Materiales: [ Cód.: kernelimpulseIDv2b.mlx ] [ PDF ]
Este vídeo aborda la regularización de la identificación de la respuesta ante
impulso de un sistema lineal invariante en el tiempo (discreto) con un prior
gaussiano descrito por un cierto Kernel de covarianza. Es continuación de los
vídeos [
La idea principal es el hecho de que la respuesta impulsional de un sistema (muestrado a una frecuencia suficientemente alta, posiblemente, si los datos vienen del mundo contínuo) no es algo “aleatorio”, sino una función relativamente “suave” con poca probabilidad de que tenga grandes cambios a “alta frecuencia”, que puede ser modeladas como proceso estocástico con una cierta función de covarianza .
Un enfoque “clásico” de mínimos cuadrados a este problema de
identificación se detalla en el vídeo [
Se compararán los resultados con Kernels exponencial
cuadrático, Wiener y Wiener integrado (con transformación
),
descritos en el vídeo [
En todos ellos hay unos hiperparámetros (es la nomenclatura usual
en literatura, porque llamaremos “parámetros” a los elementos de la
respuesta impulso a estimar) de desviación típica y constante de tiempo
. Se
escogeran los parámetros que menor error ante datos de validación produzcan,
siendo buscados con optimización “fuerza bruta” (por simplicidad), siguiendo las
ideas del vídeo [
Se comprueba que el kernel exponencial cuadrático filtra los datos no regularizados pero no fuerza que la respuesta impulso identificada tienda a cero, porque era estacionario (varianza constante). Los no estacionarios sí que producen estimados regularizados que tienden a cero; el Wiener integrado (doble integrador de ruido) produce la respuesta impulsional más “suave” de todos, como era de esperar intuitivamente. El ajuste de este último sobre datos de validación es bueno, mejor en muchos casos que la truncación.
Colección completa [VER]:
Anterior Identificación de respuesta impulsional discreta con regularización Kernel: ejemplo modelos a priori
Siguiente Identificacion con ‘procest’ de modelos de primer y segundo orden + retardo