delta x} \right. \\ &\left. + \frac{1}{\rho_{i,j}^{n}} \frac{p_{i-1,j}^{n} - 2p_{i,j}^{n} + p_{i+1,j}^{n}}{\Delta x^{2}} - \frac{1}{\left(\rho_{i,j}^{n}\right)^{2}} \frac{p_{i+1,j}^{n} - p_{i-1,j}^{n}}{2\Delta x} \frac{\rho_{i+1,j}^{n} - \rho_{i-1,j}^{n}}{2\Delta x} \right) \end{split}$$

50 / 71

- The same procedure is followed for the other variables, obtaining a second order accurate method in time and in space.
- The need of using the second derivatives in the Taylor expansions makes necessary to use long equations, and this makes this method unpopular.

For the density

$$\rho_{i,j}^{n+1} = \rho_{i,j}^n + \left(\frac{\partial \rho}{\partial t}\right)_{\text{av}} \Delta t$$

 $\left(\frac{\partial \rho}{\partial t}\right)_{\mathrm{av}}$ is a representative mean value of $\partial \rho/\partial t$ between t and $t+\Delta t$.

For the other variables

$$(v_x)_{i,j}^{n+1} = (v_x)_{i,j}^n + \left(\frac{\partial v_x}{\partial t}\right)_{av} \Delta t$$

$$(v_y)_{i,j}^{n+1} = (v_y)_{i,j}^n + \left(\frac{\partial v_y}{\partial t}\right)_{av} \Delta t$$

$$e_{i,j}^{n+1} = e_{i,j}^n + \left(\frac{\partial e}{\partial t}\right)_{av} \Delta t$$

The $\left(\frac{\partial \rho}{\partial t}\right)_{\rm av}$ is computed using a predictor-corrector methodology.

Predictor

Using the continuity equation (forward differences)

$$\left(\frac{\partial \rho}{\partial t}\right)_{i,j}^{n} = -\left(\rho_{i,j}^{n} \frac{(v_{x})_{i+1,j}^{n} - (v_{x})_{i,j}^{n}}{\Delta x} + (v_{x})_{i,j}^{n} \frac{\rho_{i+1,j}^{n} - \rho_{i,j}^{n}}{\Delta x} + \rho_{i,j}^{n} \frac{(v_{y})_{i,j+1}^{n} - (v_{y})_{i,j}^{n}}{\Delta y} + (v_{y})_{i,j}^{n} \frac{\rho_{i,j+1}^{n} - \rho_{i,j}^{n}}{\Delta y}\right)$$

The predicted value is

$$(\bar{\rho})_{i,j}^{n+1} = \rho_{i,j}^n + \left(\frac{\partial \rho}{\partial t}\right)_{i,j}^n \Delta t$$

A similar procedure is used for the other variables

Corrector

Using the continuity equation (backward differences)

$$\left(\frac{\partial \bar{\rho}}{\partial t}\right)_{i,j}^{n+1} = -\left(\bar{\rho}_{i,j}^{n} \frac{(\bar{v}_{x})_{i,j}^{n+1} - (\bar{v}_{x})_{i-1,j}^{n+1}}{\Delta x} + (\bar{v}_{x})_{i,j}^{n+1} \frac{\bar{\rho}_{i,j}^{n} - \bar{\rho}_{i-1,j}^{n}}{\Delta x} + \bar{\rho}_{i,j}^{n+1} \frac{(\bar{v}_{y})_{i,j}^{n} - (\bar{v}_{y})_{i,j-1}^{n}}{\Delta y} + (\bar{v}_{y})_{i,j}^{n+1} \frac{\bar{\rho}_{i,j+1}^{n} - \bar{\rho}_{i,j}^{n}}{\Delta y}\right)$$

The average value of the derivative

$$\left(\frac{\partial \rho}{\partial t}\right)_{\rm av} = \frac{1}{2} \left(\left(\frac{\partial \rho}{\partial t}\right)_{i,j}^n + \left(\frac{\partial \bar{\rho}}{\partial t}\right)_{i,j}^{n+1} \right)$$

The scheme

$$\rho_{i,j}^{n+1} = \rho_{i,j}^{n} + \left(\frac{\partial \rho}{\partial t}\right)_{av} \Delta t$$

The fluid equations can be expressed in conservative form

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = J$$

where

$$U = \begin{pmatrix} \rho \\ \rho v_x \\ \rho v_y \\ \rho \left(e + \frac{V^2}{2} \right) \end{pmatrix}, \quad F = \begin{pmatrix} \rho v_x \\ \rho \left(v_x \right)^2 + p \\ \rho v_x v_y \\ \rho \left(e + \frac{V^2}{2} \right) v_x + p v_x \end{pmatrix},$$

$$G = \begin{pmatrix} \rho v_y \\ \rho v_x v_y \\ \rho \left(v_y \right)^2 + p \\ \rho \left(e + \frac{V^2}{2} \right) v_y + p v_y \end{pmatrix}, \quad J = \begin{pmatrix} 0 \\ \rho f_x \\ \rho f_y \\ \rho \left(v_x f_x + v_y f_y \right) \end{pmatrix},$$

- ullet MacCormack's method can be applied to the conservative formulation, but the physical variables have to be isolated from the components of U in each time step.
- This method can present oscillations in certain conditions. To stabilize the method, an artificial viscosity term can be added

$$S_{i,j}^{n} = \frac{C_{x} |p_{i-1,j} - 2p_{i,j} + p_{i+1,j}|}{p_{i-1,j} + 2p_{i,j} + p_{i+1,j}} \left(U_{i-1,j}^{n} - 2U_{i,j}^{n} + U_{i+1,j}^{n} \right)$$
$$\frac{C_{y} |p_{i,j-1} - 2p_{i,j} + p_{i,j+1}|}{p_{i,j-1} + 2p_{i,j} + p_{i,j+1}} \left(U_{i,j-1}^{n} - 2U_{i,j}^{n} + U_{i,j+1}^{n} \right)$$

which is a fourth-order term. The parameters ${\cal C}_x$ and ${\cal C}_y$ range from 0.01 to 0.3

The viscosity term is applied in two steps

$$\bar{U}_{i,j}^{n+1} = U_{i,j}^n + \left(\frac{\partial U}{\partial t}\right)_{i,j}^n \Delta t + S_{i,j}^n$$

$$U_{i,j}^{n+1} = U_{i,j}^n + \left(\frac{\partial U}{\partial t}\right)_{av}^n \Delta t + \bar{S}_{i,j}^{n+1}$$

We consider the incompressible Navier-Stokes equations

$$\vec{\nabla} \vec{v} = 0
\rho \frac{Dv_x}{Dt} = -\frac{\partial p}{\partial x} + \mu \nabla^2 v_x + \rho f_x
\rho \frac{Dv_y}{Dt} = -\frac{\partial p}{\partial y} + \mu \nabla^2 v_y + \rho f_y$$

If we apply MacCormack's technique, the time step is restricted by stability conditions. An approximate stability condition is

$$\Delta t \le \frac{1}{|v_x|/\Delta x + |v_y|/\Delta y + a\sqrt{1/(\Delta x)^2 + 1/(\Delta y)^2}}$$

where a is the speed of sound

- For a compressible flow the speed of sound is finite.
- ullet For incompressible flow the speed of sound is theoretically infinite and the stability condition yields to $\Delta t=0$.
- CFD solutions for incompressible Navier-Stokes equations are different from those used for the compressible Navier-Stokes.
- The continuity equation for incompressible flow is

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$$

a central difference scheme

$$\frac{(v_x)_{i+1,j} - (v_x)_{i-1,j}}{2\Delta x} + \frac{(v_y)_{i,j+1} - (v_y)_{i,j-1}}{2\Delta y} = 0$$

- The difference equation numerically allows the chequerboard velocity distribution given in the Figure.
- In the x direction, v_x varies as 20, 40, 20, 40, etc., at successive grid points, and in the y direction, v_y varies as 5, 2, 5, 2, etc., at successive grid points.
- The chequerboard velocity distribution is basically nonsense in terms of any real, physical flow field. A similar behaviour is found from the pressure is central schemes are used for the derivatives.
- Given the weakness of the central difference formulation described above, we should justifiably feel uncomfortable, and we should look for some "fix" before embarking on the solution of a given problem.

As a solution a staggered grid is proposed

- The pressures and velocities are calculated at different points.
- ullet When $(v_x)_{i+1/2,j}$ is calculated a central difference is used for

$$\left(\frac{\partial p}{\partial x}\right)_{i,j} \approx \frac{p_{i+1,j} - p_{i,j}}{\Delta x}$$

The pressure correction is an iterative procedure (SIMPLE method)

- lacksquare An initial guess is used for the pressures $p_{i,j}^*$.
- ② With these values of p^* the values of v_x and v_y are computed from the momentum equations.
- lacktriangle Using the continuity equation a pressure correction p' is obtained,

$$p = p^* + p'$$

With p', correction for the velocities $(v_x)'$, $(v_y)'$,

$$v_x = v_x^* + v_x'$$
, $v_y = v_y^* + v_y'$,

with the new value of p return to step 2.

Using the computational cell

$$\bar{v}_y = \frac{1}{2} \left((v_y)_{i,j+1/2} + (v_y)_{i+1,j+1/2} \right)
v_y = \frac{1}{2} \left((v_y)_{i,j-1/2} + (v_y)_{i+1,j-1/2} \right)$$

The momentum equation centred at $\left(i+\frac{1}{2},j\right)$

$$(\rho v_x)_{i+1/2,j}^{n+1} = (\rho v_x)_{i+1/2,j}^n + A\Delta t - \frac{\Delta t}{\Delta x} \left(p_{i+1,j}^n - p_{i,j}^n \right)$$

where

$$A = -\left(\frac{\left(\rho v_x^2\right)_{i+3/2,j}^n - \left(\rho v_x^2\right)_{i-1/2,j}^n}{2\Delta x} + \frac{\left(\rho v_x \bar{v}_y\right)_{i+1/2,j+1} - \left(\rho v_x v_y\right)_{i+1/2,j-1}}{2\Delta y}\right) + \mu \left(\frac{\left(v_x\right)_{i+3/2,j}^n - 2\left(v_x\right)_{i+1/2,j}^n + \left(v_x\right)_{i-1/2,j}^n}{\Delta x^2} + \frac{\left(v_x\right)_{i+1/2,j+1}^n - 2\left(v_x\right)_{i+1/2,j}^n + \left(v_x\right)_{i+1/2,j-1}^n}{\Delta y^2}\right)$$

Now using the computational cell

$$v_x = \frac{1}{2} \left((v_x)_{i-1/2,j} + (v_x)_{i-1/2,j+1} \right)$$

$$\bar{v}_x = \frac{1}{2} \left((v_y)_{i+1/2,j} + (v_x)_{i+1/2,j+1} \right)$$

(UPV)

The momentum equation centred at $\left(i,j+rac{1}{2}
ight)$

$$(\rho v_y)_{i,j+1/2}^{n+1} = (\rho v_y)_{i,j+1/2}^n + B\Delta t - \frac{\Delta t}{\Delta y} \left(p_{i,j+1}^n - p_{i,j}^n \right)$$

where

$$B = -\left(\frac{(\rho v_y \bar{v}_x)_{i+1,j+1/2}^n - (\rho v_x v_y)_{i-1,j+1/2}^n}{2\Delta x} + \frac{(\rho v_y^2)_{i,j+3/2} - (\rho v_y^2)_{i,j-1/2}}{2\Delta y}\right)$$

$$+\mu \left(\frac{(v_y)_{i+1,j+1/2}^n - 2(v_y)_{i,j+1/2}^n + (v_y)_{i-1,j+1/2}^n}{\Delta x^2}\right)$$

$$+ \frac{(v_y)_{i,j+3/2}^n - 2(v_x)_{i,j+1/2}^n + (v_x)_{i,j-1/2}^n}{\Delta y^2}$$

Course 2024-2025 68 / 71

The iteration begins with p^* and

$$(\rho v_x^*)_{i+1/2,j}^{n+1} = (\rho v_x^*)_{i+1/2,j}^n + A^* \Delta t - \frac{\Delta t}{\Delta x} \left(p_{i+1,j}^{*n} - p_{i,j}^{*n} \right)$$
$$\left(\rho v_y^* \right)_{i,j+1/2}^{n+1} = \left(\rho v_y^* \right)_{i,j+1/2}^n + B^* \Delta t - \frac{\Delta t}{\Delta y} \left(p_{i,j+1}^{*n} - p_{i,j}^{*n} \right)$$

A correction for the velocities is used

$$(\rho v_x')_{i+1/2,j}^{n+1} = (\rho v_x^*)_{i+1/2,j}^n - \frac{\Delta t}{\Delta x} \left(p_{i+1,j}' - p_{i,j}' \right)$$
$$\left(\rho v_y' \right)_{i,j+1/2}^{n+1} = \left(\rho v_y^* \right)_{i,j+1/2}^n - \frac{\Delta t}{\Delta y} \left(p_{i,j+1}' - p_{i,j}' \right)$$

Using the continuity equation

$$\frac{(\rho v_x)_{i+1/2,j} - (\rho v_x)_{i-1/2,j}}{\Delta x} + \frac{(\rho v_y)_{i,j+1/2} - (\rho v_y)_{i,j-1/2}}{\Delta y} = 0$$

we obtain

$$ap'_{i,j} + bp'_{i+1,j} + bp'_{i-1,j} + cp'_{i,j+1} + cp'_{i,j-1} + d = 0$$

where

$$\begin{split} a &= 2\left(\frac{\Delta t}{\Delta x^2} + \frac{\Delta t}{\Delta y^2}\right) \;, \quad b = -\frac{\Delta t}{\Delta x^2}, \quad c = -\frac{\Delta t}{\Delta y^2}, \\ d &= \frac{1}{\Delta x}\left(\left(\rho v_x^*\right)_{i+1/2,j} - \left(\rho v_x^*\right)_{i-1/2,j}\right) \\ &+ \frac{1}{\Delta y}\left(\left(\rho v_y^*\right)_{i,j+1/2} - \left(\rho v_y^*\right)_{i,j-1/2}\right) \end{split}$$

