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Finite Difference formulas

For two-dimensions, we consider

r; = x0+1iAx,
y; = o+ jAy,

The forward and backward operators are now given by 6 and 5; in x and
y-directions, respectively. The forward first partial derivatives are

8u o 1 +, Ui+1,j — ui,j
<81‘>z’j = A$6x Uij = N + O(Ax) ,
ou 1 Ui i1 — Ui i

gu = — ity =L W O(AYy) .
<ay>ij Ay y i Ay +O(89)
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Finite Difference formulas

The second order central difference formulas for the second order
derivatives are of the form

82u Uj+1 j 2uij + Ui—1 7 )
| = : : L+0(A
((9362)”, Az? +0(Az7)
aQU U; j4+1 — 2ui Y + U; j—1 2
— ] = = 4= O(Ay?) .
<8y2>ij Ay2 +0(Ay7)

An approximation for the mixed derivatives is given by

2
( 0“u ) Uikl — Uil -1 — U141 T U1 -1
ij

0x0y 4AxAy +0 (AmQ, AyQ) '
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Finite Difference formulas

Other approximations are

2u u; i1 — Ui—1 41 — Ug i1 — Ui—1,4
i _ i+1,5+1 i—1,5+1 i+1,5+1 i—1,5 +0 (Aan,Ay) ,
Ozdy 2AzAy
02%u Uit 1 541 — Uid1. 5 — Ug it1 + Us s
_ i+1,5+1 i+1,7 i,j+1 (2% -‘,—O(AI, Ay),

0xdy AzAy

ij
0%u U1~ Wil — Wil R W11 — W1 — Wij—1 + 22Uy
0xdy AzAy

ij

+0 (AJZQ, AyQ) .
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Elliptic equations

Let us consider the Poisson equation,

0*u 0%
W"i'ain——f(%y) )

If we want to solve the equations in a finite domain, €2, it is necessary to
have boundary conditions:

Q u(?) = f (&), £ € X, being X the boundary of 2. These are Dirichlet
conditions.

Q@ iiVu=g (Z), being 7 a unitary vector normal to the surface ¥,
limiting 2. These are Neumann bundary conditions.

Q@ iVu+ au=h(Z), ¥c L. These are mixed boundary conditions.
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Elliptic equations

The momentum equation for the velocity field ¥’ in a fluid is

ov

1
55+(ﬁ.Vﬁn:—;vp+uv%7

Conservation of mass for an incompressible fluid requires that the
divergence of ¥ must be zero,

Vi =0

The momentum equation in x and y components

ot " “ox dy  poy ox? = Oy?
v v ov _ 1op (0% 0%
ot " “ox U@y  poy "\ 922 oy?
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Elliptic equations

Taking the divergence of the momentum equation and applying the
incompressibility constraint,

Oy By, (2uu 0u0n g0y
ox? = oy? P\ bz oz Oy Oxr Oydy

Which is an equation of the form

2 2
{ P P _, |

oz Oy
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Elliptic equations

Let us consider the following problem

Pu  0u
a2 T gz = @) ) €0.0) < [0,1]

u(z,y) =0, for =0; 2=10; y=0; y=1s.

The first step is to consider a mesh in the rectangle [0, ;] x [0, l2].
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Elliptic equations

vy 4

(i,j+1)

~—— Az ——

b —

(i) (i+1,5)

Mesh for a rectangle.
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Elliptic equations

We have that

2
0“u L Uim1j — 2Uij + Uiy
02 (s 1) ~ Ax? ’
2
0“u ( ' ) ~ Ujj—1 — 2u,~j + Ujj4+1
ayQ Ugs Uj) =~ Ay2 ’

where w;; = u (x;,y;), and the equation

1 1
m (ui_lj — Qui]‘ + Ui+1j) + Ty2 (Uz’j—l — 2Uij + Uz‘j+1) = —f,‘j .
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Elliptic equations

We stablish an order to follow the different nodes of the mesh
i1=1,...,N,j=1,... M, for example,

l=i+N(G-1).
and we obtain a system of linear equations
Au=">.
The dispersity pattern of the matrix A is

100

150

200

250

300

350
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Parabolic equations

Let us study the time dependent two-dimensional diffusion equation,

ou_ (Pu o
ot \ox2  oy?)
Using the (FTCS) method, we write an explicit scheme in the form,
n+1 n

n
Yig —Uij <uz —2uiy gty upg = 2ud g g+1>

At Ax2 * Ay2

It can be shown that the system is stable if

1
< =
dotdy <5,
where At At
« «
4, = 8ty eat
Az2” Y Ay2

2D models Course 2024-2025



Parabolic equations

To avoid the stability restrictions, we can use an implicit scheme

n+1 n n+1 n+1 n+1 n+1 n+1 n+1
Uig Ui (Mg T 2 P g T 2 T e
At Az2 Ay2 ’
or
n+1 n+1 n+1 n+1 n+1l __ n
deuily ; + deui™y s — (2dy + 2dy + D)u [ + dyu’ 0 + dyui o = —ug;

which, after an adequate ordering of the nodes leads to a pentadiagonal
system, which should be solved for each time step.
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Parabolic equations

An alternative is to use the alternating direction implicit (ADI) scheme,

1 1 1 1
nt3 n nt+3 nt+3 nt+3 n n n
Ui =W [ B T 2 Yy Wiy 20 U
At/2 Az? Ay?
1 1 1
n+1 n+3 n+z _ n+3 n+z n+l n+1 n+1
Yig "%y [ Yot 2u " iy 4 YimLg 2ui; tui
At/2 Az? Ay?
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Parabolic equations

This scheme is unconditionally stable and can be written in tridiagonal
form

n+i n+i n n n
dl'LL,L 1 o + (1 + 2d1)u1 %2 — dluirlzj = dgui j—l + (1 — 2d2)ul j + d2ui’j 1

n n n+1
—doul T (L4 2d2)ul St — doul Tl = dluH_lJ + (1 = 2dy)u, +2 +diugy 2

where
alt alt

= dy =
2A72 7 7T 272
Both systems can be written as tridiagonal systems if a different order is

used for numbering the nodes in the mesh (the role of the rows and
columns is swapped).

dy =
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Parabolic equations

The Crank-Nicolson scheme can be written in two steps,

"+% n ”Jr% ”+% n+% n n n
Uig Uy o (Ui 720 " Ry My R
At/2 2 Ax? Az?
1 1
n+1 n+z n+1 n+1 n+1 nts3 +2 nty
Uig Wit o (Ui TG, R UG Mgt T Ry
At/2 2 Ay? Ay2

which is an unconditionally stable scheme.
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Parabolic equations

Given the two-dimensional diffusion equation

ou_  Ou  Ou
ot “arz T May2

a general two-level implicit finite differences scheme is

Aun+l
" (1-75) (ozmeu + ayLyyu”)
n+1 n+1
+8 (aac zxly ; +O¢yLyyu13 ) )
uz 2u +uz+1,] n o _ u?] 1 2u +ul J+1
where Lmu” N Lyyum = AyQ
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Parabolic equations

Making use of the Taylor expansion

uptt = +At<?,;:) +o(ar),
,]

which is approximated by

uprt = ul + At (it)é- +0(a?)

substituting this result

AunJrl
At

n n
— <a$LCCquJ + OéyLyyui’j)

+5 (axLac;rAu + OZyL yAUZ;H) )
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Parabolic equations

After rearrangement,
(1 — At (agaLye + ayLyy)) Au”+1 At (g Lz 4 0y Ly ) uf';
Algebraic operators appropriate to both directions appear.

In order to be able to solve tridiagonal systems it is replaced by the
approximate factorisation

(1 — BAtay Lag) (1 — BALoy Lyy) Auf " = At (0 Law + 0ty Lyy) u

In this factorisation an extra term appears

BQAtQOzxayLmLyyAqul =0 (AtZ) .
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Parabolic equations

This equation is solved in two steps:

(1 — BAtay Lyy) Au;j = At(ogpLgs + O‘yLyy) qu J
(1= BAtayLy,) Aulft = Auj

i3 (VN
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Advection-diffusion equation

Sometimes, we have a fluid which diffusion takes place and it is also
moving in a preferential direction. The obvious cases are those of a flowing
river and of a smokestack plume being blown by the wind.

For a 2D problem we have that for the concentration of a substance, C,
satisfies de Advection-diffusion equation

ot Tl oy

oC oC oC 0*’C  9*C
ox? = 0y?
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Advection-diffusion equation

Simulation of the effect of a point-source in Finland
(by the Finnish Meteorological Institute)
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Advection-diffusion equation

Given the problem
ou Pu  *u ou  Ou
=05 ) -5 (= +—
ot (a z " 8y2> (833 " ag:y)
with homogeneous boundary conditions in [0, 1] x [0, 1] and initial
condition

u(z,y,0) = sin(rz) sin(ry)

Using the variables separation method, the analytical solution for this
problem is

u(x y,t) =
Z Z Amn ~0.5m%(m? +n%)=25)t ¢5(x+) sin(mnx) sin(nmx)

m=1n=1
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Advection-diffusion equation

With

mn—

4/ / P +) sin(mx) sin(my) sin(marz) sin(nry) dady
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Advection-diffusion equation

Let us consider the generic problem associated with the advection diffusion
equation,

ou 32u 0%u
g — <zr<l1 <y<l, t>
3t+51 +52 82 28y27 O_SU_ ) O_y_ ) _07
with the initial condition, u(z,y,0) = f(x,y), and the boundary conditions
U(O,y,t) = gl(yvt) ) u(]-a:‘/?t) = gQ(ya t) ’
u(z,0,t) = hi(z,t) , u(z,1,t) = ha(y,t) ,
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Advection-diffusion equation

An ADI method for this problem is given by,

* n * * n *
Uij — Wiy 43 Uit15 — Wiy 48 Uig+1 — Yij—1
1 2 ==
At/2 2Az 2Ay
* * * n n *
o g~ 2ui U oy li=1 T 2ug; + Uy
1 2
Ax? Ay?
and
n+1 * * * n+1 n+1
Uij Ui L5 i1,y — W1, 48 Ui — W1
: —
At/2 2Azx 2Ay
* * * n+1 n+1 n+1
oy Bim1g = 20 F P 2u;  + g
1 2 .
Az? Ay?
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Advection-diffusion equation

A Crank-Nicolson scheme is

n+1 n n+1 n+1 n n
ig Mg By (Ui Moy iy Vit
At 2 2Ax 2Ax
B2 [ Uigi1 — Ui n Ujjr1 — U1\
2 2Ay 2Ay
n+1 n+1 n+1 n n n
an (Wilyy — 2w R utg = 2up gt
2 Ax? Ax?
TL+1 n+1 n+1 n n n

L2 Uij—1 — 2ui 5 U n Upj—1 = 2Ui U

2 Ay? Ay?
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Advection-diffusion equation

Introducing the operators

Loguij = i1,y = 2uij + uit1j s Lyytig = wij—1 — 2uij + Uij1

Lowij = wit1,j —wi—15 , Lyuij = uiji1 — uij—1,
i j o Ayl j j

and
aiAt 5Z‘At
- —
Fi=9az2 777 4nz

the scheme can be written as

(1 - MILxI - ,UfyLyy + O-],’Lx + O'yLy) U’Zjl =

(1 — pgLyy — pryLyy + 03 Ly + 0yLy) qu ,
which is solved using the factorization

(1~ ptoLax + 0wLa) (1 — pyLyy + 0y Ly) ultt =
(1 = paLys + 05La) (1 — pryLyy + oyLy) ug’;
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Coordinate Transformation for Arbitrary Geometries

Let us consider a two-dimensional coordinate system of the physical
domain (z,y), and the computational domain (£,7). We begin with
spatial derivatives of any variable with respect £ and 7,

9 vor 0
o0& Ox 0 Oy o¢’
0 0 dx 0 Oy

an ~ oz oy ayon

In matrix form
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Coordinate Transformation for Arbitrary Geometries

where the Jacobian matrix (transpose) is

dz Oz
96 D
J = <a§c a§> -

an  on

Thus,

2\ 1
<§>—Ul<g

2D models
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Coordinate Transformation for Arbitrary Geometries

The second derivatives,

2o ()R By

oz |JP2\\on/) o¢2 “on oc ocon  \9¢) on?
@823/_@8231 0 @Ozy_@(?zy 8
On 0&0n 0§ On? | 0 0§ 060n  On 0&*

1 (( ) I & 9y odyalJ| o
n

R o¢ 96 9n 9E 9 I

a0 (00| 0
96 On on 06 \o¢) On On)’
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Coordinate Transformation for Arbitrary Geometries

P L () peor B oy
ay?2 I \\an) 062 "o ac acon  \og) on?
or O or a9 (00 o) 0
on 9Eon  O& On? | O¢ 0¢ 9O On 0€2 | On
_1 (ax)QW‘{’_ax&EWa
[JI2 \\on/) 9 9 On 05 0§ n
eroa 2 (ax)ol o
o0& On On 0& o0& dn On
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Coordinate Transformation for Arbitrary Geometries

where
alJ|
23

0 <8x oy Oy 8x>

9E \ ¢ 96 9 on

0?x 0y Ox 0% 0%y Oxr Oy 0%

DE2 On | OF 9Edn  O€2 Oy OF OEdn
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Coordinate Transformation for Arbitrary Geometries

Let us consider the vector convection-diffusion equation

ot "oz Ty 222 T o2

() o 1h)

ou  oU  OU (82U 82U>
— — -V =F,

with
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Coordinate Transformation for Arbitrary Geometries

Making the change from variables (z,y) to (&,7),

07U+667U UaU—V< L <a82U—2b82U +682U>
ot o€ Oy |J]2 \ "~ 0¢? 0E0n on?
+pa—U +an> =F
9 "0y ’
where
o= ()
|[J[\"on  on)
_ 1 Ox oy
o = g (5 %)
1 0 0% 0%x 0%x
» = 175 (o (5 ~ 36 <)

oz [ 0%y 0%y 0%y
+8777 (aaé? — 2b@ + 087772
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Coordinate Transformation for Arbitrary Geometries

)

_ 1 (oy [ Pz
47 ap \ee \“oe
Oz [ Py
ot \ “oe2
(3
“ = \oy on
Oxr dx Oy Oy
b = =2t Y
9 on ¢ an

%z
— 2b78§817

0%y

9

<= () ()

0%z

+687172

0%y
2 &y
oon o2 >>

Course 2024-2025
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Coordinate Transformation for Arbitrary Geometries

These equations may be solved using the predictor-corrector MacCormack
method,

Predictor

X n 8U aU

vAt ! a82 —21)62 —l—c62 + 0£+ ou ’
77 \"ogz T aean Pog "Moc )

+F{3)

2D models
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Coordinate Transformation for Arbitrary Geometries

Corrector

1 At ou  _oU
n+1 Z(UF. n. =7
u; 2 (UW +U”) + 2 ( ( o€ T ) J)

vAt (1 (U 9U QUYL oU  OUNT
2 \P\"oe " Tacon " "o ) " Toe " om )
EF.".H
9 i
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Coordinate Transformation for Arbitrary Geometries

Write the advection-diffusion equation

ou Pu %
Dt + 51 + ﬁ2 ((9952 + 6y2> )

using the polar coordinates:

x =rcos(f), y=rsin(f) .

Solution:
Using the Chain’s Rule

ou Oudr  Oudb

9x  oroz  990s
ou _ oudr  0uob
oy  Ordy 000y
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Coordinate Transformation for Arbitrary Geometries

We start from

x = rcos(h)
= rsin(0)
Derivating with respect to x
or 00
1 = p cos(f) — rsm(@)%
or 00
0 = p sin(@) +r cos(@)—x
Solving the system
or 00 1
e cos(f) , %= sin(0)

2D models
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Coordinate Transformation for Arbitrary Geometries

Derivating with respect to y

or ) a6
0 = ay cos(0) —r sm(@)a—y
or a6
1 = & ) pd
99 sin(6) + r cos( )Gy
Solving the system
or 00 1
oy sin(6) , it cos(#)
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Coordinate Transformation for Arbitrary Geometries

We obtain

ou ou 1 . ou

% = COS(Q)E — ; SIH(G)%
ou . ou 1 U
a 51n(0)§ + - 005(9)%
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Coordinate Transformation for Arbitrary Geometries

d%u

2 (o2 ) 2
COSQ(Q)ZQTZ + — sin(0) cos(H)gZ — —sin
+= sinQ(G)% + 7«% sin2(6) ‘;292‘

2D models
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Coordinate Transformation for Arbitrary Geometries

0%u 0 ou 1 ou\ Or
ain = E (Sln(g)ar + ; COS(0)9> aiy
0 ou 1 ou\ 00
% (Sln((g)ar + ; COS(Q)H) y
9%u 2 ou
— gin? 2 g
= sin“(0) 52 2 sin(#) cos(0) 90

@ 1 0%u

L 2 2
+; cos“(0) 5 + 3 cos 0)=—
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Coordinate Transformation for Arbitrary Geometries

The equation

0 e (e P
Yor "oy — 0x?  Oy?

8 0 1 ou 0 1 0
a—? + 61 (COS(H)a: — fs' (9) 80) + 2 (sm( )a—: + Tcos(&)(;g)

(P ton 1o
- or2  ror r200?
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Fluid equations

We consider an unsteady two-dimensional inviscid flow

dp vy op vy op
- 2
v, Ovy Ovy, 10p

ot :_<vx81:+vy8y+p6x)

vy Ovy dvy, 10p
o <Ux ox oy T p3y>

Oe (v Oe de pdvy p 6vy>

Continuity

T — momentum
Y — momentum

Energy i
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Fluid equations

To obtain an explicit Lax-Wendroff method we use the Taylor expansions

ap 2p\" At
n+l n g
art = e (57, 80 (56) 5
v vy | A
n+l n YV T [l
(va)ij = (va); +(8t> At + (8752) 5

2
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Fluid equations

For example, using the continuity equation

op\" n'(vx)?-i-l,j_(vl‘)?—l,j + (v Piy1j — Pi-1,j
ot - Pig 9AT W 9Ag
n.(vy)?,jﬂ — ()1 + (v))" Pij+1 ~ Pij—1
Pij 2Ay Y715 2Ay
The second derivative
@ - _ 622}93 +%@+ 82p +@%
a2~ \Pozat T or ot T “orot | or ot

o d%vy n Ovy dp 0?p dp (%y>

Poyor T oy ot T ayor T oy ot
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Fluid equations

The mixed derivatives
vy _ 21}95 (81}1 2 Yo vy avz %
ozt * yaﬂc@y 0y Ox

1& 1o
pox2  p20x Ox
Using central differences

(82% )n T ((’Uz)” (Va)iq,; =2 (va)i; + (v2)i4

Ozt iJ Az?

+ (vw)zzrl,a (U”):Lla ’
2Ax

(Uw)?+1,j+1 + (’Ul‘)fill,jfl (Ux)fl 1,5+1 (%)Zrl,j,l

+(Uy)i,j 4A$Ay
('Uac)l G+l (UZ)Z -1 (U,U)ZH j (Ur): 1,5
2Ay 2Ax
n ipz 1,5 — 2pi; + Pig1,; 1 Pit1,j — Pim1,j Pit1, — Pi-1,j
oy Ax? (o2 _)2 2Ax 2Az
' i3
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Fluid equations

@ The same procedure is followed for the other variables, obtaining a
second order accurate method in time and in space.

@ The need of using the second derivatives in the Taylor expansions

makes necessary to use long equations, and this makes this method
unpopular.
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Fluid equations

For the density
dp
1

(%) is a representative mean value of 0p/0t between ¢ and t + At.
av

For the other variables

n n O0v,
(Ux)i;rl = (Ul‘)i,j + (875>av At

n n ov
()i f = (vy)i7j+<8ty) At

Oe
n+l n
62-7j = ei,j + (&)a‘, At
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Fluid equations

The (%) is computed using a predictor-corrector methodology.
av

Predictor
Using the continuity equation (forward differences)
<8p)n _ pn'(vx)?-s—l,j - (U:c)?J ¥ (), P?-s—l,j - Pzrfj
8t ij b Ax g Ax
N o Wi = ()i (v, Pijr1 — Pi
pz,] Ay Y/ig Ay

The predicted value is

_ op\"
ot =i+ () A
! 7O\Ot )y

A similar procedure is used for the other variables

2D models
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Fluid equations

Corrector
Using the continuity equation (backward differences)
_ — o\l oyl _ _
<ap>n+l _ (UI)Z]‘ - (Ux)?—l,j + (@ )T”rl Pij = Pi-1,
ot);; "I Ax wg Ax

e ()i = )i (@) Piji1 — Pi
1,J Ay Yiyg Ay

The average value of the derivative

(5. -3 (Gn) (G
Ot Jay  2\\0t/;; ot )

The scheme

dp
Py = phs+ <8t> At
av
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Fluid equations

The fluid equations can be expressed in conservative form

oU OF 0G

ot Tar Ty 7

where
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Fluid equations

@ MacCormack's method can be applied to the conservative
formulation, but the physical variables have to be isolated from the
components of U in each time step.

@ This method can present oscillations in certain conditions. To
stabilize the method, an artificial viscosity term can be added

Cylpic1: — 2pi 5 + Div1.s
Slnj _ :t:|pl 1,5 Dij pl+1’]| ( ,ﬁlj_2Uinj+ iﬁ‘lj)
’ Pi-1j + 2Pij + Pit1 ’ |

C i1 — 2pii + i
Y ‘pu 1 p” P%’]+1| ( i1 — 22U + ir}jﬂ)
Pij—1 + 2p17] +p’l7j+1

which is a fourth-order term. The parameters C, and (), range from
0.01 to 0.3
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Fluid equations

The viscosity term is applied in two steps

B o n
n+1 n n
opt = U+ ( i) At + 82

OUN\™ B
n+1 n+1

av

2D models Course 2024-2025 57 /71



Incompressible viscous flow: The pressure correction

We consider the incompressible Navier-Stokes equations

Vi = 0
Dv Op
P Dtx = _%+Nv2vx+pfcc
Dv Op
"D = oy AV ek

If we apply MacCormack’s technique, the time step is restricted by
stability conditions. An approximate stability condition is

At < !
[val /A + oy | /Ay + a/T](B)? + 1/(Ay)?

where a is the speed of sound
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Incompressible viscous flow: The pressure correction

@ For a compressible flow the speed of sound is finite.

@ For incompressible flow the speed of sound is theoretically infinite and
the stability condition yields to At = 0.

@ CFD solutions for incompressible Navier-Stokes equations are different
from those used for the compressible Navier-Stokes.

@ The continuity equation for incompressible flow is

Oy _‘_%

ox dy =0

a central difference scheme

(va)ip1; = (Ve)ioy; n (Uy)i,j+1 - (Uy)i,j—l

2Ax 2Ay =0

2D models Course 2024-2025 59/71




Incompressible viscous flow: The pressure correction

\ 20 10 20 40 20
) > 5 O 5
Yy

20 40 20 10 20
20 40 =220 10 20

5 5 5 5 5
20 40 20 40 20
20 10 20 40 0

5 5 5 5 5
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Incompressible viscous flow: The pressure correction

@ The difference equation numerically allows the chequerboard velocity
distribution given in the Figure.

@ In the x direction, v, varies as 20, 40, 20, 40, etc., at successive grid
points, and in the y direction, v, varies as 5, 2, 5, 2, etc., at
successive grid points.

@ The chequerboard velocity distribution is basically nonsense in terms
of any real, physical flow field. A similar behaviour is found from the
pressure is central schemes are used for the derivatives.

@ Given the weakness of the central difference formulation described
above, we should justifiably feel uncomfortable, and we should look
for some “fix" before embarking on the solution of a given problem.
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Incompressible viscous flow: The pressure correction

As a solution a staggered grid is proposed

\ Az
—_——
y Azx/2
’ —
1 +3.0+1 i+3.5+1
Lj+1 i,j+1 i+1j+1
1,5+
+ 3.0
1 1] i+ 1.7
i-1j-1 ij-t i+1j-% Ay
Ay
2
i-1i-1 ) 3
2] i+di-1 i+3.5-1
Lj-1 ij—1 Li-1
>
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Incompressible viscous flow: The pressure correction

@ The pressures and velocities are calculated at different points.
® When (vg),;, 1, ; is calculated a central difference is used for

(8p> _ Dit1,j —DPij
ox i,j Ax
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The pressure correction

The pressure correction is an iterative procedure (SIMPLE method)
© An initial guess is used for the pressures pj ;.

@ With these values of p* the values of v, and v, are computed from
the momentum equations.

© Using the continuity equation a pressure correction p’ is obtained,
p=p +p
With p/, correction for the velocities (vs)', (vy)’,
/

* * /
Vg = Vp T Uy, Uy =0y, +0,,

with the new value of p return to step 2.
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The pressure correction

Using the computational cell

+Lj+3

((”y>z‘,j+1/2 + (”y)i+1,j+1/2>
((Uy)i,j—l/Q + (”y)i+1,j—1/2)
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The pressure correction

The momentum equation centred at (z + %,j)
At
+1 n n
(Pv:v)?ﬂ/zj = (PUI)?H/QJ + AAL - Ax (pz‘+1,j - pi,j)

where

A =

2\"™ _ 2\" _
_ (’wz)i+3/27j (pvz)v:—l/zj n (Poay)i1/2 541 = (PUy)in /2 51
2Ax 2Ay

+H

(Ux)?+3/2,j -2 (Uw)?ﬂ/z,j + (”w)?q/z,j
Ax?

n (UZ);L+1/2,]'+1 -2 (Uz)?+1/2,j + (Uz)?+1/2,j—1
Ay?
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The pressure correction

Now using the computational cell

Li+1 ij+1 itlj+l

i+1j+d

((Ux)z'—l/z,j + (”w)z‘—l/z,jﬂ)

((Uy)i+1/2,j + (U$>i+1/27j+1)

|
N~ Nl
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The pressure correction

The momentum equation centred at (i,j + %)

At
+1
(pvy); 12 = (Pvy)ij 410 + BAL = Ay (PZJ'H - ij)

where
. 2 2
B - _ (vavx);q—l,]’+l/2 - (vavy);L_l,]’+1/2 " (va)i7j+3/2 - (pvy)i,j_l/z
- 2Ax 2Ay
N ()it 412 = 20) 01 2 + W)y 410
i Ax?
N (vy)i a2 =2(Wa)ijp1y0 + (V2)i;1)0
Ay?
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The pressure correction

The iteration begins with p* and

At
1
(pvy )?-:_1/2j = (PU;)?H/QJ + ATAt — Ax (pﬁl,j - pf?)

(o)t = (o), B = S (00— 913)
Py ij+1/2 Py i,j+1/2 Ay Pij41 — Piyj
A correction for the velocities is used

At
+1
(PU:/E)?H/QJ (pvz )2+1/2,j Az (P§+1,j_p;,j)

(pvly)z;jl/z - (pv?j>zj'+1/2 2@3 (pW“ pm)
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The pressure correction

Using the continuity equation

(pvx)i+1/2,j - (P”w)i—1/2,j L (va)z’,j+1/2 - (p”y)z',j—yz _

0
Ax Ay
we obtain
ap; j +bpiyyj +bpi_y it epijo +d=0
where
2( At N At ) At At
a = _— R = _— C = ———
Az?2  Ay?) Ax?’ Ay?’
1

d= 57 (D)o = (02)i1j25)

A
1 . «
Ay <(pvy)i,j+1/2 B (pvy)i,j—1/2>
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The pressure correction

START )

Initial guess p*, u*, v*

STEP 1: Solve discretised momentum equations

Eauwti7e+ (P, = P1) Aut bl

= ZaeV it (Pl - PLI AL+

ok, v

ay, Pli= a

STEP 2: Solve pressure correction equation

+ 81y Phiast Bums s + Bs Pl + by

o

STEP 3: Correct pressure and velocities

S (Pless= Pl
i+ doy (0hs =P}

DU, v, 9%

STEP 4: Solve all other discretised transport equations

s+ By1s Bpia + B O,

( sror
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