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A large number of the vocalization studies on mammals are based on time–frequency analysis of

the produced sounds. The patterns, which are extracted from the time–frequency representations,

determine the classification in the different sound categories. However, there are situations

where this pattern related recognition does not allow a precise characterization of the vocalization

to be obtained. In these situations, a feasible alternative, which can help by giving the dominant

component of the sound, is to measure the strength of the tonal and pulsed constituent units. In

this work, the use of a ratio of pulsed to tonal strength is proposed to objectively measure

the distribution of energy between these two components. This pulsed to tonal ratio (PTR) can

be computed with the aid of the discrete cosine transform. It is demonstrated that the PTR
can be obtained with a relatively simple expression without having to go through the time–

frequency representation. This work presents examples that show how the PTR can be used to dis-

tinguish between two very similar Beluga whale sounds and how to dynamically track the power

distribution between the pulsed and tonal components in non-stationary signals.
VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3682056]
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I. INTRODUCTION

The time–frequency analysis of the underwater sounds of

the Beluga whale is a valuable research technique for marine

biologists. The way the energy is distributed in time and fre-

quency is used to classify the different sounds that are emitted

by the animals. Typical cetacean sound classifications include

pulsed and tonal sounds as well as a large variety of combina-

tions and alterations of these two main categories. The pro-

cess of categorizing whale songs in discrete sets is complex

and typically emphasizes the distinctive properties of proto-

typical units that are heard from a distance.1

The classification process, as with many other maritime

mammals, involves recognizing the patterns that the sounds

produce in the time–frequency representations (TFRs)2,3 and

how the energy is distributed in the different parts of the

whale song. The process, which is normally done with the aid

of software tools, is frequently supervised by a trained

researcher after listening and analyzing the TFR of a whale

sound. However, there are some situations where the software

algorithms based on geometric parameter extraction from the

TFR patterns do not guarantee a correct recognition of the

vocalization category. In these situations, even having an

expert carefully listen to the vocalizations does not ensure a

precise and objective classification of the sound. An example

of this is what happens when trying to classify Beluga whale

sounds that mix several elements [whistles, regular clicks, and

rapid-click buzzes (creaks)] in the same vocalization. The ex-

amination of the TFR of these sounds using false color images

does not allow the researchers to precisely determine if the

sound has a dominant pulsed or tonal component. Figure 1

illustrates this problem. Establishing a threshold to classify

sound units as pulsed or tonal just by listening to it is also

rather arbitrary and subjective. It would be more interesting if

we could extract objective information about how the energy

(or mean power) is distributed in the TFR.

A feasible alternative that is closely related to some of

the characteristics that are taken into account for sound clas-

sification is to obtain the ratio of the pulsed to tonal strength

(PTR). The PTR could be obtained as follows:

PTRðdBÞ ¼ 10 � log
Ppulsed

Ptonal

� �
; (1)

where Ppulsed is the mean power of the pulsed components of

the sound and Ptonal is the mean power of tonal components

of the sound.

The separation of tonal components from impulses can

be done using the reassigned spectrogram magnitude as it

was presented in Fulop and Fitz.4 An alternative approach

can also be derived by decomposing the TFR using discrete

cosine transforms. This new approach is computationally

efficient and may complement the Fulop and Fitz technique.
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The work is structured as follows. In Sec. II, we show

how to compute the PTR parameter using discrete cosine

transforms, and we present simplified expressions of the

parameter. In Sec. III, the proposed parameter is validated

through simulations. A comparison of the proposed method

with results obtained using the technique described by Fulop

and Fitz is also shown in this section. Section IV presents an

application of the proposed parameter to illustrate its impor-

tance in characterizing and classifying complex Beluga

whale sounds. Finally, we present our conclusions.

II. PULSED TO TONAL RATIO CALCULATION

Let us assume that we have computed the TFR of the

underwater Beluga sound that is under analysis (or a frag-

ment of it) using one of the many available algorithms (spec-

trogram, Wigner–Ville, Cohen’s class, etc.). We call the

discrete TFR P(n, k), where n¼ {0,1,…, N1� 1}. The analy-

sis parameter N1 is related to sound duration or a window

data analysis length. The discrete frequency k is obtained by

sampling P(n, w) over the unit circle with N2 points

(k¼ {0,1,…, N2� 1}). In the TFR representation, part of the

energy is distributed in the pulsed component of the sound

(vertical lines in TFR), and another part of the energy is dis-

tributed in the tonal component (horizontal bands in TFR).

Figure 1 shows an example of the pulsed and tonal compo-

nents. An intuitive method for obtaining the relationship of

the pulsed to tonal strength can be devised if the TFR is proc-

essed as an image. The bidimensional discrete cosine trans-

form (DCT2D) can be used to extract the texture degree of the

energy image.5,6 The horizontal and vertical coefficients of

the DCT2D can be used to obtain the mean power in the tonal

and pulsed components, which is illustrated in Fig. 2. We are

interested in obtaining the ratio of the mean power that is

present in the pulsed component to the mean power that is

present in the tonal component. We use the sum of the

squared DCT2D coefficients since this sum can be used to

derive shift-insensitive spatial frequency descriptor according

to Frye and Ledley.7 The ratio can be calculated as

PTRðdBÞ ¼ 10 log

XN1�1

u¼0

Fðu; 0Þ2

XN2�1

v¼0

Fð0; vÞ2

266664
377775; (2)

where F(u, v) is the DCT2D of the TFR.

The proposed PTR calculation can be simplified if it is

taken into account that the DCT2D can be computed using

the DCT-II as follows:

Fðu;vÞ¼
XN1�1

n¼0

XN2�1

k¼0

Pðn;kÞcos
p

N1

nþ1

2

� �
u

� �
cos

p
N2

kþ1

2

� �
v

� �
;

u¼0;1;…;N1�1;

v¼0;1;…;N2�1: (3)

If Eq. (3) is particularized for F(u, 0) and F(0, t) which are,

respectively, used to calculate the numerator and the denom-

inator of Eq. (2) we obtain

Fðu; 0Þ ¼
XN1�1

n¼0

XN2�1

k¼0

Pðn; kÞ cos
p

N1

nþ 1

2

� �
u

� �
;

u ¼ 0; 1;…;N1 � 1

Fð0; vÞ ¼
XN2�1

k¼0

XN1�1

n¼0

Pðn; kÞ cos
p

N2

k þ 1

2

� �
v

� �
;

v ¼ 0; 1;…;N2 � 1: (4)

It can be observed from Eq. (4) that only TFR marginals

need to be calculated. The discrete time and frequency mar-

ginals are given by (5) and (6), respectively,

PðnÞ ¼
XN2�1

k¼0

Pðn; kÞ; (5)

FIG. 1. (Color online) TFR of a Beluga sound (called “Creak whistle” by

the biologists). The arrows indicate the location of the pulsed and tonal

components.
FIG. 2. (Color online) The DCT basis for a transformation of size 8� 8.

The indexes along the top and left side of the image represent the vertical

and horizontal spatial frequency coefficient indexes. The arrows indicate the

horizontal and vertical coefficients used for textural analysis.
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PðkÞ ¼
XN1�1

n¼0

Pðn; kÞ: (6)

Note that now, in the computation of Eq. (4), only one-

dimensional DCTs are needed. Depending on the TFR asso-

ciated with the computed marginals, Eqs. (5) and (6) can be

simplified even more, and optimum and fast algorithms can

be devised to calculate the PTR.

A. Computation of the PTR with marginals of the
spectrogram

As a first example, we can obtain the marginals assum-

ing that P(n,k) is the spectrogram computed using the short-

time Fourier transform. We define DFTN2
[�] as an operator

to compute the discrete-time, discrete-frequency Fourier

transform with N2 being the number of equally spaced

samples from w¼ 0 to 2p. We use x(n) to design the sound

fragment of interest where we want to compute the PTR. We

also call the N2 analysis window w(n), which is assumed to

be non-zero only in the interval n¼ [0, 1,…, N2� 1]. The

marginals (5) and (6) can then be written as

PðnÞ ¼
XN2�1

k¼0

DFTN2
½wðmÞ � xðn� mÞ�j j2

¼ N2

XN2�1

m¼0

wðmÞ � xðn� mÞj j2 ¼ N2 � bxðnÞ; (7)

PðkÞ ¼
XN1�1

n¼0

DFTN2
½wðmÞ � xðn� mÞ�j j2 ¼ bXðkÞ: (8)

Equation (7) has been simplified using Parseval’s theorem,

and it shows that the time marginal is proportional to the

smoothed energy calculation of the sound fragment using the

sliding window w(n). We use x̂ðnÞ to refer to this smoothed

energy estimation. Equation (8) shows that the frequency mar-

ginal is equivalent (with a scale factor) to smoothed spectra

estimation using Bartlett’s method.8 We use bXðkÞ to refer to

the smoothed spectra estimation. Taking all this into account,

Eq. (2) can be computed using the results of the following:

Fðu; 0Þ ¼ DCT1D½N2 � bxðnÞ�; (9)

Fð0; vÞ ¼ DCT1D½bXðkÞ�; (10)

with x̂ðnÞ and bXðkÞ previously defined. In this case, only

one-dimensional discrete cosine transforms are required

(DCT1D[�]). This greatly simplifies the computation.

B. Computation of the PTR with distributions that
satisfy marginal properties

The computation of the PTR can be simplified even

more if the associated discrete TFR satisfies marginal proper-

ties such as discrete Wigner–Ville distribution9,10 or discrete

positive distributions (Coehn’s class type II,11 etc.). For these

distributions, Eqs. (5) and (6) result in

PðnÞ ¼ K1 xðnÞj j2; (11)

PðkÞ ¼ K2 XðkÞj j2; (12)

where X kð Þ ¼ DFTN2
½xðnÞ�. The constants K1 and K2 depend

on how the particular positive distribution is extended to

discrete-time signals. Table I illustrates the possible values for

K1 and K2, which are extracted from some of the alternatives

for computing the discrete-time, discrete-frequency TFRs.9,10,12

Thus Eq. (2) can also be computed using

Fðu; 0Þ ¼ DCT1D½K1 xðnÞj j2�; (13)

Fð0; vÞ ¼ DCT1D½K2 XðkÞj j2�; (14)

with K1 and K2, which have already been given in Table I.

The proposed computation of the PTR presented in

Secs. II A and II B, which only involves marginals, is not

affected by inherent problems of the TFR computation such

as cross-terms. Additionally, resolution and parameter setup

becomes an easy task, and as a result classical spectral

density estimation concepts can be used.8

C. Application to non-stationary audio signals with
slow variation of the PTR

In the analysis of bioacustic signals, it is quite frequent

to find slow variations of the tonal or pulsed components.

The above-proposed simplifications allow the PTR parame-

ter to be easily computed and used to dynamically track the

pulsed to tonal strength ratio.

To do so, we refer to r(n) as the audio signal where we

want to compute the evolution of the PTR. We also use a tem-

poral rectangular window v(n) of length N¼N1þN2. With the

algorithm described in Sec. II B we can compute the evolution

of the PTR as the moving window v(n) slides over the audio

signal r(n). The evolution of the PTR in a given sound can be

a valuable tool for examining and comparing sounds. It can

also be used to establish thresholds to determine if the cetacean

vocalization is more pulsed than tonal or vice versa.

III. SIMULATION

We have used MATLAB to create synthetic sounds with

controlled pulsed and tonal mean power.13 Equation (15)

models how the synthetic sounds were obtained,

xiðtÞ ¼ ~wðtÞ þ
X

m

P
t� mq�1

pulsed

Tpulsed

 !
~mðtÞ

þ
XNh

m¼1

A sinð2pf0mtÞ: (15)

TABLE I. Marginal constants K1 and K2 for some discrete-time, discrete-

frequency TFRs found in the bibliography.

Positive distribution K1 K2 Defined in:

Discrete Wigner–Ville N2/fs fs As formulated in Ref. 9

Discrete Wigner–Ville (WS) N2 N1 As formulated in Ref. 10

Type II Cohen’s Class 1 1 With the kernel constraints

in Ref. 12
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In Eq. (15), f~wðtÞg and f ~mðtÞg are zero mean Gaussian sto-

chastic processes that respectively model the observation

noise (mean power r2
w) and the pulsed bursts (mean power

r2
m). The function P t=Tð Þ is the rectangular function of dura-

tion T. Some other variables appear in the model in Eq. (15):

the pulsed burst length (Tpulsed), the density of pulses per

second (qpulsed), the amplitude of the tonal component (A),

the central frequency of the tonal component (f0), and the

number of harmonics (Nh). Parameters in Eq. (15) ensure

that q�1
pulsed > Tpulsed to avoid overlapping of pulsed compo-

nents. In all the simulations presented in this section, the sig-

nals have been sampled at fs¼ 96 kHz.

Theoretical PTR was computed as stated in the

following:

PTRtheoðdBÞ ¼ 10 log
qpulsedTpulsedr2

m

NhA2=2

� �
: (16)

Figure 3 shows simulations of Eqs. (15), (2), and (16) for the

proposed DCT-based estimator in two cases—when the am-

plitude of the tonal component (A) increases and the rest of

the variables remain fixed; and when qpulsed increases and

the rest of the variables remain fixed. Figure 3 also shows a

comparison of the PTR when the tonal and pulsed compo-

nents are separated using the reassigned spectrogram through

the channelized instantaneous frequency with mixed partial

derivative (CIFderiv) thresholding.4 The thresholds were

selected based on the recommendations by Fulop and Fitz. A

threshold value of 0.01 was used for isolating tonal compo-

nents, whereas threshold values of between 0.75 and 1.25

were used for isolating pulsed components. The reassigned

spectrogram was computed using frames of 256 points and a

frame advance of 20 points. A Hanning window was

employed in the spectrogram computation.

The comparison in Fig. 3 shows that both techniques give

quite an accurate estimation of the real PTR. However, the pro-

posed DCT-based estimation gives a higher sensitivity to small

changes in low PTR signals. Figure 3 also shows that, even

though the proposed estimators of the PTR have some bias and

are not linear, they are monotonically increasing in the simula-

tion range. The maximum bias observed in the [–10,10] dB

range is obtained at the ends of the curve, when the sound is

mainly tonal or pulsed. In these situations, the measured error

is approximately 4 dB for the DCT-based estimator and 6 dB

for the CIFderiv-based estimator. Despite the observed bias,

FIG. 3. (Color online) Evolution of the estimated PTR when the theoretical

PTR increases. PTR estimates with the proposed method in the case where

TFR satisfies marginal properties (DCT based), and with the mixed deriva-

tive thresholding (CIFderiv based) are shown. Signal length: 0.5 s,

Tpulsed¼ 5 ms, r2
m ¼ 4, Nh¼ 1. The value changes in the range

A¼ [1.5,…,10] and qpulsed¼ 70 in one case and in the range A¼ 2.5 and

qpulsed¼ [2,…,250] in the other.

FIG. 4. (Color online) Simulated sound of 1.5 s. Spectrogram (top); PTR
evolution (bottom). The first 0.5 s contain a pulse density of 20 pulses/s, the

next 0.5 s contain a pulse density of 50 pulses/s, and the third 0.5 s contain a

pulse density of 100 pulses/s.

FIG. 5. (Color online) Simulated sound of 2 s. Spectrogram (top); PTR
evolution (bottom). The number of 10 kHz harmonics increases by one

every 0.5 s.
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the proposed estimator can be a valuable technique to measure

slight variations in the way power changes between the tonal

or pulsed components as we discussed in Sec. IV.

It is interesting to observe that, even though the Fulop

and Fitz method allows high quality TFR to be obtained, it

has a high computational cost. Thus, in situations where we

are only interested in obtaining an estimation of the amount of

power distributed between the pulsed and tonal components,

the proposed DCT-based computation of the PTR is a better

alternative. Also, the low computational cost allows this tech-

nique to be used to track the PTR in non-stationary signals.

Let us now observe the behavior when there are

non-stationary audio signals with slow variation of the PTR.

Observation noise has been modeled as described earlier.

The pulsed bursts have been simulated with zero mean Gaus-

sian noise Tpulsed¼ 5 ms and r2
m ¼ 4. The number of har-

monics has been set to Nh¼ 3. The signal has been obtained

by joining three fragments of 0.5 s. The first 0.5 s contain

a pulse density of 20 bursts/s, the second 0.5 s contains a

pulse density of 50 bursts/s, and, finally, the third 0.5 s con-

tains a pulse density of 100 bursts/s. Figure 4 illustrates the

spectrogram (top) of one of these synthetic sounds. Figure 4

(bottom) shows the estimated PTR evolution. The window

length used to obtain the PTR evolution was N¼ 5000 sam-

ples (�52 ms at fs¼ 96 kHz). This graph shows that as the

density of bursts increases, the PTR reflects this behavior.

Similarly, we have created a synthetic sound to illustrate

the behavior when the number of tonal components

increases. We have used a pulse density of 70 bursts/s in the

whole audio register, and we have increased the number of

10 kHz harmonics by one every 0.5 s. The top graph of Fig.

5 shows the spectrogram and the bottom graph shows the

PTR evolution. Figure 5 shows how the PTR decreases as

the number of tonal components increases.

IV. APPLICATION TO THE CLASSIFICATION AND
CHARACTERIZATION OF BELUGA SOUNDS

In this section, we illustrate how the proposed parameter

can be a valuable tool in a real application for comparing

sounds that contain energy that is concentrated in the tonal

or pulsed components.

As we have already described, the way that the energy

is distributed in time and frequency is used to classify the

sound emitted by the Beluga whales. The classification cate-

gories are related to observed Beluga behavior and include

pulsed and tonal sounds as well as a combination of these

two main categories. In some situations, simple observation

of the TFR or listening to the sounds is not enough to deter-

mine if a given Beluga vocalization has a predominant

“pulsed” component or a predominant “tonal” component. In

these situations, the calculation of the proposed PTR can

help to decide.

FIG. 6. Whistle creak (top) and Creak whistle (bottom).

FIG. 7. TFR of Beluga sounds s1 (top) and s2 (bottom).

FIG. 8. (Color online) Box and Whisker plot (median 625th and 75th per-

centiles) for the Whistle creak and Creak whistle vocalizations.

TABLE II. Measured PTR of the different sounds.

Whistle creak Sound s1 Sound s2 Creak whistle

Measured PTR (mean) �9.6 dB �8.3 dB �5.6 dB �4.5 dB
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Figure 6 shows the TFR of two Beluga sounds that were

recorded at the Oceanographic of Valencia research facilities.

Both sounds contain tonal components (whistles) and pulsed

components (creaks). The sound at the top of Fig. 6 has a

dominant whistle component and is therefore called Whistle

creak. The sound at the bottom of Fig. 6 has a dominant creak

component and therefore is called Creak whistle. These

underwater sounds, as well as the rest of the sounds presented

in this section, were recorded using a computer with a Roland

(Edirol) FA-101 sound acquisition system (24 bits and fre-

quency samples fs¼ 96 kHz), a Bruel & Kjaer 8103 hydro-

phone, and a Bruel & Kjaer 2692 Nexus amplifier.

The sounds presented in Fig. 6 are clear examples of

Whistle creak and Creak whistle. However, there are situa-

tions where this distinction may not be so obvious (see

Beluga sounds s1 and s2 in Fig. 7). In these situations, the

PTR parameter can be used to quantitatively decide between

these two categories. We calculated the box and whisker plot

of several Whistle creak and Creak whistle sounds as well as

the PTR of sounds s1 and s2. The results are summarized in

Table II and Fig. 8. According to this results, sound s1 should

be assigned to Whistle creak, whereas sound s2 can be con-

sidered a Creak whistle.

The proposed PTR was also calculated for underwater

sounds with variations in how the energy was distributed

between the tonal and pulsed components. Two recordings

of Beluga whale sounds of approximately 1.5 s were

selected. The first one [Fig. 9 (left)] is composed of a Creak

whistle followed by pulsed bursts. The second one [Fig. 9

(right)] is composed of a mix of flat whistles, with different

number of harmonics, and pulsed bursts. Figure 9 shows the

TFR and the PTR for both recordings.

It is easy to notice from the observation of the PTR of

the sound record containing the creak whistle [Fig. 9 (left)]

that the proposed parameter clearly demarcates the tonal and

the pulsed fragments of the sound if a PTR threshold of 0 dB

is established. In the case of Fig. 9 (right), the PTR helps to

observe that the flat whistle has more strength on the tonal

component in the interval t¼ [0.6–1.1] s, even though some

harmonic components disappear in this time interval.

V. CONCLUSIONS

We have presented a new parameter to measure the

pulsed to tonal strength PTR. Conceptually, the textural infor-

mation has been extracted by computing the bi-dimensional

cosine transform of the TFR. A mathematical demonstration

shows that the proposed parameter can be easily obtained

without computing the TFR and using only one-dimensional

discrete cosine transforms.

Simulations have demonstrated that the proposed PTR
gives information about the mean power in the pulsed compo-

nent in relation to the mean power in the tonal component of

a given signal. A comparison with previously published tech-

niques, such as the reassigned spectrogram, have shown that

the proposed method gives similar results with less computa-

tional complexity. A real example has shown the utility of the

parameter in helping to classify Beluga sounds with mixed

pulsed and tonal elements in the same vocalization, using

objective criteria. The PTR parameter can also be used in

other bioacoustic sounds or in other completely different areas

such as the monitoring of cracks in engines or turbines using

the nondestructive testing technique of acoustic emission.
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1E. Mercado, J. Schneider, A. Pack, and L. Herman, “Sound production by

singing humpback whales,” J. Acoust. Soc. Am. 127, 2678–2691 (2010).
2J. N. Oswald, S. Rankin, J. Barlow, and M. Lammers, “A tool for real-

time acoustic species identification of delphinid whistles,” J. Acoust. Soc.

Am. 122, 587–595 (2007).
3C. Ioana, C. Gervaise, Y. Stephan, and J. I. Mars, “Analysis of underwater

mammal vocalisations using time-frequency-phase tracker.” Appl. Acoust.

71, 1070–1080 (2010).

FIG. 9. (Color online) Sound recording composed of a Creak whistle followed by pulsed bursts (top) and sound recording composed of a mix of flat whistles,

with different number of harmonics, and pulsed bursts (bottom).

2178 J. Acoust. Soc. Am., Vol. 131, No. 3, March 2012 Miralles et al.: The pulsed to tonal strength parameter

Downloaded 29 Mar 2012 to 158.42.34.78. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



4S. Fulop and K. Fitz, “Separation of components from impulses

in reassigned spectrograms,” J. Acoust. Soc. Am. 121, 1510–1518

(2007).
5Y. Huang and R. Chang, “Texture features for DCT-coded image retrieval

and classification,” in Proceedings of the 1999 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, ICASSP’99 (IEEE,

New York, 1999), Vol. 6, pp. 3013–3016.
6D. Sim, H. Kim, and R. Park, “Fast texture description and retrieval of

DCT-based compressed images,” Electron. Lett. 37, 18–19 (2001).
7R. E. Frye and R. S. Ledley, “Texture discrimination using discrete cosine

transformation shift-insensitive (DCTSIS) descriptors,” Pattern Recogn.

33, 1585–1598 (2000).
8J. G. Proakis and D. K. Manolakis, Digital Signal Processing, 4th ed.

(Prentice-Hall, Upper Saddle River, NJ, 2006), pp. 910–911.

9E. Chassande-Mottin and A. Pai, “Discrete time and frequency Winger-

Ville distribution: Moyal’s formula and aliasing,” IEEE Signal Process.

Lett. 12, 508–511 (2005).
10M. Richman, T. Parks, and R. Shenoy, “Discrete-time, discrete-frequency

time-frequency representations,” in 1995 IEEE International Conference
on Acoustics, Speech, and Signal Processing, ICASSP-95 (IEEE, New

York, 1995), Vol. 2, pp. 1029–1032.
11A. Papandreou-Suppappola, Applications in Time-Frequency Signal Proc-

essing, 1st ed. (CRC Press, Boca Raton, FL, 2002), pp. 273–306.
12F. Hlawatsch and T. Twaroch, “Extending the characteristic function

method for joint a-b and time-frequency analysis,” in 1997 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, ICASSP-
97 (IEEE, New York, 1997), Vol. 3, pp. 2049–2052.

13
MATLAB code is available from the first author’s web page.

J. Acoust. Soc. Am., Vol. 131, No. 3, March 2012 Miralles et al.: The pulsed to tonal strength parameter 2179

Downloaded 29 Mar 2012 to 158.42.34.78. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp


	s1
	E1
	cor1
	s2
	E2
	E3
	UE1
	E4
	E5
	E6
	F1
	F2
	s2A
	E7
	E8
	E9
	E10
	s2B
	E11
	E12
	E13
	E14
	s2C
	s3
	E15
	T1
	E16
	F3
	F4
	F5
	s4
	F6
	F7
	F8
	T2
	s5
	B1
	B2
	B3
	F9
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13

